-
大气细颗粒物(PM2.5)因近几十年社会发展形势的快速更替,已成为现今主要的大气污染物,对气候、经济和人群健康产生影响[1]。据世界银行统计,我国2013年因PM2.5污染带来的经济损失约为1.6万亿美元[2],PM2.5污染导致全球每年330万人过早死亡[3],现已有许多新技术和新材料应用于空气污染控制,以最大限度地减少PM2.5污染对健康的影响,但PM2.5污染防治仍是一个亟需解决的难题。
对人群健康造成危害的主要因素实则是PM2.5携带的有机物和无机元素等物质。其中,多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是结构中含有两个或两个以上苯环的碳氢化合物,是化石燃料燃烧、工业及汽车排放的产物之一[4]。国内外许多研究揭示了多种PAHs组分,如苯并[a]芘、茚并[1,2,3-c,d]芘和二苯并[a,h]蒽具有致癌、致畸和致突变性[5],且高浓度PAHs暴露与癌症的发生密切相关[6],其中四环以上PAHs可长期附着于在颗粒物[7],随呼吸进入人体肺部,增加患肺癌风险[8]。美国EPA于1976年将16种PAHs列为优控污染物[9],我国《环境空气质量标准》(GB 3095—2012)[10]仅规定了BaP的日均浓度限值(2.5 ng·m−3)。前期研究表明,由于燃煤取暖,导致冬季PM2.5中PAHs含量远高于其他季节,国内外皆是如此[11-12],因此对人体健康造成更高风险[13-14]。颗粒物吸附的元素主要来源于人为活动影响下的工业生产和尾气排放,导致大气中元素浓度远高于自然本底值[15],与粗颗粒物(PM10)相比,元素组分更集中在PM2.5上[16],甚至成为PM2.5的主要组成。部分元素如镉、镍、铅、锰等具有生物毒性,可通过呼吸道进入人体,因无法降解而长期积累,导致中毒、贫血、肺细胞损伤、神经毒性等疾病[17-18]。既往研究证实,大气颗粒物长期暴露是导致人体血液和尿液中元素超标的重要因素[19]。因此,大气颗粒物中PAHs和元素组分逐渐成为重点研究和管控对象。
济南市地处山东省中部,地势南高北低,属温带半湿润季风气候,化工产业在全市经济生产总值中占较大比重,经济、能源、交通的快速发展和人口的膨胀,使济南成为全国大气污染较为严重的城市之一[20]。济南市PM2.5的既往相关研究着重于讨论采暖季与非采暖季的特征差异[21-23],关于采暖季不同污染天气的PM2.5特征研究还较少,鉴于此,本研究通过采集济南市采暖季大气PM2.5样品,分析其上16种PAHs和12种元素组分的含量,探讨采暖季不同污染天气的颗粒物特征及来源,为济南市大气污染防治措施的制定实施提供参考依据。
济南市采暖季不同污染天气PM2.5及其PAHs和元素组分污染特征及源解析
Characterization and source analysis of PM2.5 and its PAHs and element components in different polluted weather in Jinan heating season
-
摘要: 我国近年大气污染治理虽取得一定成效,但冬季采暖期仍是大气重污染频发时期。为探究济南市采暖季不同污染天气PM2.5及其负载组分的污染特征及来源,采集2018年12月—2019年1月济南市中心某社区室外大气PM2.5样本,用重量法计算PM2.5浓度,GC/MS检测PAHs浓度,ICP-MS检测元素组分。发现济南市采暖季污染天PM2.5浓度与室外相对湿度呈显著正相关(r=0.7968,P<0.05);污染天PM2.5浓度显著高于非污染天,其负载的PAHs和元素浓度均随PM2.5的升高而升高,两种天气下PAHs环数占比、特征比值法和元素富集因子法得到的源解析结果接近。提示污染天PM2.5虽显著升高,但PM2.5中PAHs和元素均主要来自煤炭燃烧和尾气排放,污染源类型的构成却没有发生明显改变。Abstract: Although some remarkable progress has been achieved in air pollution control in China in recent years, winter heating season is still a period of most concern due to its frequent air pollution. In order to explore the pollution characteristics and sources of PM2.5 and its load components in different polluted period during the heating season in Jinan, atmospheric PM2.5 were collected in an urban community of Jinan from December 2018 to January 2019. PM2.5 was measured by gravimetric method and PAHs and elements were analyzed by GC/MS and ICP-MS separately. It was found that there was significantly positive relation between PM2.5 and atmospheric relative humidity during the heating season (r=0.7968, P<0.05),and the concentration of PM2.5 in polluted period was significantly higher than that in non-polluted period, and the PAHs and element concentrations accumulated with the increase of PM2.5. The source analysis through the ratio of PAHs cycle number, characteristic ratio and element enrichment factor indicated the similar source in the two weather conditions, suggesting that although PM2.5 increased significantly on polluted days, the PAHs and elements in PM2.5 mainly came from the consistent coal combustion and exhaust emissions, and the composition of pollution sources had not changed significantly.
