-
碳质气溶胶是大气颗粒物的重要组成部分,占PM2.5质量浓度的20%—60 %,通常以有机碳(organic carbon, OC)和元素碳(elemental carbon, EC)的形式存在。OC的来源主要包括燃煤排放与生物源直接排放的一次有机碳(POC)和由气态前体物经过大气光化学反应生成的二次有机碳(SOC);EC主要由生物质燃烧和化石燃料的不完全燃烧产生[1-2]。碳质气溶胶对环境、气候、能见度和人体健康等方面具有重要影响,OC富含致癌、致基因突变、致畸等有害物质[3],且可以散射太阳辐射,具有冷却效应,部分水溶性有机碳可以影响云凝结核性质[4];而EC因其对太阳辐射有较强的吸收作用,会产生正的辐射强迫,被认为是仅次于CO2的气候变暖增温组分[5]。因此研究碳质气溶胶污染特征具有重要意义。
目前我国对碳质气溶胶的观测主要集中在污染程度较高的京津冀、长江三角洲和珠三角等城市地区,结果发现城市地区碳质组分污染比较严重[6-8]。例如天津市采暖季PM2.5中OC和EC在PM2.5中分别占23.78%和6.38%,是PM2.5的重要组成成分[9];南京春季北郊地区有88%观测天存在明显的二次有机污染[10]。而高山背景站通常海拔较高,大气环境受周围局地污染影响较小,更易受长距离传输的影响,因此可以更大尺度地反应区域大气环境的特征[11]。近年来对背景高山地区的碳质气溶胶观测也逐渐开展,发现背景高山区域的碳质颗粒浓度远低于城市地区,且浓度的高低与其来源和形成机理密切相关。例如华南背景区域鼎湖山站碳质气溶胶的研究表明该站点碳质气溶胶来源比较复杂且OC和EC质量浓度呈现明显的季节变化[12];泰山夏季PM2.5中元素碳(EC)质量浓度处于较低水平,且高湿条件可以降低气溶胶的酸度进而抑制生物源二次有机气溶胶(BSOA)通过酸催化氧化反应的形成[13];黄山光明顶观测期间大气气溶胶中EC主要是外部输送,OC既存在外部输送也存在局地贡献,且外部输送主要来自东部城市群和西北地区以及武汉一带[14]。但是碳质组分的来源比较复杂,还需要进一步研究。庐山风景区作为我国著名的旅游风景区和避暑疗养胜地,是我国城市居民进行生态休憩的重要场所,其大气颗粒物的污染直接关系到人体的健康和环境景观质量。且庐山风景区是典型的高山背景点,其海拔较高,地面污染源对其直接影响较小,且大气湍流运动显著,因此,高山观测不仅可以反映区域大气污染状况,而且有助于研究污染物在对流层中的迁移转化和远距离传输规律。
本文于2019年—2020年期间在庐山风景区居民区对PM2.5颗粒物进行采样,分析PM2.5及其OC和EC的浓度水平和季节变化特征,并采用不同的方法对OC和EC的可能来源进行分析和讨论,旨在了解高山风景区背景区域碳质颗粒时空分布特征及来源。由于庐山风景区当地排放的碳质颗粒来源有限,因此更具有区域代表性,研究其碳质颗粒物不仅有助于了解人为因素对颗粒物的影响程度,还能为研究污染物传输及生物化学循环奠定基础。
高山风景区居民区碳质气溶胶污染特征及来源
Characteristics and sources of carbonaceous aerosol in alpine scenic areas
-
摘要: 碳质气溶胶是大气颗粒物的重要组成部分,具有很强的环境和气候效应,是气溶胶科学研究领域的热点。为探究庐山风景区居民区PM2.5中碳质组分的污染特征及来源,于2019年12月2日—2020年10月31日在庐山风景区居民区进行PM2.5样品采集,并对其碳质组分有机碳(OC)和元素碳(EC)进行分析。结果表明,观测期间庐山风景区居民区PM2.5的平均质量浓度为(46.45±18.64) μg·m−3,其中OC和EC平均质量浓度分别是(4.08±1.61) μg·m−3和(0.23±0.10) μg·m−3,占 PM2.5总质量的8.78%和0.50%。且碳质颗粒的污染水平普遍低于城市地区,介于国内其他典型高山背景点之间。采用EC示踪法对PM2.5中的二次有机碳(SOC)进行估算,发现采样期间SOC的平均浓度为(1.51±1.22)μg·m−3,占OC的 33.2%,表明SOC是PM2.5中OC的重要组分。比较发现春秋两季二次转化率比冬夏两季二次转化率较低。通过碳组分主成分分析表明,除二次污染外,庐山风景区居民区OC和EC的含量受燃煤排放、生物质燃烧排放、机动车排放的影响。后向轨迹分析的结果表明,这些一次源排放的影响主要来自远距离输送。庐山风景区居民区采样期间导致PM2.5中碳质颗粒较高的气流主要来自北方及西南方的工业城市,夏季受夏季风暖湿气流的影响,自然污染源较少,同时夏季降雨较多在一定程度上可以稀释污染物,导致到达庐山风景区居民区的气流轨迹携带的污染物较少。OC和EC的相关性表明,庐山风景区居民区冬季和夏季OC和EC具有同源性,春季和秋季碳质组分来源较为复杂。Abstract: As an important component of atmospheric particulate matter (PM), has become a hot spot in the field of aerosol scientific research due to its’ severe environmental and climatic effects. In order to study the characteristics and sources of carbonaceous component in PM2.5 at the residential areas of Mount Lu Scenic Area, PM2.5 were collected from December 2, 2019 to October 31, 2020. The OC and EC in PM2.5 are analyzed using semi-continuous OC/EC analyzer (Sunset