-
传统阻燃剂多溴二苯醚(PBDEs)由于持久性、生物毒性、生物积累性以及长距离迁移性,在全球范围内被禁止生产和使用[1]. 新型溴代阻燃剂(NBFRs)属于添加型阻燃剂,作为PBDEs的优良替代品被广泛用于电子产品生产、建筑业和纺织业中[2]. 常见的NBFRs有十溴二苯基乙烷(DBDPE),五溴苯(PBBz)和五溴甲苯(PBT)等. 值得注意的是,2005年我国开始生产DBDPE,但其产量以每年80%的速度增长,成为在中国最受欢迎的NBFRs[3]. 近年来,随着NBFRs的用量增多,大量NBFRs在灰尘[4]、土壤[5]、母乳[6]、血清[7]等介质中被检出. NBFRs可以通过呼吸、饮食和皮肤接触等途径进入人体,从而带来潜在健康危害. 动物实验的研究表明,DBDPE可通过增加斑马鱼幼鱼体内三碘甲状腺原氨酸和甲状腺素的含量,破坏甲状腺激素功能[8]. DBDPE也可在内分泌系统积累,从而对大鼠的生殖功能[9]、肝脏[10]和心血管系统[11]产生毒害作用. 流行病学数据表明,人体血清中五溴乙苯(PBEB)、DBDPE水平与甲状腺激素显著相关,PBT、1, 2-双(2,4,6-三溴苯氧基)乙烷(BTBPE)水平与肝损伤指标显著相关[12].
目前NBFRs主要使用气相色谱-三重四极杆串联质谱法(GC-MS/MS)检测,搭配负化学离子源(NCI)或电子轰击离子源(EI)分析. 但分析方法仍存在难点,由于GC-EI-MS/MS方法灵敏度较低,难以分析高溴代的NBFRs[13];GC-NCI-MS/MS虽然灵敏度较高,但选择性差,难以分离同位素标记的化合物及其单体,且基质复杂的样品会严重影响测试效果[2].
血清是评估人体内暴露的重要生物标志物. 目前对于血清中NBFRs的研究相对较少,并且人体血清的NBFRs检测存在着含量低、样品量少、前处理程序繁琐和基质复杂等问题,给NBFRs的分析带来了挑战. 因此,建立高效灵敏的NBFRs分析方法以评估其潜在的毒性和未知的健康风险尤为迫切. 基于EI源和MRM模式的GC-MS/MS方法具有较好的选择性,在分析复杂基质时具有明显优势,本研究使用GC-MS/MS同时测定9种NBFRs,并优化了人体血清样品中NBFRs的前处理方法. 该方法较好地解决了高溴代阻燃剂响应低、高温条件易降解等难点问题,为研究血清中NBFRs的浓度水平提供技术支持.
气相色谱-三重四极杆质谱法测定人体血清中新型溴代阻燃剂
Determination of novel brominated flame retardants in human serum by gas chromatography-triple quadrupole mass spectrometry
-
摘要: 新型溴代阻燃剂(NBFRs)作为多溴二苯醚(PBDEs)的替代品,具有优良的防火性能. 但有研究发现,NBFRs可能存在神经毒性和发育毒性等作用,从而对人体造成潜在的健康风险. 血清作为人体内暴露的重要生物标志物,对评估健康风险具有重要意义. 目前关于人体血清中NBFRs的健康风险研究较少,且血清中NBFRs含量低,前处理程序繁琐,基质复杂,给NBFRs的分析检测带来了很大困难. 本研究建立并优化了人体血清中五溴苯(PBBz)、五溴甲苯(PBT)及十溴二苯基乙烷(DBDPE)等9种NBFRs的前处理,及气相色谱-三重四极杆质谱检测方法. 血清样品经乙酸乙酯提取后,再经HLB固相萃取柱和弗罗里土-硅胶复合柱净化. 采用电子轰击离子源(EI)和多反应监测(MRM)模式进行仪器分析. 实验结果表明,血清样品中9种NBFRs的平均加标回收率在74%—136%之间,相对标准偏差小于21%. 实际血清样品测试发现,内标物的回收率稳定在72%—126%之间,具有良好的检测效果. 该方法前处理流程简单、稳定性好、灵敏度高,能广泛用于人体血清中NBFRs的分析.