-
Key words:
- PM2.5 /
- PAHs /
- elements /
- source analysis.
-
表 1 采样期间大气PM2.5及其负载组分浓度水平
Table 1. The concentration of PM2.5 and its load components during the sampling period
分组
Groupn PM2.5/(μg·m−3) PAHs总量/(ng·m−3)
Total concentration of PAHs元素总量/(ng·m−3)
Total concentration of elements非污染天 10 40.97±21.94 28.17±21.48 1784.2±654.03 污染天 13 155.35±75.81 42.79±20.11 2691.8±561.81 合计 23 105.62±81.81 36.44±21.54 2297.2±747.54 表 2 不同污染条件下PM2.5中PAHs特征比值
Table 2. Characteristic ratio of PAHs in PM2.5 in different polluted period
特征比值
Diagnostic ratios参考范围
Reference range主要来源
Main source非污染天
Non-polluted day污染天
Polluted day参考文献
ReferencesBaA/(BaA+Chr) <0.2 成岩 0.632 0.567 [45] 0.2 — 0.35 燃煤 [46] >0.35 机动车 Bap/BghiP 0.9 — 6.6 燃煤 1.181 1.241 [45] 0.3 — 0.4 柴油 0.5 — 0.6 汽油 Pyr/Bap <1 燃煤 1.642 1.561 [47] 1 — 6 汽油 Bap/(Bap+Chr) 0.07—0.24 燃煤 0.546 0.421 [48] 0.49 汽油 0.68 柴油 An/(An+Phe) 0.5 汽油 0.626 0.629 [45] 0.35 柴油 <0.1 化石燃料未完全燃烧 [49] Flu/(Flu+Pyr) <0.5 汽油 0.536 0.528 [45] >0.5 柴油 [50] 0.53 燃煤/烹饪 [45] InP/(InP+BghiP) <0.2 汽油 0.478 0.485 [51] 0.35—0.7 柴油 [45] 表 3 不同污染条件下PM2.5中元素富集因子
Table 3. Metal enrichment factors in PM2.5 in different polluted period
元素
Elements非污染天Non-polluted day 污染天Polluted day EF 富集程度
Degree of enrichment污染来源
Source of pollutionEF 富集程度
Degree of enrichment污染来源
Source of pollutionCr 26.7 高度富集 人为源 38.67 高度富集 人为源 >Fe >1.01 >中度富集 >地壳或土壤 >1.45 >中度富集 >地壳或土壤 >As >526.33 >极高富集 >人为源 >797.87 >极高富集 >人为源 >Tl >54.52 >高度富集 >人为源 >73.33 >高度富集 >人为源 >Pb >177.23 >极高富集 >人为源 >254.01 >极高富集 >人为源 >Bi >730.07 >极高富集 >人为源 >1604.56 >极高富集 >人为源 >K >1.69 >中度富集 >地壳或土壤 >4.28 >中度富集 >地壳或土壤 >Se >8.31 >中度富集 >天然和人为源 >4.22 >中度富集 >地壳或土壤 >U >4.41 >中度富集 >地壳或土壤 >8.47 >中度富集 >天然和人为源 >Ni >55.04 >高度富集 >人为源 >61.34 >高度富集 >人为源 >Cd >840.03 >极高富集 >人为源 >1925.09 >极高富集 >人为源 Mn 3.33 中度富集 地壳或土壤 6.77 中度富集 天然和人为源 -
[1] 朱来东, 王兴峰, 王长征, 等. 浅谈PM2.5的环境影响评价 [J]. 甘肃冶金, 2013, 35(4): 94-96. ZHU L D, WANG X F, WANG C Z, et al. Discussion of PM2.5 in environmental impact assessment [J]. Gansu Metallurgy, 2013, 35(4): 94-96(in Chinese).
