-
近年来,工业快速发展、人为活动加剧,大量含有重金属的废弃物通过各种途径进入环境造成污染,导致“镉米”、儿童血铅超标等事件频发,引起了广泛关注[1]。铅是常见的重金属元素,能够持久存在和具有高蓄积性,不像有机污染物可以通过降解消除,容易对生态环境和人体健康造成严重危害[2]。例如,铅能够降低土壤品质,影响植物正常生长[3];铅能够在鲇鱼脏器组织中积累,对其氧化机能、生长性能和代谢水平等具有负面影响[4];严重的是,铅能够在人体器官和组织中蓄积并产生伤害,如伤害内脏器官及神经系统,特别是容易造成儿童学习困难、智力低下等长期不良影响[5]。
吸附-固定是一种常用的铅污染修复方法[6],吸附材料的选择是关键。常用的吸附材料有生物质炭[7]、黏土矿物[8]和铁锰氧化物[9-10]等,而这些吸附材料对铅的吸附能力小,使用量大。腐殖质是一类以碳为骨架的高分子有机复合物,富含羧基、酚羟基等酸性官能团,对重金属具有较强吸附能力[11-12]。腐殖质在环境中广泛存在、原材料易得,具有环境友好、高重金属容量等特点。因此,腐殖质在重金属污染修复领域受到了广泛的研究和关注。
腐殖质是生物质在挤压、增温、缺氧等条件下经热解、排气等过程形成的有机弱酸混合物,主要以胡敏酸和富里酸为主。腐殖质具有丰富的羧基和酚羟基能够与重金属结合,其结合机制已得到深入研究,主要通过羧基和酚羟基吸附、螯合和络合重金属[11,13]。另外,腐殖质能与土壤形成矿物-有机复合体,改善土壤理化性质,增加吸附重金属结合点位。这些作用可以有效降低重金属的移动性和毒性。由于腐殖质原材料来源广泛(如风化煤、褐煤、泥炭和、污泥和畜禽粪便等)、储量丰富(国内储量超过1000亿吨)[11,14-16],制备方法简单、阳离子交换量大等,因此,腐殖质在去除水体和钝化土壤重金属应用方面具有较大潜力。
腐殖质吸附的研究有很多但多数集中于“碱溶酸析”法提取的胡敏酸对其吸附能力和吸附点位的研究[17-19],而对于吸附方式和吸附过程研究较少。“碱溶酸析”法制备的腐殖质具有低pH(甚至<2),不适于酸性水体和土壤污染修复。为了制备高pH腐殖质并更好地描述其对铅的吸附过程与方式,利用不同絮凝方法制备的腐殖质对铅溶液进行了动力学和热力学吸附试验,研究反应时间、浓度和絮凝方法对吸附的影响,确定其对重金属铅的吸附性能和机制。另外,通过钝化试验探究腐殖质对土壤Pb的固定作用,确定其钝化效果,评估风化煤提取腐殖质应用于水体和土壤修复的潜力。
风化煤提取的不溶腐殖质对铅的吸附性能及应用潜力
Insoluble humic substances derived from leonardite for lead adsorption and application potential
-
摘要: 以不同絮凝方法从风化煤中提取的不溶性腐殖质为研究对象,表征其理化性质和表观形态结构,通过吸附和钝化试验探究不溶性腐殖质对铅(Pb)的吸附、钝化性能。结果表明,传统“碱溶酸析”法制备的腐殖质(记为HA)具有较低pH和灰分含量,较高的碳和羧基含量;碱性条件下采用CaCl2和CaCl2-阳离子聚丙烯酰胺(CPAM)絮凝制备的腐殖质(分别记为Ca-HA和Ca-CPAM-HA)具有较高pH和灰分含量,较低的碳和羧基含量。HA、Ca-HA和Ca-CPAM-HA对铅离子(Pb2+)的吸附分别在6、3、6 h达到吸附-解吸平衡,吸附量随着Pb2+浓度增加而增大。准二级动力学方程较好地描述整个动力学吸附过程,结合傅立叶变换红外吸收光谱谱图(FTIR),表明吸附过程以化学吸附为主且羧基是主要作用官能团。采用热力学方程对吸附数据进行拟合发现,HA、Ca-HA和Ca-CPAM-HA对Pb2+的吸附方式存在差异。利用Langmuir方程对数据拟合量化,表明HA、Ca-HA和Ca-CPAM-HA对Pb2+均具有较高吸附能力,分别是212.3、179.8、185.2 mg·g-1。添加3% HA降低土壤1(S1)和土壤2(S2)中酸溶态Pb含量幅度分别为72.7%和55.8%。风化煤来源广、储量大、价廉易得,以其为原料制备环境适应性好、吸附容量大的不溶腐殖质,可用于吸附固定重金属,具有良好应用前景。Abstract: In this study, the HCl, CaCl2 or CaCl2-cationic polyacrylamide (CPAM) was used as a flocculant to produce humic substances (named as HA, Ca-HA and Ca-CPAM-HA, respectively) to explore the adsorption capacity in wastewater and immobilization performance in soil for lead (Pb). The results revealed that, compared with Ca-HA and Ca-CPAM-HA, the HA had a lower pH and ash content, and higher carbon and carboxyl content. Kinetic adsorption studies showed that the Pb2+ onto HA, Ca-HA and Ca-CPAM-HA reached equilibrium was 6, 3 and 6 h, respectively, and the adsorption capacity increased with initial Pb2+ concentration. Kinetic adsorption data were better fitted to pseudo-second model than other models, together with FTIR spectroscopic data, indicating the adsorption processes of Pb2+ onto