Laboratory, USA). The results showed that the average mass concentration of PM2.5 was (46.45±18.64) μg·m−3, in which the average mass concentration of OC and EC were respectively (4.08±1.61) μg·m−3 and (0.23±0.10) μg·m−3, accounting for 8.78% and 0.50% of the total mass of PM2.5. In addition, the pollution level of carbonaceous component in PM2.5 is generally lower than that of urban areas, and between the value of other typical high mountain background spots in China. The EC tracer method was used to estimate the secondary organic carbon (SOC) in PM2.5. It was found that the average concentration of SOC was (1.51±1.22) μg·m−3, accounting for 33.2% of the OC, indicating that SOC is an important component of OC in PM2.5 at the residential areas of Mount Lu Scenic Area. The results showed that SOC conversion rate in spring and autumn was lower than that in winter and summer. The concentration of SOC and O3 in the atmosphere are significantly positively correlated (R=0.566), indicating that the oxidation reaction of O3 as an atmospheric oxidant has a greater impact on the formation of SOC. The OC/EC ratio was between 8.3 and 27.6, further indicating that the residential areas of Mount Lu Scenic Area are seriously polluted by secondary pollution. The principal component analysis of carbon composition shows that, in addition to secondary pollution, the contents of OC and EC in residential areas of Mount Lu Scenic Area are affected by coal-fired emission, biomass combustion emission and motor vehicle emission. The results of the backward trajectory analysis show that these primary source emissions mainly come from long-distance transportation.PM2.5 and its carbonaceous components are significantly affected by the monsoon. During the sampling period, PM2.5 and its carbonaceous components in residential areas of Mount Lu Scenic Area are affected by the northwest monsoon in winter. Higher concentration of carbonaceous aerosol at Mount Lu scenic area residential areas are mainly affected by the air masses from the north and southwest industrial city. The summer samples are affected by summer wind warm current and the natural pollutants are less. In addition, more summer rainfall can dilute pollutants to some extent, leading to fewer pollutants of air masses reaching at the Mount Lu scenic area residential area. The correlation between OC and EC indicates that the sources of OC and EC are similar in winter and summer, while the source of OC and EC in spring and autumn are more complicated.
