-
铁作为地球丰度元素,是地球岩石和土壤的重要组成部分,不仅参与了植物的光合作用、新陈代谢、呼吸过程中电子的转移和氮的还原等重要过程[1-2],也参与了生物体内多种生命过程. 如细胞色素P450酶是广泛存在的含亚铁血红素单加氧酶,其主要活性位点就是亚铁卟啉蛋白[3]. 铁是多种功能材料的催化活性中心,还有助于构建材料的吸附位点. 例如Li等[4]制备的铁基金属有机骨架材料(MOF)上丰富的铁活性位点能高选择性地吸附CO2. Qin等[5]采用共沉淀法构建的具有氧空位缺陷的铁基改性生物炭材料,能实现对水中汞的优异吸附. 香蒲(Cattail)作为一种能超富集铁的沼生草本植物,主要通过根部对金属进行富集[6-8],已被广泛地应用于土壤修复[9-10].
生物炭是由农作物秸秆、木屑等生物质经过热裂解制备成富含炭的固体物质[11],因其在土壤修复、减缓气候变化、废弃物资源化和新能源开发领域具有良好应用价值而受到广泛关注[12-15]. 生物炭具有较大的比表面积、多孔结构和丰富的表面官能团,是一种能替代活性炭的优良吸附剂[6,16-18]. 目前,随着土壤重金属污染形势加剧,富集了金属的植物数量也日益增多,由此转化的金属负载型生物炭材料也越来越易得[19-21]. 如Paul等[19]监测发现由蔬菜废弃物制备的生物炭材料中Zn、Cu、Ni和Pb的含量分别高达120.2、16.8、34.3、12.3 g·kg−1,在经堆肥处理后这些金属含量分别提高至250.0、32.2、60.7、25.2 g·kg−1. 这些废弃植物为原料所制备的生物炭材料性质可能会随着富集金属元素的类型或含量的变化而发生改变. 如Wang等[21]发现,超富集Fe,Mn和Zn的生物炭能有效活化过硫酸盐,且其持久性自由基、含氧官能团、缺陷位点和类石墨结构方面随着热化学转化行为的不同存在着显著差异.
据报道,生物炭表面—C—OH、—COOH和—COOR等官能团的含量和类别,会随着负载的金属元素的不同类型而发生变化,以实现生物炭对污染物的去除作用[22-23]. 例如Wu等[24]以水稻秸秆为原料,将其浸泡在氯化铁和氯化亚铁的混合溶液中,并在氮气氛围下搅拌后热裂解制得铁负载型生物炭材料,能有效促进盐碱地土壤对磷的吸附. 曾凤美等[25]采用热活化法辅以加压超声浸渍技术将硅酸盐水泥颗粒(PC)和Fe2O3与稻壳生物炭(RHC)混合,得到具有高选择性吸附磷的复合多孔炭材料(Fe-PC/RHC).负载了铁氧化物颗粒的生物炭复合材料对底物吸附性能的提升,主要是通过增加其比表面积和孔结构等物理途径来实现. Wu等[20]通过热解Mn超富集植物(美洲商陆)制备负载MnOx生物炭,却发现生物炭的含氧官能团的含量随着MnOx的引入而增加. 然而,由超富集Fe的植物制备的铁负载型生物炭材料的表面官能团是否会发生变化以及铁的富集对吸附性能的影响,还有待进一步研究.
本文将通过原位富集铁的香蒲根制备铁生物炭,采用SEM/EDX、XRD和FTIR等手段对样品的形貌、化学组成和官能团结构进行分析表征,并重点探究自富集途径对生物炭表面性质(比表面积、孔径和基团类型)的影响,并以阳离子染料结晶紫为目标污染物,重点探讨了铁香蒲根生物炭的吸附机制. 该研究将应用在污水处理领域中的生物炭吸附材料的选择提供理论基础.