HA, Ca-HA and Ca-CPAM-HA were mainly controlled by chemisorption through carboxyl groups. Four adsorption isotherm models were used to fit the adsorption data to describe the distribution of Pb2+ in solid-liquid system, showing preparation procedures influenced the adsorption process. The maximum adsorption capacity of Pb2+ onto HA, Ca-HA and Ca-CPAM-HA was 212.3, 179.8 and 185.2 mg·g-1 calculated from Langmuir, respectively. HA reduced acetic acid extractable Pb by 72.7% and 55.8% in soil 1 (S1) and soil 2 (S2). The leonardite can be easily obtained as abundant across in China, which can be used as resources to prepare the insoluble humic substances to remediate water and soil pollution.
-
Key words:
- humic substances /
- lead /
- adsorption /
- immobilization /
- leonardite
-
表 1 不溶腐殖质吸附Pb2+动力学参数
Table 1. Parameters of kinetic models for Pb2+ adsorption onto leonardite-derived humic substances
吸附剂
Adsorbentqe/
(mg·g−1)准一级方程
Pseudo-first model准二级方程
Pseudo-second modelElovich方程 内扩散方程
Intraparticle diffusionq1/(mg·g−1) R2 q2/(mg·g−1) R2 R2 R2 HA 147.2 140.1 0.917 151.7 0.973 0.948 0.592 Ca-HA 184.4 179.4 0.978 184.6 0.998 0.977 0.177 Ca-CPAM-HA 188.0 182.1 0.975 189.3 0.987 0.931 0.238 表 2 不溶腐殖质吸附Pb2+热力学参数
Table 2. Parameters of adsorption isotherms Pb2+ adsorption onto leonardite-derived humic substances
模型
Model吸附剂
Adsorbent参数 Parameters qL /(mg·g−1) kL/(L·mg−1) R2 Langmuir HA 212.3 0.173 0.982 Ca-HA 179.8 3.591 0.929 Ca-CPAM-HA 185.2 0.402 0.935 Freundlich n kF /(mg(1−n)·Ln·g−1) R2 HA 4.97 80.02 0.963 Ca-HA 8.00 118.624 0.951 Ca-CPAM-HA 3.40 60.485 0.946 Temkin kT /(L·mg−1) b /(J·mol−1) R2 HA 2.650 90.252 0.963 Ca-HA 6.530 134.408 0.954 Ca-CPAM-HA 0.075 5.977 0.977 Elovich qE /(mg·g−1) kE /(L·mg−1) R2 HA 192.44 0.040 0.510 Ca-HA 115.36 0.163 0.243 Ca-CPAM-HA 178.8 0.059 0.680 表 3 腐殖质与其它吸附材料对Pb2+的吸附对比
Table 3. Comparison of adsorption capacities of humic substances with other adsorbents
-
[1] 肖瑶, 吴中杰, 崔美, 等. 生物炭-膨润土共改性及其铅离子吸附与稳定化研究 [J]. 无机材料学报, 2021, 36(10): 1083-1090. doi: 10.15541/jim20200745 XIAO Y, WU Z J, CUI M, et al. Co-modification of biochar and bentonite for adsorption and stabilization of Pb2+ ions [J]. Journal of Inorganic Materials, 2021, 36(10): 1083-1090(in Chinese). doi: 10.15541/jim20200745
[2] 陈晓晨, 韩泽亮, 张剑宇, 等. 中国典型土壤中铅的生物可给性的影响因素分析与健康风险评估 [J]. 生态环境学报, 2021, 30(1): 165-172. CHEN X C, HAN Z L, ZHANG J Y, et al. Study on the influencing factors of Pb bioaccessibility in typical soils in China and the human health risk assessment [J]. Ecology and Environmental Sciences, 2021, 30(1): 165-172(in Chinese).