[2] BANK W. Institute for health metrics and evaluation. The cost of air pollution: strengthening the economic case for action[M]. Washington, DC: World Bank, 2016. [3] LELIEVELD J, EVANS J S, FNAIS M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale [J]. Nature, 2015, 525(7569): 367-371. doi: 10.1038/nature15371 [4] LI H Y, LAI Z N, ZENG Y Y, et al. Occurrence, source identification, and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments of the Pearl River Delta, China [J]. Marine Pollution Bulletin, 2021, 170: 112666. doi: 10.1016/j.marpolbul.2021.112666 [5] AAMIR M, YIN S S, LIU Y X, et al. Dietary exposure and cancer risk assessment of the Pakistani population exposed to polycyclic aromatic hydrocarbons [J]. Science of the Total Environment, 2021, 757: 143828. doi: 10.1016/j.scitotenv.2020.143828 [6] STADING R, GASTELUM G, CHU C, et al. Molecular mechanisms of pulmonary carcinogenesis by polycyclic aromatic hydrocarbons (PAHs): Implications for human lung cancer [J]. Seminars in Cancer Biology, 2021, 76: 3-16. doi: 10.1016/j.semcancer.2021.07.001 [7] JAMHARI A A, SAHANI M, LATIF M T, et al. Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia [J]. Atmospheric Environment, 2014, 86: 16-27. doi: 10.1016/j.atmosenv.2013.12.019 [8] SARIGIANNIS D Α, KARAKITSIOS S P, ZIKOPOULOS D, et al. Lung cancer risk from PAHs emitted from biomass combustion [J]. Environmental Research, 2015, 137: 147-156. doi: 10.1016/j.envres.2014.12.009 [9] LI J, ZHANG G, LI X D, et al. Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China [J]. Science of the Total Environment, 2006, 355(1/2/3): 145-155. [10] 国家环境保护局. 环境空气质量标准: GB 3095—1996[S]. 北京: 中国标准出版社, 2012. State Bureau of Environmental Protection of the People's Republic of China. Ambient air quality standard: GB 3095—1996[S]. Beijing: Standards Press of China, 2012 (in Chinese).
[11] JIANG Y L, HOU X M, ZHUANG G S, et al. The sources and seasonal variations of organic compounds in PM2.5 in Beijing and Shanghai [J]. Journal of Atmospheric Chemistry, 2009, 62(3): 175-192. doi: 10.1007/s10874-010-9147-0 [12] TEIXEIRA E C, MATTIUZI C D P, AGUDELO-CASTAÑEDA D M, et al. Polycyclic aromatic hydrocarbons study in atmospheric fine and coarse particles using diagnostic ratios and receptor model in urban/industrial region [J]. Environmental Monitoring and Assessment, 2013, 185(11): 9587-9602. doi: 10.1007/s10661-013-3276-2 [13] XIA Z H, DUAN X L, TAO S, et al. Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China [J]. Environmental Pollution, 2013, 173: 150-156. doi: 10.1016/j.envpol.2012.10.009 [14] 蔡瑞婷, 肖舜, 董治宝, 等. 汾渭平原典型城乡PM2.5中多环芳烃特征与健康风险 [J]. 地理学报, 2021, 76(3): 740-752. CAI R T, XIAO S, DONG Z B, et al. Characteristics and health risk of polycyclic aromatic hydrocarbons in PM2.5 in the typical urban and rural areas of the Fenwei Plain [J]. Acta Geographica Sinica, 2021, 76(3): 740-752(in Chinese).