-
Key words:
- PM2.5 /
- organic carbon /
- element carbon /
- alpine scenic area
-
表 1 全国部分各站点PM2.5、OC和EC的质量浓度
Table 1. Mass concentrations of PM2.5, OC, and EC at some stations in China
采样点
Sampling site采样时间
Sampling timePM2.5/(μg·m−3) OC/(μg·m−3) EC/(μg·m−3) 参考文献
References庐山 2019-12-2—2020-10-31 46.45±18.64 4.08±1.61 0.23±0.10 本研究 天津 2015-07—2016-05 86.0±46.9 13.1±9.1 5.3±2.9 [8] 鼎湖山 2015-03—2016-02 — 7.3±2.4 2.7±1.6 [12] 泰山 2016-07-22—08-19 — 2.28±0.66 0.22±0.23 [13] 北京 2015-04—2016 -03 109.9 13.49±4.32 5.41±1.83 [24] 上海 2016-03—2017-03 50.41 4.56±3.37 1.83±1.56 [25] 广州 2015-06—2016-05 66.03±43.11 8.19±5.01 1.75±0.80 [26] 南昌 2013-09 69.1 11.03 4.46 [27] 华山 2009-03—04 — 4.90 1.20 [28] 衡山 2009-03-15—05-31 40.7 3.01 0.54 [28] 长白山 2007-07-23—07-28 38.8 4.90 0.50 [29] 庐山 2011-08—2011-09 58.76 3.78 1.28 [31] 表 2 庐山风景区典型居民区PM2.5中碳质组分主成分分析
Table 2. Principal component analysis of PM2.5 in typical residential areas of Mount Lu Forest Park
成分 因子1 因子2 因子3 OC1 0.282 0.901 −0.071 OC2 0.872 0.153 0.226 OC3 0.827 0.321 0.368 OC4 0.736 0.348 0.483 EC1 0.314 0.881 −0.013 EC2 0.393 0.829 0.066 EC3 −0.255 0.792 −0.223 EC4 −0.859 −0.052 0.264 EC5 −0.050 −0.089 0.952 EC6 0.387 0.195 0.870 方差贡献率% 32.731 31.997 22.117 累积方差贡献率% 32.731 64.728 86.844 来源 燃煤燃烧+生物质燃烧+土壤尘 汽油车尾气+生物质燃烧 柴油车尾气+土壤尘 注:黑体字表示载荷值大于 0.8. Note: Bold indicates that the load value is greater than 0.8. -
[1] KIM D, WANG C E, EKMAN A M L, et al. Distribution and direct radiative forcing of carbonaceous and sulfate aerosols in an interactive size-resolving aerosol-climate model [J]. Journal of Geophysical Research Atmospheres, 2008, 113(D16): 16309. doi: 10.1029/2007JD009756 [2] ZHAO Z Z, WANG Q Y, XU B Q, et al. Black carbon aerosol and its radiative impact at a high-altitude remote site on the southeastern Tibet Plateau [J]. Journal of Geophysical Research:Atmospheres, 2017, 122(10): 5515-5530. doi: 10.1002/2016JD026032 [3] 孟昭阳, 张怀德, 蒋晓明, 等. 太原冬季PM2.5中有机碳和元素碳的变化特征 [J]. 应用气象学报, 2007, 18(4): 524-531. doi: 10.3969/j.issn.1001-7313.2007.04.013 MENG Z Y, ZHANG H D, JIANG X M, et al. Characteristics of organic carbon and elemental carbon in PM2.5 during winter in Taiyuan [J]. Journal of Applied Meteorological Science, 2007, 18(4): 524-531(in Chinese). doi: 10.3969/j.issn.1001-7313.2007.04.013
[4] CHANG R Y W, LIU P S K, LEAITCH W R, et al. Comparison between measured and predicted CCN concentrations at Egbert, Ontario: Focus on the organic aerosol fraction at a semi-rural site [J]. Atmospheric Environment, 2007, 41(37): 8172-8182. doi: 10.1016/j.atmosenv.2007.06.039 [5] JACOBSON M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. [J]. Nature, 2001, 409(6821): 695-697. doi: 10.1038/35055518 [6] 康晖, 朱彬, 王红磊, 等. 长三角典型站点冬季大气PM2.5中OC、EC污染特征 [J]. 环境科学, 2018, 39(3): 961-971. KANG H, ZHU B, WANG H L, et al. Characterization and variation of organic carbon(OC) and elemental carbon(EC) in PM2.5 during the winter in the Yangtze River Delta region, China [J]. Environmental Science, 2018, 39(3): 961-971(in Chinese).