[3] 厉有为, 梁婵娟. 三种油料作物对土壤Pb污染的耐受性与积累 [J]. 环境化学, 2021, 40(5): 1602-1610. doi: 10.7524/j.issn.0254-6108.2020010601 LI Y W, LIANG C J. Tolerance and accumulation of lead in three oil crops to lead pollution in soil [J]. Environmental Chemistry, 2021, 40(5): 1602-1610(in Chinese). doi: 10.7524/j.issn.0254-6108.2020010601
[4] 彭涛. 水体中铅的浓度对南方鲇的生理生态学影响 [D]. 重庆: 西南大学, 2013. PENG T. Ecophysiological effects of the water-borne lead (Pb) concentrations on southern catfish (Silurus meridionalis) [D]. Chongqing: Southwest University, 2013 (in Chinese).
[5] MAYANS L. Lead poisoning in children [J]. American Family Physician, 2019, 100(1): 24-30. [6] 汪振文, 王会才, 杨继斌, 等. 吸附法去除水中重金属复合污染物的研究状况 [J]. 稀有金属, 2020, 44(1): 87-99. WANG Z W, WANG H C, YANG J B, et al. Removal of heavy metal complex pollutants in water by adsorption [J]. Chinese Journal of Rare Metals, 2020, 44(1): 87-99(in Chinese).
[7] 王鑫宇, 张曦, 孟海波, 等. 温度对生物炭吸附重金属特性的影响研究 [J]. 中国农业科技导报, 2021, 23(2): 150-158. WANG X Y, ZHANG X, MENG H B, et al. Impact of temperature on adsorption characteristics of biochar on heavy metals [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 150-158(in Chinese).
[8] 钱琪所, 赵娟, 谢立灏, 等. 改良黏土对重金属离子的吸附特性及防渗性能 [J]. 环境科学与技术, 2020, 43(2): 96-101. QIAN Q S, ZHAO J, XIE L H, et al. Adsorption characteristics of heavy metal and permeability by sludge activated carbon modified clay [J]. Environmental Science & Technology, 2020, 43(2): 96-101(in Chinese).
[9] 艾翠玲, 雷英杰, 张国春, 等. 纳米铁氧化物吸附处理重金属废水的研究进展 [J]. 化工环保, 2015, 35(6): 593-598. doi: 10.3969/j.issn.1006-1878.2015.06.008 AI C L, LEI Y J, ZHANG G C, et al. Research progresses on adsorption of heavy metals from wastewater using nano iron oxides [J]. Environmental Protection of Chemical Industry, 2015, 35(6): 593-598(in Chinese). doi: 10.3969/j.issn.1006-1878.2015.06.008
[10] 尹仁文, 陈正行, 李娟, 等. 米渣蛋白对镉的吸附效果及其对土壤中镉的钝化作用研究 [J]. 农业工程学报, 2019, 35(2): 221-228. doi: 10.11975/j.issn.1002-6819.2019.02.028 YIN R W, CHEN Z X, LI J, et al. Adsorption of cadmium in aqueous solution and passivation of cadmium in soil by rice dreg protein [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2): 221-228(in Chinese). doi: 10.11975/j.issn.1002-6819.2019.02.028
[11] 孟凡德, 袁国栋, 韦婧, 等. 风化煤提取的胡敏酸对镉的吸附性能及其应用潜力 [J]. 浙江大学学报(农业与生命科学版), 2016, 42(4): 460-468. MENG F D, YUAN G D, WEI J, et al. Humic acid from leonardite for cadmium adsorption and potential applications [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(4): 460-468(in Chinese).