[15] CHARLESWORTH S, de MIGUEL E, ORDÓÑEZ A. A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk [J]. Environmental Geochemistry and Health, 2011, 33(2): 103-123. doi: 10.1007/s10653-010-9325-7 [16] 闫丽娜, 左昊, 张聚全, 等. 石家庄市大气PM1、PM2.5和PM10中重金属元素分布特征及来源的对比研究 [J]. 地学前缘, 2019, 26(3): 263-270. YAN L N, ZUO H, ZHANG J Q, et al. Comparative study on the distribution characteristics and sources of heavy metal elements in PM1, PM2.5 and PM10 in Shijiazhuang City [J]. Earth Science Frontiers, 2019, 26(3): 263-270(in Chinese).
[17] FANG W X, YANG Y C, XU Z M. PM10 and PM2.5 and health risk assessment for heavy metals in a typical factory for cathode ray tube television recycling [J]. Environmental Science & Technology, 2013, 47(21): 12469-12476. [18] FANG G C, ZHENG Y C. Diurnal ambient air particles, metallic elements dry deposition, concentrations study during year of 2012-2013 at a traffic site [J]. Atmospheric Environment, 2014, 88: 39-46. doi: 10.1016/j.atmosenv.2014.01.055 [19] LANDRIGAN P J, BAKER E L. Exposure of children to heavy metals from smelters: Epidemiology and toxic consequences [J]. Environmental Research, 1981, 25(1): 204-224. doi: 10.1016/0013-9351(81)90090-6 [20] 孙凤娟, 吕波, 张文娟, 等. 2014年1月济南市空气污染气象条件分析 [J]. 山东科学, 2021, 34(3): 90-99,130. SUN F J, LÜ B, ZHANG W J, et al. Analysis of air pollution meteorological conditions in Jinan in January 2014 [J]. Shandong Science, 2021, 34(3): 90-99,130(in Chinese).
[21] 李恒庆, 丁椿, 潘光, 等. 济南市居住区采暖季大气PM2.5中碳组分构成及变化分析 [J]. 生态环境学报, 2019, 28(9): 1810-1817. LI H Q, DING C, PAN G, et al. Analysis on the composition and change of carbon components in PM2.5 of residential area in Jinan during heating period [J]. Ecology and Environmental Sciences, 2019, 28(9): 1810-1817(in Chinese).
[22] 魏小锋, 谭路遥, 孙友敏, 等. 清洁能源政策下济南市采暖季PM2.5中水溶性离子变化分析 [J]. 生态环境学报, 2019, 28(7): 1416-1422. WEI X F, TAN L Y, SUN Y M, et al. Impact on water soluble ions in PM2.5 during heating period in Jinan City by A policy of clean energy [J]. Ecology and Environmental Sciences, 2019, 28(7): 1416-1422(in Chinese).
[23] 刘晓迪, 孟静静, 侯战方, 等. 济南市夏、冬季PM2.5中化学组分的季节变化特征及来源解析 [J]. 环境科学, 2018, 39(9): 4014-4025. LIU X D, MENG J J, HOU Z F, et al. Analysis of seasonal variations in chemical characteristics and sources of PM2.5 during summer and winter in ji'nan city [J]. Environmental Science, 2018, 39(9): 4014-4025(in Chinese).
[24] WANG Q, FANG J L, SHI W Y, et al. Distribution characteristics and policy-related improvements of PM2.5 and its components in six Chinese cities [J]. Environmental Pollution, 2020, 266: 115299. doi: 10.1016/j.envpol.2020.115299 [25] 董小艳, 王琼, 杨一兵, 等. 2017年春节期间北京市城区和郊区大气PM2.5及其中多环芳烃的污染特征 [J]. 环境化学, 2018, 37(10): 2191-2198. DONG X Y, WANG Q, YANG Y B, et al. Characterization of ambient PM2.5 and PAHs during 2017 Spring Festival in urban and suburb areas of Beijing [J]. Environmental Chemistry, 2018, 37(10): 2191-2198(in Chinese).