-
关键词:
- 新型溴代阻燃剂 /
- 人体血清 /
- 气相色谱-三重四极杆质谱.
Abstract: Novel brominated flame retardants (NBFRs) are considered as the commercial replacements for polybrominated diphenyl ethers (PBDEs). The potential neurotoxicity and developmental toxicity of NBFRs could cause adversely effects to human health. Serum is regarded as an important biomarker for human exposure, which presented great significance in assessing human health risks. Few studies reported the health risks of NBFRs in human serum. The analysis and detection of NBFRs were limited by the low concentration, complicated pretreatment processes and matrix effect. In this study, gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) was established and optimized to detected the 9 NBFRs, mainly including pentabromobenzene (PBBz), pentabromotoluene (PBT) and decabromodiphenylethane (DBDPE). Serum samples were extracted by ethyl acetate, then cleaned up with HLB solid phase extraction column and Florisil-silica composite column. Electron impact (EI) ion source and multiple reaction monitoring (MRM) mode were applied for instrumental analysis. The average recoveries of the 9 NBFRs in serum samples were between 74% and 136%, and the relative standard deviation was less than 21%. Actual serum samples were collected to detect the 9 NBFRs, and the average recoveries of the internal standards ranged from 72% to 126%, which showed satisfactory performance. The developed methodology presented simple procedures, excellent stability and notable sensitivity, which was an efficient approach for the analysis of NBFRs in human serum.-
Key words:
- novel brominated flame retardants /
- human serum /
- GC-MS/MS.
-
表 1 9种NBFRs的名称、IUPAC名称、简称、分子式、相对分子质量和CAS号
Table 1. Chemical names, IUPAC names, abbreviations, molecular formula, relative molecular mass and CAS No. of 9 NBFRs
名称
Chemical namesIUPAC 名称
IUPAC names简称
Abbreviations分子式
Molecular formula相对分子质量/ (g·mol−1)
Relative molecular massCAS号
CAS No.五溴苯 1,2,3,4,5-五溴苯 PBBz C6HBr5 472.6 608-90-2 五溴甲苯 1,2,3,4,5-五溴-6-甲苯 PBT C7H3Br5 486.6 87-83-2 五溴乙苯 1,2,3,4,5-五溴-6-乙苯 PBEB C8H5Br5 500.6 85-22-3 2,3-二溴丙基2,4,6-三溴丙基醚 1,3,5-三溴-2-(2,3-二溴丙氧基)苯 DPTE C9H7Br5O 530.7 35109-60-5 六溴苯 1,2,3,4,5,6-六溴苯 HBBz C6Br6 551.5 87-82-1 乙基己基四溴苯甲酸酯 2-乙基己基-2,3,4,5-四溴苯甲酸酯 EHTBB C15H18Br4O2 549.9 183658-27-7 1,2-双(2,4,6-三溴苯氧基)乙烷 1,3,5-三溴-2-[2-(2,4,6-
三溴苯氧基)乙氧基]苯BTBPE C14H8Br6O2 687.6 37853-59-1 双(2-乙基己基)四溴邻苯二甲酸酯 双(2-乙基己基) 3,4,5,6-四溴苯-
1,2-二羧酸盐BEHTEBP C24H34Br4O4 706.1 26040-51-7 十溴二苯基乙烷 1,2,3,4,5-五溴-6-[2-(2,3,4,5,6-五溴苯基)乙基]苯 DBDPE C14H4Br10 971.2 84852-53-9 表 2 9种NBFRs的质谱条件
Table 2. Mass spectrometry parameters of the 9 NBFRs
化合物
Compound保留时间/min
Retention time定量离子对
Quantitative ion碰撞电压/eV
Collision energy定性离子对
Qualitative ion碰撞电压/eV
Collision energyPBBz 4.574 392.80>311.70 15 473.70>313.60 42 PBT 5.109 487.70>406.60 18 406.80>246.80 33 PBEB 5.262 499.70>484.40 18 501.70>486.50 21 DPTE 5.580 330.00>141.00 36 330.00>221.90 30 HBBz 5.648 391.80>231.80 39 551.50>473.00 30 EHTBB 6.511 420.80>392.50 21 437.80>420.50 24 BTBPE 7.800 687.60>358.90 9 356.70>198.20 30 BEHTEBP 8.029 464.60>380.60 42 466.60>382.30 33 DBDPE 11.658 971.30>484.80 36 486.50>324.80 45 表 3 9种NBFRs的相对标准偏差、相关系数、方法检出限
