-
近年来,随着我国城市化的加快和经济的快速增长,城市空气污染程度和大气污染防治问题越来越为人们所关注[1-2]。大气气溶胶体系中分散的各种粒子统一称为大气颗粒物,根据空气动力学等效直径大小可分为总悬浮颗粒物(total suspended particulate, TSP)、可吸入颗粒物(粒径<10 μm,inhalable particulate mater, PM10),以及细颗粒物(粒径<2.5 μm,fine particulate matter, PM2.5)。大气中颗粒物的增加会显著地影响环境和气候变化,如霾污染加剧[3-4]、损害人体健康[5]、延长低云寿命[6]、抑制降水发生[7]、影响季风强度和地气系统的辐射收支平衡[8]等。PM2.5和PM10作为评价城市空气质量优劣的重要指标之一,2012年被生态环境部纳入环境空气质量指数(AQI)中。
关于PM2.5和PM10方面的研究,国内外学者主要从时空分布特征[9-10]、气象成因分析[11-12]、化学组成特征[13-14]、源解析[15]以及健康效应[16]等方面展开。如李沈鑫等[17]利用2013—2015年全国413个站点资料,分析了我国PM2.5时空分布,发现大部分站点PM2.5浓度呈下降趋势。李宏艳等[18]发现山西省冬季PM2.5浓度最高,日变化为双峰分布特征。董继元等[19]的研究表明,兰州市PM10浓度与相对湿度存在显著线性负相关,大气能见度变化对PM10比较敏感。夏丽等[20]解析了长三角地区一次区域性污染过程中PM2.5的来源及其光学特性,发现二次硝酸和二次硫酸是其主要来源,PM2.5的各类源对其质量浓度和消光系数的贡献效率存在差别。此外还有很多类似的结果[21-23],此处不一一列举。
目前国内针对PM2.5和PM10方面的研究主要集中在京津冀、珠三角和长三角等颗粒物污染较重的区域,而对空气质量相对较好地区的研究偏少[24]。海南省作为我国唯一一个热带海岛旅游省份,一直以生态自然环境良好著称,同时也十分缺乏全省尺度颗粒物时空分布的相关研究[25]。因此,本文基于2015—2020年海南省海南岛18个市县空气质量和气象监测数据,利用Cressman客观分析方法、回归分析和相关分析等统计手段,定量诊断PM2.5和PM10的时空变化特征及其与气象因子和气态污染物的关系,通过更好地了解气象因子和气态污染物对颗粒物污染的内在机制,以期为海南岛大气污染防治工作提供技术支撑。
2015—2020年海南岛大气PM2.5和PM10的时空分布特征
Characteristics of temporal and spatial distribution of atmospheric PM2.5 and PM10 in Hainan island, Hainan Province from 2015 to 2020
-
摘要: 基于2015—2020年海南省18个市县环境监测数据和气象观测数据,结合Cressman客观差值、相关分析和气候倾向率等统计方法对PM2.5和PM10质量浓度时空分布特征进行深入分析。结果表明,PM2.5和PM10质量浓度空间分布上均呈北半部高于南半部的特征,同时2015—2020年均表现为快速下降的变化趋势,趋势系数分别为−0.982(PM2.5)和−0.935(PM10),通过了99.9%的信度检验。PM2.5和PM10质量浓度有明显的季节变化特征,冬季质量浓度最高,秋季和春季次之,夏季最低。PM2.5和PM10质量浓度呈现U形的逐月变化,最低值出现在7月,最高值出现在12月。PM2.5和PM10质量浓度呈“双峰双谷”型的日变化,受人为活动影响较为显著。PM2.5和PM10与其他气态污染物都表现出较高的正相关性。Abstract: Based on the environmental monitoring and meteorological data of 18 stations in Hainan island from 2015 to 2020, this study analyzed the characteristics of spatial and temporal distribution of PM2.5 and PM10 concentration in Hainan island, using Cressman interpolated method, correlation analysis and climatic tendency rate. The results showed that the mass concentrations of PM2.5 and PM10 were both higher in the northern half of Hainan island than in the southern half. They both showed a rapid decline trend from 2015 to 2020, with trend coefficients of −0.982 (PM2.5) and −0.935 (PM10), respectively, both exceeding the 99.9% confidence level. Additionally, PM2.5 and PM10 concentrations were higher in winter, followed by autumn and spring, and the lowest in summer. They showed a U-shaped change from month to month, with the lowest value in July and highest value in December. Daily change of PM2.5 and PM10 showed a "double peaks and double valleys" type, which was significantly affected by human activities. Moreover, both PM2.5 and PM10 displayed a high positive correlation with other gaseous pollutants.