[26] 黄善斌, 李本轩, 王文青. 济南PM2.5质量浓度与气象条件相关性初步研究 [J]. 海洋气象学报, 2020, 40(1): 90-97. HUANG S B, LI B X, WANG W Q. A preliminary study on the correlation between PM2.5 mass concentration and meteorological conditions in Jinan [J]. Journal of Marine Meteorology, 2020, 40(1): 90-97(in Chinese).
[27] 党聪聪, 姜坪. 气象条件对大气中PM2.5浓度的影响 [J]. 洁净与空调技术, 2019(2): 31-37. DANG C C, JIANG P. Effects of meteorological conditions on PM2.5 concentration in atmosphere [J]. Contamination Control & Air-Conditioning Technology, 2019(2): 31-37(in Chinese).
[28] 徐杰, 匡汉祎, 王国强, 等. PM2.5与空气相对湿度间关系浅析 [J]. 农业与技术, 2017, 37(9): 148-149,157. XU J, KUANG H Y, WANG G Q, et al. Analysis of the relationship between PM2.5 and air relative humidity [J]. Agriculture and Technology, 2017, 37(9): 148-149,157(in Chinese).
[29] 张浩杰, 高健, 孙孝敏, 等. 唐山市2017年采暖期不同污染等级PM2.5化学组分特征对比与来源分析 [J]. 环境科学研究, 2019, 32(5): 776-786. ZHANG H J, GAO J, SUN X M, et al. Comparison and analysis of PM2.5 chemical composition characteristics and source of different grade pollution in Tangshan City during 2017 heating period [J]. Research of Environmental Sciences, 2019, 32(5): 776-786(in Chinese).
[30] 王继康, 张恒德, 桂海林, 等. 能见度与PM2.5浓度关系及其分布特征 [J]. 环境科学, 2019, 40(7): 2985-2993. WANG J K, ZHANG H D, GUI H L, et al. Relationship between atmospheric visibility and PM2.5 concentrations and distributions [J]. Environmental Science, 2019, 40(7): 2985-2993(in Chinese).
[31] 李少络. 济南市采暖前中后期PM2.5的污染特征研究[C]. 石家庄: 第十三届全国气溶胶会议, 2017. LI S L. Study on the pollution characteristics of PM2.5 in Jinan city before, after, and after heating[C]. Shijiazhuang: The 13th national conference for aerosol science and technology, 2017 (in Chinese).
[32] 李丽珍, 刘辉, 曹露. 太原采暖季霾和良天气下大气污染物的污染特征分析 [J]. 环境与可持续发展, 2014, 39(5): 188-189. LI L Z, LIU H, CAO L. Analysis of pollutants concentration characteristics Taiyuan City in haze and clean days of winter [J]. Environment and Sustainable Development, 2014, 39(5): 188-189(in Chinese).
[33] 王鑫, 肖舜, 董治宝, 等. 西安重度以上污染天气PM2.5重金属污染特征与健康风险 [J]. 中国沙漠, 2020, 40(5): 10-19. WANG X, XIAO S, DONG Z B, et al. Pollution characteristics and health risk of heavy metals in PM2.5 in severely polluted weather in Xi'an, China [J]. Journal of Desert Research, 2020, 40(5): 10-19(in Chinese).
[34] 苏兵, 刘旭辉, 张志琴, 等. 太原市采暖期空气PM2.5中多环芳烃来源分析 [J]. 中国药物与临床, 2019, 19(21): 3681-3683. SU B, LIU X H, ZHANG Z Q, et al. Source analysis of polycyclic aromatic hydrocarbons in air PM2.5 during heating period in Taiyuan city [J]. Chinese Remedies & Clinics, 2019, 19(21): 3681-3683(in Chinese).