[7] 付晓辛. 珠江三角洲地区PM2.5浓度组成变化及其对粒子酸度和消光的影响[D]. 北京: 中国科学院研究生院(广州地球化学研究所), 2015. FU X X. Influence of PM2.5 major components on aerosol acidity and light extinction in the Pearl River Delta region[D]. Beijing: Institute of Chemistry, Chinese Academy of Sciences, 2015(in Chinese).
[8] 李立伟, 肖致美, 陈魁, 等. 京津冀区域PM2.5中碳组分污染特征研究 [J]. 环境科学学报, 2018, 38(4): 1306-1316. LI L W, XIAO Z M, CHEN K, et al. Characteristics of carbonaceous species of PM2.5 in the region of Beijing, Tianjin and Hebei, China [J]. Acta Scientiae Circumstantiae, 2018, 38(4): 1306-1316(in Chinese).
[9] 姜建芳, 侯丽丽, 齐梦溪, 等. 天津市采暖季PM2.5中碳组分污染特征及来源分析 [J]. 生态环境学报, 2020, 29(6): 1181-1188. JIANG J F, HOU L L, QI M X, et al. Pollution characteristics and sources of carbonaceous components in PM2.5 during heating season in Tianjin [J]. Ecology and Environmental Sciences, 2020, 29(6): 1181-1188(in Chinese).
[10] 周一鸣, 韩珣, 王瑾瑾, 等. 南京春季北郊地区大气PM2.5中主要化学组分及碳同位素特征 [J]. 环境科学, 2018, 39(10): 4439-4445. ZHOU Y M, HAN X, WANG J J, et al. Chemical constitution and carbon isotopic compositions of PM2.5 in the northern suburb of Nanjing in spring [J]. Environmental Science, 2018, 39(10): 4439-4445(in Chinese).
[11] 戴文婷, 李建军, 成春雷, 等. 中国中东部高山和城市夏季大气气溶胶浓度及粒径分布 [J]. 地球环境学报, 2011, 2(1): 263-271. DAI W T, LI J J, CHENG C L, et al. Concentrations and size distributions of summertime atmospheric aerosols at urban and alpine sites in east and central China [J]. Journal of Earth Environment, 2011, 2(1): 263-271(in Chinese).
[12] 李安娜, 温天雪, 华维, 等. 鼎湖山大气颗粒物中OC与EC的浓度特征及粒径分布 [J]. 环境科学, 2020, 41(9): 3908-3917. doi: 10.13227/j.hjkx.201911237 LI A N, WEN T X, HUA W, et al. Characterization and size distribution of carbonaceous aerosols at mountain dinghu [J]. Environmental Science, 2020, 41(9): 3908-3917(in Chinese). doi: 10.13227/j.hjkx.201911237
[13] 衣雅男, 姚蒸蒸, 侯战方, 等. 泰山夏季PM2.5中生物源SOA的分子组成及影响因素 [J]. 中国环境科学, 2020, 40(8): 3352-3359. doi: 10.3969/j.issn.1000-6923.2020.08.012 YI Y N, YAO Z Z, HOU Z F, et al. Molecular compositions and affecting factors of biogenic SOA in PM2.5 from Mount Taishan during the summer [J]. China Environmental Science, 2020, 40(8): 3352-3359(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.08.012
[14] 缪青, 张泽锋, 李艳伟, 等. 黄山夏季大气颗粒物中碳粒径分布特征及其输送潜在源区 [J]. 中国环境科学, 2015, 35(7): 1938-1946. doi: 10.3969/j.issn.1000-6923.2015.07.003 MIAO Q, ZHANG Z F, LI Y W, et al. Size distributions of carbonaceous aerosols and their potential sources at Mt. Huang during Summer [J]. China Environmental Science, 2015, 35(7): 1938-1946(in Chinese). doi: 10.3969/j.issn.1000-6923.2015.07.003
[15] 王保安, 张远航, 张铮, 等. 庐山春季降水化学的研究 [J]. 中国环境科学, 1996, 16(3): 218-222. doi: 10.3321/j.issn:1000-6923.1996.03.013 WANG B A, ZHANG Y H, ZHANG Z, et al. The chemical composition of precipitation at Lushan spring [J]. China Environmental Science, 1996, 16(3): 218-222(in Chinese). doi: 10.3321/j.issn:1000-6923.1996.03.013