-
Key words:
- PM2.5 /
- PM10 /
- temporal and spatial distribution /
- Hainan Province
-
表 1 2015—2020年海南岛PM2.5和PM10质量浓度年平均和四季变化特征
Table 1. Annual mean and seasonal variation characteristics of PM2.5 and PM10 in Hainan island from 2015 to 2020
时段 PM2.5 PM10 PM2.5/
PM10均值+标准差/
(μg·m−3)
Mean value +
mean square
error气候倾向率/
(μg·m−3·a−1)
Climatic trend
rate趋势系数
Trend
coefficient信度检验/%
Confidence
test均值+标准差/(μg·m−3)
Mean value +
mean square
error气候倾向率/
(μg·m−3·a−1)
Climatic trend
rate趋势系数
Trend
coefficient信度检验/%
Confidence
test全年 16.99±2.17 −1.04 −0.982 99.9 29.94±3.72 −1.70 −0.935 99.9 0.57 春季 16.90±2.66 −1.09 −0.840 99 30.42±4.00 −1.89 −0.971 99.9 0.56 夏季 9.94±1.72 −0.79 −0.946 99.9 21.40±3.87 −1.64 −0.870 99 0.46 秋季 18.34±1.97 −0.33 −0.345 不显著 31.80±3.37 −0.71 −0.429 不显著 0.58 冬季 22.72±3.79 −1.81 −0.981 99.9 36.23±5.37 −2.49 −0.952 99.9 0.63 表 2 2015—2020年海南岛PM2.5和PM10质量浓度与气象要素的对比
Table 2. Comparison of PM2.5 and PM10 and meteorological elements in Hainan island from 2015 to 2020
2015年 2016年 2017年 2018年 2019年 2020年 PM2.5/(μg·m−3) 20.13 18.41 17.68 17.02 15.38 13.33 PM10/(μg·m−3) 36.90 31.33 29.23 29.79 27.61 24.77 PM2.5/PM10 0.55 0.59 0.60 0.57 0.56 0.54 平均气温/℃ 25.13 24.70 24.67 24.43 25.49 25.08 降雨量/mm 1380.1 2218.8 1983.2 2086.7 1654.2 1610.1 太阳总辐射/(MJ·m−2) 16.28 14.70 14.67 15.35 15.99 14.94 日照时数/(h·d−1) 6.22 5.35 5.16 5.35 5.79 5.06 相对湿度/% 81.66 83.40 83.61 82.49 80.99 80.96 平均风速/(m·s−1) 2.08 2.02 1.98 1.93 1.92 2.11 大气压/hPa 998.20 997.64 998.05 997.61 997.52 997.68 表 3 2015—2020年海南岛大气污染物浓度相关性分析
Table 3. Correlation analysis of air pollutants in mass concentrations during 2015 to 2020 in Hainan island
PM2.5 PM10 SO2 NO2 CO O3-8 h PM2.5 1.000 PM10 0.961** 1.000 SO2 0.509** 0.503** 1.000 NO2 0.618** 0.582** 0.278 1.000 CO 0.467** 0.419** 0.081 0.608** 1.000 O3-8h 0.784** 0.810** 0.437** 0.442** 0.290** 1.000 **表示相关极显著(P<0.01). n=2192(6年). -
[1] 符传博, 丹利. 大气污染加剧对中国区域散射辐射比例的影响 [J]. 科学通报, 2018, 63(25): 2655-2665. doi: 10.1360/N972018-00177 FU C B, DAN L. Influence of intensified air pollution on the sunny diffuse radiation fraction in China [J]. Chinese Science Bulletin, 2018, 63(25): 2655-2665(in Chinese). doi: 10.1360/N972018-00177
[2] 杨文涛, 黄慧坤, 魏东升, 等. 大气污染联合治理分区视角下的中国PM2.5关联关系时空变异特征分析 [J]. 环境科学, 2020, 41(5): 72-80. YANG W T, HUANG H K, WEI D S, et al. Spatio-temporal variation of PM2.5 related relationships in China from the perspective of air pollution regional linkage control and prevention [J]. Environmental Science, 2020, 41(5): 72-80(in Chinese).