[35] 刘艳菊, 杨峥, 刘庆阳, 等. 北京4个功能区春冬季大气重污染期间PM10和PM2.5化学污染特征及影响因素分析 [J]. 环境工程技术学报, 2021, 11(4): 631-646. LIU Y J, YANG Z, LIU Q Y, et al. Chemical pollution characteristics of PM10 and PM2.5 during heavy air pollution in spring and winter in four functional areas of Beijing and their associated influencing factors [J]. Journal of Environmental Engineering Technology, 2021, 11(4): 631-646(in Chinese).
[36] 徐梦. 多环芳烃(蒽、菲、芴)对裙带菜(Undaria pinnatifida)幼孢子体的毒性效应[D]. 大连: 辽宁师范大学, 2013. XU M. The toxic effects of polycyclic aromatic hydrocarbons (anthracene, phenanthrene, fluorene)on young sporophytes of Undaria pinnatifida[D]. Dalian: Liaoning Normal University, 2013(in Chinese).
[37] 张燕美. 西南酸雨区城市雾霾天PM2.5污染特征研究——以贵阳和成都为例[D]. 贵阳: 贵州大学, 2016. ZHANG Y M. Pollution characteristics of PM2.5 during haze periods in southwest acid rain area—case study of Guiyang and Chengdu[D]. Guiyang: Guizhou university, 2016 (in Chinese).
[38] 许栩楠, 曾立民, 张远航, 等. 北京市怀柔区冬季大气重金属污染状况分析 [J]. 环境化学, 2016, 35(12): 2460-2468. XU X N, ZENG L M, ZHANG Y H, et al. The pollution status analysis of atmospheric heavy metal elements during winter in Huairou District of Beijing [J]. Environmental Chemistry, 2016, 35(12): 2460-2468(in Chinese).
[39] 吴丽萍, 李丽明, 张向炎, 等. 2018年冬季淄博市一次沙尘天气颗粒物污染特征研究 [J]. 环境科学研究, 2021, 34(1): 92-102. WU L P, LI L M, ZHANG X Y, et al. Characteristics of atmospheric particulate matters during winter sandstorm period in 2018 in Zibo City [J]. Research of Environmental Sciences, 2021, 34(1): 92-102(in Chinese).
[40] 李海燕. 济南大气中多环芳烃的分布及污染特征研究[D]. 济南: 山东大学, 2017. LI H Y. Distribution and pollution characteristics of atmospheric PAHs in Jinan[D]. Jinan: Shandong University, 2017(in Chinese).
[41] 万云洋, 朱迎佳, 费佳佳, 等. 环境中的多环芳烃结构及其危害 [J]. 油气田环境保护, 2017, 27(6): 23-26,56. WAN Y Y, ZHU Y J, FEI J J, et al. The structure of polycyclic aromatic hydrocarbons and its danger in the environment [J]. Environmental Protection of Oil & Gas Fields, 2017, 27(6): 23-26,56(in Chinese).
[42] HARRISON R M, SMITH D J T, LUHANA L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U. K [J]. Environmental Science & Technology, 1996, 30(3): 825-832. [43] 陈祝军, 钱志荣, 秦园, 等. 张家港市PM2.5中多环芳烃污染特征及来源分析 [J]. 华南预防医学, 2020, 46(5): 523-525. CHEN Z J, QIAN Z R, QIN Y, et al. Pollution characteristics and source of polycyclic aromatic hydrocarbons in atmospheric PM2.5 in Zhangjiagang [J]. South China Journal of Preventive Medicine, 2020, 46(5): 523-525(in Chinese).
[44] 李岩岩. 济南冬季室内外大气PM2.5中多环芳烃(PAHs)及其衍生物(NPAHs, OPAHs)的污染特征和来源解析[D]. 济南: 山东大学, 2018. LI Y Y. Indoor/outdoor characterization and sources of PM2.5-bound PAHs, NPAHs and OPAHs in Jinan, China[D]. Jinan: Shandong University, 2018(in Chinese). [知网硕士中文][知网硕士英文] [45] KONG S F, DING X, BAI Z P, et al. A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5-10 in five typical cities of Liaoning Province, China [J]. Journal of Hazardous Materials, 2010, 183(1/2/3): 70-80. [46] MANCILLA Y, MENDOZA A, FRASER M P, et al. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers [J]. Atmospheric Chemistry and Physics, 2016, 16(2): 953-970. doi: 10.5194/acp-16-953-2016 [47] 王敏, 邢燕, 高慧, 等. 2018年淄博市某城区大气PM2.5中多环芳烃的源解析及健康风险评估 [J]. 预防医学论坛, 2021, 27(6): 437-439,444. WANG M, XING Y, GAO H, et al. Source apportionment and health risk assessment on polycyclic aromatic hydrocarbons in PM2.5 in an urban area, Zibo city, 2018 [J]. Preventive Medicine Tribune, 2021, 27(6): 437-439,444(in Chinese).