[12] MENG F D, YUAN G D, WEI J, et al. Leonardite-derived humic substances are great adsorbents for cadmium [J]. Environmental Science and Pollution Research, 2017, 24(29): 23006-23014. doi: 10.1007/s11356-017-9947-8 [13] TAN K H. Humic matter in soil and the environment: principles and controversies, 2nd edn [M]. Boca Raton: CRC Press, 2014. [14] COLES C A, YONG R N. Humic acid preparation, properties and interactions with metals lead and cadmium [J]. Engineering Geology, 2006, 85(1-2): 26-32. doi: 10.1016/j.enggeo.2005.09.024 [15] de SOUZA F, BRAGANÇA S R. Extraction and characterization of humic acid from coal for the application as dispersant of ceramic powders [J]. Journal of Materials Research and Technology, 2018, 7(3): 254-260. doi: 10.1016/j.jmrt.2017.08.008 [16] TAHIR M M, KHURSHID M, KHAN M Z, et al. Lignite-derived humic acid effect on growth of wheat plants in different soils [J]. Pedosphere, 2011, 21(1): 124-131. doi: 10.1016/S1002-0160(10)60087-2 [17] LIU A G, GONZALEZ R D. Modeling adsorption of copper(II), cadmium(II) and lead(II) on purified humic acid [J]. Langmuir, 2000, 16(8): 3902-3909. doi: 10.1021/la990607x [18] BAKER H, KHALILI F. Analysis of the removal of lead(II) from aqueous solutions by adsorption onto insolubilized humic acid: Temperature and pH dependence [J]. Analytica Chimica Acta, 2004, 516(1-2): 179-186. doi: 10.1016/j.aca.2004.03.068 [19] HABIBUL N, CHEN W. Structural response of humic acid upon binding with lead: A spectroscopic insight [J]. Science of the Total Environment, 2018, 643: 479-485. doi: 10.1016/j.scitotenv.2018.06.229 [20] International Humic Substances Society. Acidic functional groups of IHSS samples, 2021. https://humic-substances.org/acidic-functional-groups-of-ihss-samples/#products. [21] MENG F D, YUAN G D, WEI J, et al. Humic substances as a washing agent for Cd-contaminated soils [J]. Chemosphere, 2017, 181: 461-467. doi: 10.1016/j.chemosphere.2017.04.127 [22] RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials [J]. Journal of Environmental Monitoring, 1999, 1(1): 57-61. doi: 10.1039/a807854h [23] SIMONIN J P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics [J]. Chemical Engineering Journal, 2016, 300: 254-263. doi: 10.1016/j.cej.2016.04.079 [24] HO Y S. Review of second-order models for adsorption systems [J]. Journal of Hazardous Materials, 2006, 136(3): 681-689. doi: 10.1016/j.jhazmat.2005.12.043 [25] OFOMAJA A E. Intraparticle diffusion process for lead(II) biosorption onto Mansonia wood sawdust [J]. Bioresource Technology, 2010, 101(15): 5868-5876. doi: 10.1016/j.biortech.2010.03.033 [26] WU F C, TSENG R L, JUANG R S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems [J]. Chemical Engineering Journal, 2009, 150(2/3): 366-373. [27] ARAÚJO C S T, ALMEIDA I L S, REZENDE H C, et al. Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms [J]. Microchemical Journal, 2018, 137: 348-354. doi: 10.1016/j.microc.2017.11.009 [28] GUBERNAK M, ZAPAȽA W, KACZMARSKI K. Analysis of amylbenzene adsorption equilibria on an RP-18e chromatographic column [J]. Acta Chromatographica, 2003(13): 38-59. [29] MENG F D, YUAN G D, LARSON S L, et al. Removing uranium (Ⅵ) from aqueous solution with insoluble humic acid derived from leonardite [J]. Journal of Environmental Radioactivity, 2017, 180: 1-8. doi: 10.1016/j.jenvrad.2017.09.019 [30] ORSETTI S, MARCO-BROWN J L, ANDRADE E M, et al. Pb(Ⅱ) binding to humic substances: An equilibrium and spectroscopic study [J]. Environmental