[3] 徐祥德, 王寅钧, 赵天良, 等. 中国大地形东侧霾空间分布“避风港”效应及其“气候调节”影响下的年代际变异 [J]. 科学通报, 2015, 60(12): 1132-1143. doi: 10.1360/N972014-00101 XU X D, WANG Y J, ZHAO T L, et al. ‘Harbor’ effect of large topography on haze distribution in eastern China and its climate modulation on decadal variations in haze [J]. Chinese Science Bulletin, 2015, 60(12): 1132-1143(in Chinese). doi: 10.1360/N972014-00101
[4] 丁一汇, 柳艳菊. 近50年我国雾和霾的长期变化特征及其与大气湿度的关系 [J]. 中国科学:地球科学, 2014, 44(1): 37-48. DING Y H, LIU Y J. Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity [J]. Science China:Earth Sciences, 2014, 44(1): 37-48(in Chinese).
[5] 李勇, 廖琴, 赵秀阁, 等. 近PM2.5污染对我国健康负担和经济损失的影响 [J]. 环境科学, 2021, 42(4): 1688-1695. LI Y, LIAO Q, ZHAO X, et al. Influence of PM2.5 pollution on health burden and economic loss in China [J]. Environmental Science, 2021, 42(4): 1688-1695(in Chinese).
[6] FU C, DAN L. The variation of cloud amount and light rainy days under heavy pollution over South China during 1960—2009 [J]. Environmental Science and Pollution Research, 2018, 25(3): 2369-2376. doi: 10.1007/s11356-017-0510-4 [7] LIU S, XING J, ZHAO B, et al. Understanding of aerosol–climate interactions in china: Aerosol impacts on solar radiation, temperature, cloud, and precipitation and its changes under future climate and emission scenarios [J]. Current Pollution Reports, 2019, 5: 36-51. doi: 10.1007/s40726-019-00107-6 [8] 吴国雄, 李占清, 符淙斌, 等. 气溶胶与东亚季风相互影响的研究进展 [J]. 中国科学:地球科学, 2015, 45(11): 1609-1627. WU G X, LI Z Q, FU C B, et al. Advances in studying interactions between aerosols and monsoon in China [J]. Science China:Earth Sciences, 2015, 45(11): 1609-1627(in Chinese).
[9] 侯素霞, 张鉴达, 李静. 上海市大气污染物时空分布及其相关性因子分析 [J]. 生态环境学报, 2021, 30(6): 1220-1228. doi: 10.16258/j.cnki.1674-5906.2021.06.013 HOU S X, ZHANG J D, LI J, et al. Analysis of spatiotemporal distribution and correlation factors of atmospheric pollutants in Shanghai City [J]. Ecology and Environmental Sciences, 2021, 30(6): 1220-1228(in Chinese). doi: 10.16258/j.cnki.1674-5906.2021.06.013
[10] 周磊, 武建军, 贾瑞静, 等. 京津冀PM2.5时空分布特征及其污染风险因素 [J]. 环境科学研究, 2016, 29(4): 483-493. ZHOU L, WU J J, JIA R J, et al. Investigation of temporal-spatial characteristics and underlying risk factors of PM2.5 pollution in Beijing-tianjin-Hebei area [J]. Research of Environmental Sciences, 2016, 29(4): 483-493(in Chinese).