Table 3. Relative standard deviation, correlation coefficients, method limit of detection (MDL) of the 9 NBFRs
化合物
CompoundRSD/% 相关系数(R2)
Correlation coefficients方法检出限/ (ng·mL−1)
MDLPBBz 3.2 0.9997 0.13 PBT 2.2 0.9998 0.07 PBEB 5.4 0.9997 0.06 DPTE 8.3 0.9998 0.15 HBBz 6.8 0.9999 0.20 EHTBB 0.4 0.9983 0.09 BTBPE 11.9 0.9996 0.24 BEHTEBP 10.4 0.9996 0.35 DBDPE 9.9 0.9988 0.09 表 4 9种NBFRs的基质加标回收率(n=3)
Table 4. Matrix spiked recoveries of the 9 NBFRs (n=3)
化合物
Compound绝对量 0.05 ng
Spiked 0.05 ng绝对量 0.2 ng
Spiked 0.2 ng绝对量 1 ng
Spiked 1 ng回收率/%
RecoveryRSD/% 回收率/%
RecoveryRSD/% 回收率/%
RecoveryRSD/% PBBz 102 3.2 88 6.2 94 4.1 PBT 86 3.7 85 4.9 79 2.6 PBEB 88 9.6 83 2.6 74 0.9 DPTE 123 2.6 120 5.5 106 3.5 HBBz 97 4.0 94 3.4 91 5.2 EHTBB 129 3.2 125 8.1 109 11.3 BTBPE 86 20.3 95 4.0 89 16.8 BEHTEBP 136 7.0 128 12.9 126 4.8 DBDPE 109 10.9 115 3.5 101 17.2 表 5 人体血清样品测试结果 (ng·mL−1)
Table 5. Results of human serum samples
化合物
Compound1 2 3 4 5 6 7 8 9 10 11 12 PBBz ND ND ND ND ND ND ND ND ND ND ND ND PBT ND ND ND ND ND ND ND ND ND ND ND ND PBEB ND ND ND ND ND ND ND ND ND ND ND ND DPTE ND ND ND ND ND ND ND ND ND ND ND ND HBBz ND ND ND ND ND ND ND ND ND ND ND ND EHTBB ND ND ND ND ND ND ND ND ND ND ND ND BTBPE ND ND ND ND ND ND ND ND ND ND ND ND BEHTEBP ND ND ND ND ND ND ND ND ND ND ND ND DBDPE 1.298 1.012 0.135 0.034 0.419 0.346 0.085 0.056 0.464 0.187 0.286 0.281 BDE-77 Recovery/% 85 78 90 87 93 85 96 92 72 85 84 85 BDE-138 Recovery/% 109 99 116 110 102 101 106 105 95 98 99 97 13C-DBDPE Recovery/% 117 95 126 80 74 73 100 75 94 88 90 77 ND:未检出. ND: Not detected. -
[1] SALAMOVA A, HERMANSON M H, HITES R A. Organophosphate and halogenated flame retardants in atmospheric particles from a European Arctic site [J]. Environmental Science & Technology, 2014, 48(11): 6133-6140. [2] WANG Y W, SUN Y M, CHEN T, et al. Determination of polybrominated diphenyl ethers and novel brominated flame retardants in human serum by gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry [J]. Journal of Chromatography B, 2018, 1099: 64-72. doi: 10.1016/j.jchromb.2018.09.015 [3] SHI Z X, ZHANG L, LI J G, et al. Legacy and emerging brominated flame retardants in China: A review on food and human milk contamination, human dietary exposure and risk assessment [J]. Chemosphere, 2018, 198: 522-536. doi: 10.1016/j.chemosphere.2018.01.161 [4] WANG J D, WANG Y W, SHI Z X, et al. Legacy and novel brominated flame retardants in indoor dust from Beijing, China: Occurrence, human exposure assessment and evidence for PBDEs replacement [J]. Science of the Total Environment, 2018, 618: 48-59. doi: 10.1016/j.scitotenv.2017.11.049 [5] XIAN H, HAO Y F, LV J Y, et al. Novel brominated flame retardants (NBFRs) in soil and moss in Mt. Shergyla, southeast Tibetan Plateau: Occurrence, distribution and influencing factors [J]. Environmental Pollution, 2021, 291: 118252. doi: 10.1016/j.envpol.2021.118252 [6] CHEN T, HUANG M R, LI J, et al. Polybrominated diphenyl ethers and novel brominated flame retardants in human milk from the general population in Beijing, China: Occurrence, temporal trends, nursing infants' exposure and risk assessment [J]. Science of the Total Environment, 2019, 689: 278-286. doi: 10.1016/j.scitotenv.2019.06.442 [7] ALI N, MEHDI T, MALIK R N, et al. Levels and profile of