原位富集铁元素增强生物炭的吸附性能
The enhanced adsorption performance of biochar via in-situ enrichment approach
-
摘要: 负载金属型生物炭材料具有良好的吸附性能, 但其吸附机制尚有待研究. 本文通过香蒲根(Cattail root)原位富集铁(Iron)元素, 再经热裂解得到负载铁生物炭(CRI-100)材料. 该材料对水中有毒有机染料结晶紫(crystal violet, CV)的吸附效率比空白生物炭(CRI-0)高9.8倍. 通过SEM/EDX、XRD和FTIR等表征, 结果显示自富集上去的铁以直径约40 nm的Fe2O3纳米颗粒均匀镶嵌在CRI-100表面. 实验证明,这种铁纳米颗粒的形成,使CRI-100比表面积(120.84 m2·g−1)比未富集铁的生物炭CRI-0(8.05 m2·g−1)高15倍, 且促使其表面产生了更多羟基位点, 用于CV的静电吸附. 本研究将为金属富集型植物转化为生物炭吸附剂的后续应用提供理论依据.Abstract: Metal-loaded biochar has good adsorption properties, but the understanding of such adsorption remains limited. In this study, the iron-loading biochar (CRI-100) were prepared through in-situ enrichment on cattail root and then pyrolysis. CRI-100 exhibited the adsorption efficiency of Crystal Violet (CV), a toxic organic dye in water, was 9.8 times higher than that of the blank biochar (CRI-0). On the basis of SEM/EDX, XRD and FTIR characterizations, the self-enriched iron exists in the form of Fe2O3 nanoparticles with a diameter of about 40 nm, which were evenly embedded on the surface of CRI-100. The presence of these nanoparticles rendered the specific surface area (120.84 m2·g−1) of CRI-100 was 15 times higher than that of CRI-0 without iron (8.05 m2·g−1), and increased the amount of surface hydroxyl sites that were applied to the electrostatic adsorption of CV. This study will provide a theoretical basis for the subsequent applications of metal-enriched plants into biochar adsorbents.
-
Key words:
- biochar /
- self-enriched iron /
- number of hydroxyl sites /
- positive pollutants
-
表 1 由植物各部位富集制备的铁生物炭比表面积和铁含量
Table 1. Specific surface area of biochar enriched iron at different part of plants
样品
SampleCRI-0 CRI-100 根
Root茎
Stem叶
Leaf根
Root茎
Stem叶
Leaf比表面积/ (m2·g−1) 8.05 119.99 128.31 120.84 246.89 274.24 铁含量/ (mg·g−1) 3.28 0.136 0.151 65.57 0.235 0.354 表 2 CRI生物炭EDS结果
Table 2. Results of CRI biochar EDS
CRI-0 CRI-100 元素
Element重量百分比/%
Weight percentage原子百分比/%
Atomic percentage元素
Element重量百分比/%
Weight percentage原子百分比/%
Atomic percentageC 7.72 11.26 C 9.38 15.82 O 68.86 75.35 O 48.66 61.61 Si 9.76 7.43 Si 15.67 11.30 Ca 13.65 5.96 Ca 12.12 6.13 Fe — — Fe 14.18 5.14 总量 100.00 — 总量 100.00 — 表 3 CRI生物炭XRF结果
Table 3. Results of CRI biochar XRF
CRI-0 CRI-100 元素
Element含量百分比/%
Content percentageElement 含量百分比/%
Content percentageSi 48.493 Si 37.924 Ca 31.396 Ca 34.160 K 8.388 Fe 16.124 Fe 7.262 K 7.122 S 2.594 S 2.174 表 4 不同处理生物炭的表征
Table 4. The characterization of different treated biochar
编号
Number比表面积/ (m2·g−1)
Specific surface area铁含量/(mg·g−1)
Iron content aCV的kobsb /min−1
CV of kobs羟基位点密度c /(mol·m−2)
Superficial densityCRI-0 8.05 3.28 0.00032 — CRI-100 120.84 65.57 0.00314 8.333×10−7 CL-0.2M 244.47 21.04 0.00144 3.64×10−8 CL-2M 221.28 59.34 0.00201 1.09×10−7 CL-10 M 329.44 76.45 0.00309 1.07×10−7 C-Fe2O3 367.72 64.19 — — a: 采用AAS测定; b: 吸附动力学常数; c: 氟离子选择性电极法测定.
a: Measured by AAS; b: Adsorption kinetic constant; c: Fluoride ion selective electrode method. -
[1] RYAN-KEOGH T J, DELIZO L M, SMITH W O Jr, et al. Temporal progression of photosynthetic-strategy in phytoplankton in the ross sea, Antarctica [J]. Journal of Marine Systems, 2017, 166: 87-96. doi: 10.1016/j.jmarsys.2016.08.014 [2] BROWNING T J, AL-HASHEM A A, HOPWOOD M J, et al. Iron regulation of north Atlantic eddy phytoplankton productivity [J]. Geophysical Research Letters, 2021, 48(6): e2020GL091403. [3] 李永康, 马雪祺, 冯婧娴, 等. 细胞色素P450酶在植物次生代谢产物生物合成中的研究进展[J/OL]. 分子植物育种: 1-8. [2022-06-12].