[11] 李会霞, 史兴民. 西安市PM2.5时空分布特征及气象成因 [J]. 生态环境学报, 2016, 25(2): 266-271. LI H X, SHI X M. Temporal and spatial distribution, meteorological factors of PM2.5 in Xi’an City [J]. Ecology and Environmental Sciences, 2016, 25(2): 266-271(in Chinese).
[12] 马雁军, 李晓岚, 张云海, 等. 2016年12月沈阳地区一次持续性重污染天气成因机制分析 [J]. 环境化学, 2020, 39(12): 3346-3352. MA Y J, LI X L, ZHANG Y H, et al. Analysis of the mechanism of a heavy pollution in December 2016 at Shenyang [J]. Environmental Chemistry, 2020, 39(12): 3346-3352(in Chinese).
[13] 张仁健, 徐永福, 韩志伟. ACE-Asia期间北京PM2.5的化学特征及其来源分析 [J]. 科学通报, 2003, 48(7): 730-733. doi: 10.3321/j.issn:0023-074X.2003.07.020 ZHANG R J, XU Y F, HAN Z W. Chemical characteristics and source analysis of PM2.5 in Beijing during ACE-Asia [J]. Chinese Science Bulletin, 2003, 48(7): 730-733(in Chinese). doi: 10.3321/j.issn:0023-074X.2003.07.020
[14] 王羽琴, 李升苹, 陈庆彩, 等. 西安市大气PM2.5的化学组分及其来源 [J]. 环境化学, 2021, 40(5): 1425-1435. WANG Y Q, LI S P, CHEN Q C, et al. Study on chemical composition and pollution source of atmospheric PM2.5 in Xi’an City [J]. Environmental Chemistry, 2021, 40(5): 1425-1435(in Chinese).
[15] 肖浩, 肖化云, 吴攀, 等. 贵阳秋季PM2.5水溶性离子组成特征及来源解析 [J]. 环境化学, 2019, 38(3): 548-555. doi: 10.7524/j.issn.0254-6108.2018051501 XIAO H, XIAO H Y, WU P, et al. Composition and source analysis of water-soluble in PM2.5 during autumn in Guiyang [J]. Environmental Chemistry, 2019, 38(3): 548-555(in Chinese). doi: 10.7524/j.issn.0254-6108.2018051501
[16] 曾贤刚, 阮芳芳, 彭彦彦. 基于空间网格尺度的中国PM2.5污染健康效应空间分布 [J]. 中国环境科学, 2019, 39(6): 2624-2632. doi: 10.3969/j.issn.1000-6923.2019.06.046 ZENG X G, RUAN F F, PENG Y Y, et al. Health effects’ spatial distribution analysis of PM2.5 pollution in China based on spatial grid scale [J]. China Environmental Science, 2019, 39(6): 2624-2632(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.06.046
[17] 李沈鑫, 邹滨, 刘兴权, 等. 2013-2015年中国PM2.5污染状况时空变化 [J]. 环境科学研究, 2017, 30(5): 678-687. LI S X, ZOU B, LIU X Q, et al. Pollution status and spatial-temporal variations of PM2.5 in China during 2013-2015 [J]. Research of Environmental Sciences, 2017, 30(5): 678-687(in Chinese).
[18] 李宏艳, 高雪莹, 李宏宇, 等. 山西省大气PM2.5污染时空分布特征 [J]. 环境化学, 2018, 37(5): 913-923. LI H Y, GAO X Y, LI H Y, et al. Spatial-temporal distribution and variation characteristics of PM2.5 in Shanxi [J]. Environmental Chemistry, 2018, 37(5): 913-923(in Chinese).
[19] 董继元, 刘兴荣, 张本忠, 等. 兰州市大气相对湿度与PM10浓度和大气能见度的相关性分析 [J]. 生态环境学报, 2015, 24(12): 1995-2001. DONG J Y, LIU X R, ZHANG B Z, et al. Relationships among relative humidity, PM10 concentration and atmospheric visibility in Lanzhou [J]. Ecology and Environment Sciences, 2015, 24(12): 1995-2001(in Chinese).