[48] 王爱红, 姚浔平, 冷朋波, 等. 宁波市某城区2015—2017年大气PM2.5中重金属和多环芳烃分布特征分析 [J]. 环境与职业医学, 2018, 35(11): 1012-1018. WANG A H, YAO X P, LENG P B, et al. Distribution characteristics of heavy metals and polycyclic aromatic hydrocarbons in atmospheric PM2.5 in an urban area of Ningbo from 2015 to 2017 [J]. Journal of Environmental & Occupational Medicine, 2018, 35(11): 1012-1018(in Chinese).
[49] 齐静文, 张瑞芹, 姜楠, 等. 洛阳市秋冬季PM2.5中多环芳烃的污染特征、来源解析及健康风险评价 [J]. 环境科学, 2021, 42(2): 595-603. QI J W, ZHANG R Q, JIANG N, et al. Characterization, sources, and health risks of PM2.5-bound PAHs during autumn and winter in Luoyang City [J]. Environmental Science, 2021, 42(2): 595-603(in Chinese).
[50] de la TORRE-ROCHE R J, LEE W Y, CAMPOS-DÍAZ S I. Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: Analysis of a potential problem in the United States/Mexico border region [J]. Journal of Hazardous Materials, 2009, 163(2/3): 946-958. [51] SAWICKI E. Analysis for airborne particulate hydrocarbons: Their relative proportions as affected by different types of pollution [J]. National Cancer Institute Monograph, 1962, 9: 201-220. [52] WANG X, PU W, ZHANG X Y, et al. Water-soluble ions and trace elements in surface snow and their potential source regions across northeastern China [J]. Atmospheric Environment, 2015, 114: 57-65. doi: 10.1016/j.atmosenv.2015.05.012 [53] 王琼真. 亚洲沙尘长途传输中与典型大气污染物的混合和相互作用及其对城市空气质量的影响[D]. 上海: 复旦大学, 2012. WANG Q Z. The mixing and interaction of Asian dust with the typical atmospheric pollutants during the long-range transport and its impact on urban air quality[D]. Shanghai: Fudan University, 2012(in Chinese).
[54] TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust [J]. Reviews of Geophysics, 1995, 33(2): 241. doi: 10.1029/95RG00262 [55] 李星谕, 毛瑶, 陈展乐, 等. 华中地区冬季灰霾天气下PM2.5中重金属污染特征及健康风险评价: 以湖北黄冈为例 [J]. 环境科学, 2021, 42(10): 4593-4601. LI X Y, MAO Y, CHEN Z L, et al. Characteristics and health risk assessment of heavy metals in PM2.5 under winter haze conditions in central China: A case study of Huanggang, Hubei Province [J]. Environmental Science, 2021, 42(10): 4593-4601(in Chinese).
[56] 田莎莎. 济南市秋冬季不同污染程度下PM2.5组分特征及来源解析[D]. 天津: 天津师范大学, 2019. TIAN S S. Characteristics and source apportionment of PM2.5 components in different pollution levels of autumn and winter in Jinan[D]. Tianjin: Tianjin Normal University, 2019(in Chinese).
[57] PANG N N, GAO J, ZHU G H, et al. Impact of clean air action on the PM2.5 pollution in Beijing, China: Insights gained from two heating seasons measurements [J]. Chemosphere, 2021, 263: 127991. doi: 10.1016/j.chemosphere.2020.127991