[16] 郇宁, 曾立民, 邵敏. 气溶胶中有机碳及元素碳分析方法进展 [J]. 北京大学学报(自然科学版), 2005, 41(6): 957-964. doi: 10.13209/j.0479-8023.2005.127 XUN N, ZENG L M, SHAO M. Review of measurement techniques about organic carbon and elemental carbon in atmospheric particles [J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 2005, 41(6): 957-964(in Chinese). doi: 10.13209/j.0479-8023.2005.127
[17] SAYLOR R D, EDGERTON E S, HARTSELL B E. Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation [J]. Atmospheric Environment, 2006, 40(39): 7546-7556. doi: 10.1016/j.atmosenv.2006.07.018 [18] KLEEMAN M J, RIDDLE S G, ROBERT M A, et al. Lubricating oil and fuel contributions to particulate matter emissions from light-duty gasoline and heavy-duty diesel vehicles. [J]. Environmental Science & Technology, 2008, 42(1): 235-242. [19] LIM H J, TURPIN B J, RUSSELL L M, et al. Organic and elemental carbon measurements during ACE-Asia suggest a longer atmospheric lifetime for elemental carbon. [J]. Environmental Science & Technology, 2003, 37(14): 3055-3061. [20] LIM H J, TURPIN B J. Origins of primary and secondary organic aerosol in Atlanta: results of time-resolved measurements during the Atlanta Supersite Experiment [J]. Environmental Science & Technology, 2002, 36(21): 4489-4496. [21] 刘小真, 任羽峰, 刘忠马, 等. 南昌市大气颗粒物污染特征及PM2.5来源解析 [J]. 环境科学研究, 2019, 32(9): 1546-1555. LIU X Z, REN Y F, LIU Z M, et al. Pollution characteristics of atmospheric particles and source apportionment of PM2.5 in Nanchang City [J]. Research of Environmental Sciences, 2019, 32(9): 1546-1555(in Chinese).
[22] 陆珺. 基于化学分析的大气颗粒物化学特征研究[D]. 南昌: 南昌航空大学, 2019. LU J. Chemical characteristics of atmospheric particulate matter based on chemical analysis[D]. Nanchang: Nanchang Hangkong University, 2019(in Chinese).
[23] ZHU J, XIA X, CHE H, et al. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma [J]. Atmospheric Research, 2016, 169: 237-247. doi: 10.1016/j.atmosres.2015.10.012 [24] 张婷婷, 马文林, 亓学奎, 等. 北京城区PM2.5有机碳和元素碳的污染特征及来源分析 [J]. 环境化学, 2018, 37(12): 2758-2766. doi: 10.7524/j.issn.0254-6108.2018051701 ZHANG T T, MA W L, QI X K, et al. Characteristics and sources of organic carbon and element carbon in PM2.5 in the urban areas of Beijing [J]. Environmental Chemistry, 2018, 37(12): 2758-2766(in Chinese). doi: 10.7524/j.issn.0254-6108.2018051701
[25] 孙运筑. 上海市大气颗粒物中棕色碳的表征方法与污染特征研究[D]. 上海: 华东理工大学, 2018. SUN Y Z. The characterization methods and pollution characteristics of the brown carbon in atmospheric particulate matters in Shanghai[D]. Shanghai: East China University of Science and Technology, 2018(in Chinese).