[4] LI Y W, YAN H, HU T L, et al. Two microporous Fe-based MOFs with multiple active sites for selective gas adsorption [J]. Chemical Communications, 2017, 53(15): 2394-2397. doi: 10.1039/C6CC09923H [5] QIN S N, FAN H D, JIA L, et al. Molecular structure analysis and mercury adsorption mechanism of iron-based modified biochar [J]. Energy & Fuels, 2022, 36(6): 3184-3200. [6] DU J, ZHANG L, ALI A, et al. Research on thermal disposal of phytoremediation plant waste: Stability of potentially toxic metals (PTMs) and oxidation resistance of biochars [J]. Process Safety and Environmental Protection, 2019, 125: 260-268. doi: 10.1016/j.psep.2019.03.035 [7] LI H G, WATSON J, ZHANG Y H, et al. Environment-enhancing process for algal wastewater treatment heavy metal control and hydrothermal biofuel production: A critical review [J]. Bioresource Technology, 2020, 298: 122421. doi: 10.1016/j.biortech.2019.122421 [8] LIU K H, ZHANG H C, LIU Y F, et al. Investigation of plant species and their heavy metal accumulation in manganese mine tailings in Pingle Mn mine, China [J]. Environmental Science and Pollution Research International, 2020, 27(16): 19933-19945. doi: 10.1007/s11356-020-08514-9 [9] HAMAD M T M H. Comparative study on the performance of Typha latifolia and Cyperus papyrus on the removal of heavy metals and enteric bacteria from wastewater by surface constructed wetlands [J]. Chemosphere, 2020, 260: 127551. doi: 10.1016/j.chemosphere.2020.127551 [10] XU X Y, MILLS G L. Do constructed wetlands remove metals or increase metal bioavailability? [J]. Journal of Environmental Management, 2018, 218: 245-255. [11] ZHU H, TAN X, TAN L, et al. Biochar derived from sawdust embedded with molybdenum disulfide for highly selective removal of Pb2+ [J]. ACS Applied Nano Materials, 2018, 1(6): 2689-2698. doi: 10.1021/acsanm.8b00388 [12] DU J, ZHANG L, LIU T, et al. Thermal conversion of a promising phytoremediation plant (Symphytum officinale L. ) into biochar: Dynamic of potentially toxic elements and environmental acceptability assessment of the biochar [J]. Bioresource Technology, 2019, 274: 73-82. doi: 10.1016/j.biortech.2018.11.077 [13] MESQUITA A M, GUIMARÃES I R, de CASTRO G M M, et al. Boron as a promoter in the goethite (α-FeOOH) phase: Organic compound degradation by Fenton reaction [J]. Applied Catalysis B:Environmental, 2016, 192: 286-295. doi: 10.1016/j.apcatb.2016.03.051 [14] OLIVEIRA F R, PATEL A K, JAISI D P, et al. Environmental application of biochar: Current status and perspectives [J]. Bioresource Technology, 2017, 246: 110-122. doi: 10.1016/j.biortech.2017.08.122 [15] WANG S S, GAO B, LI Y C, et al. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests [J]. Journal of Hazardous Materials, 2017, 322: 172-181. doi: 10.1016/j.jhazmat.2016.01.052 [16] KAZEMI SHARIAT PANAHI H, DEHHAGHI M, OK Y S, et al. A comprehensive review of engineered biochar: Production, characteristics, and environmental applications [J]. Journal of Cleaner Production, 2020, 270: 122462. doi: 10.1016/j.jclepro.2020.122462 [17] LIANG J, LI X M, YU Z G, et al. Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(II) and Cd(II) [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5049-5058. [18] 张睿媛, 王欣, 喻惠玲, 等. 利用植物提取液制备铁基纳米粒子及其在水污染处理中的研究进展 [J]. 环境化学, 2022, 41(2): 683-693. doi: 10.7524/j.issn.0254-6108.2021070203 ZHANG R Y, WANG X, YU H L, et al. Production of iron-based nanoparticles using plant extracts and its application in contaminated water treatment [J]. Environmental Chemistry, 2022, 41(2): 683-693(in Chinese). doi: 10.7524/j.issn.0254-6108.2021070203
[19] PAUL S, KAUSER H, JAIN M S, et al. Biogenic stabilization and heavy metal immobilization during vermicomposting of vegetable waste with biochar amendment [J]. Journal of Hazardous Materials, 2020, 390: 121366. doi: 10.1016/j.jhazmat.2019.121366 [20] WU P, CUI P X, ZHANG Y, et al. Unraveling the molecular mechanisms of Cd sorption onto MnOx-loaded biochar produced from the Mn-hyperaccumulator Phytolacca americana [J]. Journal of Hazardous Materials, 2022, 423: 127157. doi: 10.1016/j.jhazmat.2021.127157 [21] WANG X H, ZHANG P, WANG C P, et al. Metal-rich hyperaccumulator-derived biochar as an efficient persulfate activator: Role of intrinsic metals (Fe, Mn and Zn) in regulating characteristics, performance and reaction mechanisms [J]. Journal of Hazardous Materials, 2022, 424: 127225. doi: 10.1016/j.jhazmat.2021.127225 [22] HUANG Y S, HU H. The interaction of perrhenate and acidic/basic oxygen-containing groups on biochar surface: A DFT study [J]. Chemical Engineering Journal, 2020, 381: 122647. doi: 10.1016/j.cej.2019.122647 [23] 程瑜炜, 凌晨, 王正晓, 等. 聚胺壳聚糖微球对焦磷酸络合废水中镍的高效选择性去除特性与机制 [J]. 环境化学, 2022, 40(8): 2530-2539. CHENG Y W, LING C, WANG Z X, et al. Efficient removal of Ni(Ⅱ) from pyrophosphate-plating wastewater using the polyamine-grafted chitosan beads [J]. Environmental Chemistry, 2022, 40(8): 2530-2539(in Chinese).