[20] 夏丽, 朱彬, 王红磊, 等. 长三角地区一次区域污染过程中细颗粒物的来源解析及其光学特性 [J]. 环境科学, 2021, 42(2): 556-563. doi: 10.13227/j.hjkx.202006082 XIA L, ZHU B, WANG H L, et al. Source apportionment and optical properties of fine particles associated with regional pollution in the Yangtze River Delta [J]. Environmental Science, 2021, 42(2): 556-563(in Chinese). doi: 10.13227/j.hjkx.202006082
[21] 董小艳, 王琼, 杨一兵, 等. 2017年春节期间北京市城区和郊区大气PM2.5及其中多环芳烃的污染特征 [J]. 环境化学, 2018, 37(10): 101-108. DONG X Y, WANG Q, YANG Y B, et al. Characterization of ambient PM2.5 and PAHs during 2017 Spring Festival in urban and suburb areas of Beijing [J]. Environmental Chemistry, 2018, 37(10): 101-108(in Chinese).
[22] 雷雨, 张小玲, 康平, 等. 川南自贡市大气颗粒物污染特征及传输路径与潜在源分析 [J]. 环境科学, 2020, 41(7): 3021-3030. doi: 10.13227/j.hjkx.201911096 LEI Y, ZHANG X L KANG P, et al. Analysis of transport pathways and potential sources of atmospheric particulate matter in Zigong, in south of Sichuan Province [J]. Environmental Sciences, 2020, 41(7): 3021-3030(in Chinese). doi: 10.13227/j.hjkx.201911096
[23] 郭春晔, 王颖, 刘灏, 等. 甘肃省区域颗粒物时空分布特征及传输路径 [J]. 中国环境科学, 2021, 41(9): 3990-4000. doi: 10.3969/j.issn.1000-6923.2021.09.003 GUO C Y, WANG Y, LIU H, et al. Spatial and temporal distribution characteristics and transport path analysis of regional particulate matter over Gansu Province [J]. China Environmental Science, 2021, 41(9): 3990-4000(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.09.003
[24] LIU G, LI J, WU D, et al. Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China [J]. China Particuology, 2015, 18(1): 135-143. [25] 宋娜, 徐虹, 毕晓辉, 等. 海口市PM2.5和PM10来源解析 [J]. 环境科学研究, 2015, 28(10): 1501-1509. SONG N, XU H, BI X H, et al. Source apportionment of PM2.5 and PM10 in Haikou [J]. Research of Environmental Sciences, 2015, 28(10): 1501-1509(in Chinese).
[26] 符传博, 徐文帅, 丹利, 等. 2015-2018年海南省城市臭氧时空分布特征 [J]. 环境化学, 2020, 39(10): 2823-2832. doi: 10.7524/j.issn.0254-6108.2020042304 FU C B, XU W S, DAN L, et al. Spatiotemporal distribution of ozone in cities of Hainan from 2015 to 2018 [J]. Environmental Chemistry, 2020, 39(10): 2823-2832(in Chinese). doi: 10.7524/j.issn.0254-6108.2020042304
[27] CRESSMAN G W. An operational objective analysis system [J]. Monthly Weather Review, 1959, 87(10): 367-374. doi: 10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2 [28] 冯锦明, 赵天保, 张英娟. 基于台站降水资料对不同空间内插方法的比较 [J]. 气候与环境研究, 2004, 9(2): 261-277. doi: 10.3878/j.issn.1006-9585.2004.02.04 FENG J M, ZHAO T B, ZHANG Y J. Intercomparison of spatial interpolation based on observed precipitation data [J]. Climatic and Environmental Research, 2004, 9(2): 261-277(in Chinese). doi: 10.3878/j.issn.1006-9585.2004.02.04