[26] 刘晶晶, 胡献舟, 黄凤莲, 等. 广州PM2.5中有机碳和元素碳的污染特征 [J]. 湖南科技大学学报(自然科学版), 2019, 34(4): 111-117. LIU J J, HU X Z, HUANG F L, et al. Characteristics of organic carbon(OC) and elemental carbon(EC) in PM2.5 in Guangzhou, China [J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2019, 34(4): 111-117(in Chinese).
[27] 赵阳. 南昌市大气PM2.5污染特征与来源解析研究[D]. 泉州: 华侨大学, 2017. ZHAO Y. Research on pollution characteristics and source apportionment of PM2.5 in urban Nanchang[D]. Quanzhou: Huaqiao University, 2017(in Chinese).
[28] ZHOU S Z, WANG Z, GAO R, et al. Formation of secondary organic carbon and long-range transport of carbonaceous aerosols at Mount Heng in South China [J]. Atmospheric Environment, 2012, 63: 203-212. doi: 10.1016/j.atmosenv.2012.09.021 [29] LI L, WANG W, FENG J L, et al. Composition, source, mass closure of PM2.5 aerosols for four forests in eastern China [J]. Journal of Environmental Sciences, 2010, 22(3): 405-412. doi: 10.1016/S1001-0742(09)60122-4 [30] 王露, 刘保双, 毕晓辉, 等. 泰山顶PM2.5及其二次组分的输送路径与潜在源 [J]. 环境科学研究, 2017, 30(10): 1505-1514. WANG L, LIU B S, BI X H, et al. Transport pathway and potential sources of PM2.5 and secondary components at the top of mountain Tai [J]. Research of Environmental Sciences, 2017, 30(10): 1505-1514(in Chinese).
[31] LI P H, WANG Y, LI T, et al. Characterization of carbonaceous aerosols at Mount Lu in South China: implication for secondary organic carbon formation and long-range transport [J]. Environmental Science and Pollution Research International, 2015, 22(18): 14189-14199. doi: 10.1007/s11356-015-4654-9 [32] 纪源, 赵秋月, 陈凤, 等. 新冠肺炎疫情期间南京市PM2.5中碳质组分污染特征分析 [J]. 生态与农村环境学报, 2021, 37(8): 992-1000. JI Y, ZHAO Q Y, CHEN F, et al. Characteristics of carbonaceous aerosols in ambient PM2.5 during the COVID-19 period in Nanjing [J]. Journal of Ecology and Rural Environment, 2021, 37(8): 992-1000(in Chinese).
[33] CHOW J C, WATSON J G, LU Z Q, et al. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX [J]. Atmospheric Environment, 1996, 30(12): 2079-2112. doi: 10.1016/1352-2310(95)00402-5 [34] APPEL B R, HOFFER E M, KOTHNY E L, et al. Analysis of carbonaceous material in southern California atmospheric aerosols. 2 [J]. Environmental Science & Technology, 1979, 13(1): 98-104. [35] NA K, SAWANT A A, SONG C, et al. Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California [J]. Atmospheric Environment, 2003, 38(9): 1345-1355. [36] 杨健, 丁祥, 刘寅, 等. 高原城市昆明PM2.5中碳组分污染特征及来源分析 [J]. 环境化学, 2017, 36(2): 257-264. doi: 10.7524/j.issn.0254-6108.2017.02.2016061902 YANG J, DING X, LIU Y, et al. Characteristics and source analysis of carbonaceous components in PM2.5 at a plateau city, Kunming [J]. Environmental Chemistry, 2017, 36(2): 257-264(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.02.2016061902
[37] 康宝荣. 关中地区秋冬季颗粒物中碳组分的污染特征及来源解析[D]. 西安: 西安建筑科技大学, 2019. KANG B R. Pollution characteristics and sources of carbonaceous component in PM2.5 and PM10 in Guanzhong area[D]. Xi'an: Xi'an University of Architecture and Technology, 2019(in Chinese).