[24] WU L P, ZHANG S R, WANG J, et al. Phosphorus retention using iron (II/III) modified biochar in saline-alkaline soils: Adsorption, column and field tests [J]. Environmental Pollution, 2020, 261: 114223. doi: 10.1016/j.envpol.2020.114223 [25] 曾凤美, 孙丰文, 孙恩惠, 等. Fe2O3/PC功能化复合多孔炭材料的制备及除磷机理 [J]. 环境科学学报, 2021, 41(9): 3487-3496. ZENG F M, SUN F W, SUN E H, et al. Fabrication of Fe2O3/PC functionalized biochar composites for phosphate removal from wastewater: Adsorption properties and mechanism [J]. Acta Scientiae Circumstantiae, 2021, 41(9): 3487-3496(in Chinese).
[26] FANG Y F, ZHOU A, YANG W, et al. Complex formation via hydrogen bonding between rhodamine B and montmorillonite in aqueous solution [J]. Scientific Reports, 2018, 8: 229. doi: 10.1038/s41598-017-18057-8 [27] 徐艳, 杨宏国, 牛慧斌, 等. 磁性纳米颗粒Fe3O4的醇改性制备机理及应用 [J]. 高等学校化学学报, 2021, 42(8): 2564-2573. XU Y, YANG H G, NIU H B, et al. Preparation mechanism and application of alcohol-modified Fe3O4 magnetic nanoparticles [J]. Chemical Journal of Chinese Universities, 2021, 42(8): 2564-2573(in Chinese).
[28] MOHSEN E, JABER J, MEHDI M A, et al. Synthesis and characterization of Fe3O4@SiO2–polymer-imid–Pd magnetic porous nanospheres and their application as a novel recyclable catalyst for Sonogashira–Hagihara coupling reactions [J]. Journal of the Iranian Chemical Society, 2014, 11(2): 499-510. doi: 10.1007/s13738-013-0323-4 [29] ZHANG H, XUE G, CHEN H, et al. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment [J]. Chemosphere, 2018, 191: 64-71. doi: 10.1016/j.chemosphere.2017.10.026 [30] ZHANG J J, SHAO J G, JIN Q Z, et al. Effect of deashing on activation process and lead adsorption capacities of sludge-based biochar [J]. Science of the Total Environment, 2020, 716: 137016. doi: 10.1016/j.scitotenv.2020.137016 [31] LI C Y, FU M, WANG Y, et al. In situ synthesis of Co2P-decorated red phosphorus nanosheets for efficient photocatalytic H2 evolution [J]. Catalysis Science & Technology, 2020, 10(7): 2221-2230. [32] DOU S, KE X X, SHAO Z D, et al. Fish scale-based biochar with defined pore size and ultrahigh specific surface area for highly efficient adsorption of ciprofloxacin [J]. Chemosphere, 2022, 287: 131962. doi: 10.1016/j.chemosphere.2021.131962 [33] POCHAPSKI D J, CARVALHO dos SANTOS C, LEITE G W, et al. Zeta potential and colloidal stability predictions for inorganic nanoparticle dispersions: Effects of experimental conditions and electrokinetic models on the interpretation of results [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2021, 37(45): 13379-13389. doi: 10.1021/acs.langmuir.1c02056 [34] BISWAS A, PRATHIBHA C. Nanocomposite of ceria and trititanate nanotubes as an efficient defluoridating material for real-time groundwater: Synthesis, regeneration, and leached metal risk assessment [J]. ACS Omega, 2021, 6(47): 31751-31764. doi: 10.1021/acsomega.1c04424