[29] 胡娅敏, 丁一汇, 廖菲. 江淮地区梅雨的新定义及其气候特征 [J]. 大气科学, 2008, 32(1): 103-114. doi: 10.3878/j.issn.1006-9895.2008.01.09 HU Y M, DING Y H, LIAO F. A study of updated definition and climatological characters of Meiyu Season in the Yangtze-Huaihe Rigion [J]. Chinese Journal of Atmospheric Sciences, 2008, 32(1): 103-114(in Chinese). doi: 10.3878/j.issn.1006-9895.2008.01.09
[30] 符传博, 唐家翔, 丹利, 等. 1960~2013年我国霾污染的时空变化 [J]. 环境科学, 2016, 37(9): 3237-3248. doi: 10.13227/j.hjkx.2016.09.001 FU C B, TANG J X, DAN L, et al. Temporal and spatial variation of haze pollution over China from 1960 to 2013 [J]. Environmental Science, 2016, 37(9): 3237-3248(in Chinese). doi: 10.13227/j.hjkx.2016.09.001
[31] 魏凤英. 现代气候统计诊断与预测技术[M]. 2版. 北京: 气象出版社, 2007. WEI F Y. Climate statistical diagnosing and prediction [M]. 2nd ed. Beijing: China Meteorological Press, 2007 (in Chinese)
[32] 王春乙. 海南气候[M]. 北京: 气象出版社, 2014. WANG C Y. Hainan climate [M]. Beijing: China Meteorological Press, 2014 (in Chinese)
[33] 环保部环境规划院. 北京的PM2.5真是河北刮来的? [J]. 中国经济周刊, 2016, 28: 9. Environmental Planning Institute of the Ministry of Envieonmental Protection. Is Beijing’s PM2.5 really from Heibei Province? [J]. China Economic Weekly, 2016, 28: 9(in Chinese).
[34] 海南省生态环境厅. 2020年海南省生态环境状况公报[ED/OL]. [2021-10-07]. Hainan Department of Ecological Environment. 2020 ecological environmental status bulletin of Hainan [ED/OL]. [2021-10-07] (in Chinese)
[35] 武晓红, 宋丽红, 李秋玲, 等. 太原市城区大气PM2.5和PM10时空分布特征 [J]. 生态环境学报, 2021, 30(4): 756-762. WU X H, SONG L H, LI Q L, et al. Characteristics of temporal and spatial distribution of atmospheric PM2.5 and PM10 in Urban Taiyuan, China [J]. Ecology and Environment Sciences, 2021, 30(4): 756-762(in Chinese).
[36] 符传博, 丹利, 唐家翔, 等. 海南省城市臭氧污染特征及气象学成因[M]. 北京: 气象出版社, 2021. FU C B, DAN L, TANG J X, et al. Characteristics and meteorological causes of urban ozone pollution in Hainan Province [M]. Beijing: China Meteorological Press, 2021 (in Chinese)
[37] 符传博, 周航. 中国城市臭氧的形成机理及污染影响因素研究进展 [J]. 中国环境监测, 2021, 37(2): 33-43. doi: 10.19316/j.issn.1002-6002.2021.02.05 FU C B, ZHOU H. Research progress on the formation mechanism and impact factors of urban ozone pollution in China [J]. Environmental Monitoring in China, 2021, 37(2): 33-43(in Chinese). doi: 10.19316/j.issn.1002-6002.2021.02.05
[38] 廖志恒, 许欣祺, 谢洁岚, 等. 珠三角地区日最大混合层高度及其对区域空气质量的影响 [J]. 气象与环境学报, 2019, 35(5): 85-92. doi: 10.3969/j.issn.1673-503X.2019.05.011 LIAO Z H, XU X Q, XIE J L, et al. Daily maximum mixing height and its effects on air quality in the Pearl River Delta region [J]. Journal of Meteorology and Environment, 2019, 35(5): 85-92(in Chinese). doi: 10.3969/j.issn.1673-503X.2019.05.011
[39] 苏超. 海口市环境空气质量、污染特征及其影响因素研究[D]. 海口: 海南大学, 2016. SU C. The research on Haikou air quality, pollution characteristics and its influence factors [D]. Haikou: Hainan University(in Chinese)