Science & Technology, 2013, 47(15): 8325-8333. [31] SHI W J, LÜ C, HE J, et al. Nature differences of humic acids fractions induced by extracted sequence as explanatory factors for binding characteristics of heavy metals [J]. Ecotoxicology and Environmental Safety, 2018, 154: 59-68. doi: 10.1016/j.ecoenv.2018.02.013 [32] PICCOLO A, ZACCHEO P, GENEVINI P G. Chemical characterization of humic substances extracted from organic-waste-amended soils [J]. Bioresource Technology, 1992, 40(3): 275-282. doi: 10.1016/0960-8524(92)90154-P [33] ETCI Ö, BEKTAŞ N, ÖNCEL M S. Single and binary adsorption of lead and cadmium ions from aqueous solution using the clay mineral beidellite [J]. Environmental Earth Sciences, 2010, 61(2): 231-240. doi: 10.1007/s12665-009-0338-4 [34] IMAMOGLU M, TEKIR O. Removal of copper (Ⅱ) and lead (Ⅱ) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks [J]. Desalination, 2008, 228(1/2/3): 108-113. [35] 邵云, 陈静雯, 王温澎, 等. 四种有机物料对Pb2+的吸附特性 [J]. 农业环境科学学报, 2017, 36(9): 1858-1867. doi: 10.11654/jaes.2017-0253 SHAO Y, CHEN J W, WANG W P, et al. Adsorption of Pb2+ by different organic materials in aqueous solution [J]. Journal of Agro-Environment Science, 2017, 36(9): 1858-1867(in Chinese). doi: 10.11654/jaes.2017-0253
[36] MENG F D, ZHANG Y W, CAI Y B, et al. Kinetic and thermodynamic features of Pb(Ⅱ) removal from aqueous solution by leonardite-derived humic acid [J]. Water, Air, & Soil Pollution, 2021, 232(7): 1-12. [37] SHAHID M, PINELLI E, DUMAT C. Review of Pb availability and toxicity to plants in relation with metal speciation: role of synthetic and natural organic ligands [J]. Journal of Hazardous Materials, 2012, 219-220: 1-12. doi: 10.1016/j.jhazmat.2012.01.060 [38] JANOŠ P, VÁVROVÁ J, HERZOGOVÁ L, et al. Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: A sequential extraction study [J]. Geoderma, 2010, 159(3-4): 335-341. doi: 10.1016/j.geoderma.2010.08.009 [39] KOUKAL B, GUÉGUEN C, PARDOS M, et al. Influence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudokirchneriella subcapitata [J]. Chemosphere, 2003, 53(8): 953-961. doi: 10.1016/S0045-6535(03)00720-3 [40] RONG Q, ZHONG K, HUANG H, et al. Humic acid reduces the available cadmium, copper, lead, and zinc in soil and their uptake by tobacco [J]. Applied Sciences, 2020, 10(3): 1077. doi: 10.3390/app10031077 [41] WANG M C, CHANG S H. Mean residence times and characteristics of humic substances extracted from a Taiwan soil [J]. Canadian Journal of Soil Science, 2001, 81(3): 299-307. doi: 10.4141/S00-068 [42] RODRÍGUEZ-MURILLO J C, ALMENDROS G, KNICKER H. Humic acid composition and humification processes in wetland soils of a Mediterranean semiarid wetland [J]. Journal of Soils and Sediments, 2017, 17(8): 2104-2115. doi: 10.1007/s11368-017-1663-y [43] 国家环境保护总局. 中华人民共和国环保行业标准: 食用农产品产地环境质量评价标准HJ/T 332—2006 [S]. 北京: 中国环境科学出版社, 2007. State Environmental Protection Administration of the People's Republic of China. Environmental Protection Standard of the People's Republic of China: Farland environmental quality evaluation standards for edible agricultural products. HJ/T 332—2006 [S]. Beijing: China Environment Science Press, 2007 (in Chinese).
[44] YUAN G D, THENG B K G. Clay-organic interactions in soil environments// HUANG PM, SUMNER M, LI YC. Handbook of soil science: Resource management and environmental impacts, 2nd edn [M]. Boca Raton: CRC Press, Taylor & Francis Group, 2011: 2-1–2-20. [45] YUAN G D. Nanomaterials to the rescue [J]. Nano Today, 2008, 3(1-2): 61.