several classes of organic contaminants in matched indoor dust and serum samples from occupational settings of Pakistan [J]. Environmental Pollution, 2014, 193: 269-276. doi: 10.1016/j.envpol.2014.07.009 [8] WANG X C, LING S Y, GUAN K L, et al. Bioconcentration, biotransformation, and thyroid endocrine disruption of decabromodiphenyl ethane (DBDPE), A novel brominated flame retardant, in zebrafish larvae [J]. Environmental Science & Technology, 2019, 53(14): 8437-8446. [9] LI X Y, LIU J H, ZHOU G Q, et al. BDE-209 and DBDPE induce male reproductive toxicity through telomere-related cell senescence and apoptosis in SD rat [J]. Environment International, 2021, 146: 106307. doi: 10.1016/j.envint.2020.106307 [10] SUN Y M, WANG Y W, LIANG B L, et al. Hepatotoxicity of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (BDE-209) in 28-day exposed sprague-dawley rats [J]. Science of the Total Environment, 2020, 705: 135783. doi: 10.1016/j.scitotenv.2019.135783 [11] JING L, SUN Y M, WANG Y W, et al. Cardiovascular toxicity of decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats [J]. Chemosphere, 2019, 223: 675-685. doi: 10.1016/j.chemosphere.2019.02.115 [12] ZHAO X Z, CHEN T, YANG B, et al. Serum levels of novel brominated flame retardants (NBFRs) in residents of a major BFR-producing region: Occurrence, impact factors and the relationship to thyroid and liver function [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111467. doi: 10.1016/j.ecoenv.2020.111467 [13] LI J, CHEN T, WANG Y W, et al. Simple and fast analysis of tetrabromobisphenol A, hexabromocyclododecane isomers, and polybrominated diphenyl ethers in serum using solid-phase extraction or QuEChERS extraction followed by tandem mass spectrometry coupled to HPLC and GC [J]. Journal of Separation Science, 2017, 40(3): 709-716. doi: 10.1002/jssc.201600969 [14] ZHAO J P, WANG P, WANG C, et al. Novel brominated flame retardants in West Antarctic atmosphere (2011-2018): Temporal trends, sources and chiral signature [J]. Science of the Total Environment, 2020, 720: 137557. doi: 10.1016/j.scitotenv.2020.137557 [15] HAN X, MENG L L, LI Y M, et al. Associations between exposure to persistent organic pollutants and thyroid function in a case-control study of East China [J]. Environmental Science & Technology, 2019, 53(16): 9866-9875. [16] 中华人民共和国生态环境部. 环境监测分析方法标准制订技术导则: HJ 168—2020[S]. 北京: 中国环境科学出版社, 2020. Ministry of Ecology and Environment of the People's Republic of China. Technical guideline for the development of environmental monitoring analytical method standards: HJ 168—2020[S]. Beijing: China Environment Science Press, 2020 (in Chinese).
[17] LIANG S, XU F, TANG W B, et al. Brominated flame retardants in the hair and serum samples from an e-waste recycling area in southeastern China: The possibility of using hair for biomonitoring [J]. Environmental Science and Pollution Research International, 2016, 23(15): 14889-14897. doi: 10.1007/s11356-016-6491-x [18] CEQUIER E, MARCÉ R M, BECHER G, et al. Determination of emerging halogenated flame retardants and polybrominated diphenyl ethers in serum by gas chromatography mass spectrometry [J]. Journal of Chromatography A, 2013, 1310: 126-132. doi: 10.1016/j.chroma.2013.08.067