-
新型有机污染物(emerging organic contaminants, EOCs)指环境中新出现或最近引起关注,可能对生态系统和人体健康产生风险,管理措施不足或尚未纳入管理的有机污染物[1-4]. 主要包括药品和个人护理品(pharmaceuticals and personal care products, PPCP)、阻燃剂(flame retardant)、塑化剂(plasticizers)、杀虫剂,激素、表面活性剂等[3,5]. 这些EOCs在日常生活和工业生产中被频繁使用并广泛存在,如多溴联苯醚(polybrominated diphenyl ethers, PBDEs)是一种典型的溴代阻燃剂,具有阻燃效果好、生产成本低等特点,曾是应用最广泛的阻燃剂[6]. 近些年研究发现其具有环境持久性、生物累积性和生物毒性,目前已在全球范围内被禁用,并逐渐被有机磷酸酯阻燃剂(organophosphate flame retardants, OPFRs)取代[6—7]. 邻苯二甲酸酯(phthalic acid esters, PAEs)具有可塑性、耐久性,能够提高材料强度和透明度等优点[7—8],是一种常用的塑料添加剂,进入人体后经代谢转化可形成单酯或单酯的氧化产物即邻苯二甲酸酯代谢物(phthalate metabolites,mPAEs). 全氟及多氟烷基化合物(per-fluorinatedand polyfluoroalkyl compounds,PFASs)具有化学及热稳定性[9]、高表面活性及疏水疏油性[10]等特点,结构中含有极其稳定的C—F键,不易发生热解、光解、水解和生物降解,具有较强的生物蓄积性[11]. 上述化合物常以非化学键或直接添加的形式在塑料、建材、食品包装材料、电子设备、玩具、化妆品、农药、纸张、地毯、纺织品、家具等产品中被广泛使用[9,12—15],因而容易在产品生产、使用及回收处理过程经磨损、挥发等途径释放到环境中[16]. 目前已在土壤[17]、水体[18]、室内灰尘[19]等环境介质以及鱼[20]、蛋[21]等日常食品中被广泛检出,并可通过食物摄入、呼吸吸入和皮肤接触等途径进入人体,如血液、尿液、母乳、指甲等人体样品中已有关于PBDEs、PFASs、OPFRs、PAEs以及mPAEs检出的报道[22—26]. 同时研究发现这些EOCs能够导致人体内分泌紊乱,具有神经毒性、生殖毒性、内分泌毒性和致癌性等[27—28].
相较于血液、尿液、母乳等传统生物基质,头发具有采集方便、易储存、非侵入性采样、易被采集对象接纳等优点,常做为生物监测材料用于法医、毒品、重金属及有机污染物等研究,反映人体长期暴露情况. 尽管目前已有多篇文献报道了关于头发中EOCs检测方法[11, 29—31],但能够同时分析头发中多种EOCs的研究较为缺乏. 现有文献多采用硝酸消解的方法检测头发中的PBDEs、OPFRs和PAEs等污染物[6, 32—34],PFASs则多使用碱消解[35]. 两种消解方式存在费时、耗费溶剂、缺乏安全性等缺点. 此外有研究显示,酸/碱消解破坏头发结构的同时释放的一些内源性物质可能会影响头发中目标污染物如PFASs[11]的检测,具有一定局限性;相比之下,头发研磨后经有机溶剂萃取,能够更准确的反映头发中PFASs的污染水平[11, 36-37],然而该方法是否同样适用于其他种类的EOCs目前还缺少相关的文献报道.
因此,本研究在以往研究的基础上,通过优化有机萃取溶剂和分散固相萃取剂种类,建立了仅用少量头发样品(0.1 g)和有机溶剂即可同时检测头发中15种PAEs、12种PFASs、11种OPFRs、8种mPAEs及8种PBDEs共5大类54种EOCs的前处理方法,该方法节约溶剂且更为安全快速,同时采用本研究建立的前处理方法,分析了广州市10例普通男性头发中5类有机污染物的浓度水平.
头发中多种新型有机污染物检测方法的建立
The establishment of a new method for the detection of emerging organic contaminants in hair
-
摘要: 本研究基于超声提取-分散固相萃取技术,建立了同时分析头发中多溴联苯醚(PBDEs)、有机磷系阻燃剂(OPFRs)、全氟及多氟烷基化合物(PFASs)、邻苯二甲酸酯(PAEs)及其代谢物(mPAEs)等5类有机污染物的前处理方法. 头发样品(0.1 g)研磨成粉/絮状后经4 mL正己烷 : 丙酮 : 乙酸乙酯 : 乙腈(1 : 1 : 1 : 1,V/V/V/V)混合溶液提取3次,加入20 mg无水硫酸钠(Na2SO4)和100 mg十八烷基硅烷键合硅胶(C18)净化除杂,氮吹浓缩后分别采用GC-MS、GC-MS/MS和LC-MS/MS进行分析. 实验采用内标法定量,所有目标化合物在其相应的质量浓度范围内线性关系良好,相关性系数大于0.995;5类化合物检出限介于0.042—364.7 ng·g−1,加标回收率在53.6%—138%之间,相对标准差及日内/间精密度均小于20%. 采用该方法对广州市10例男性头发进行了检测,所有样品均检出全氟辛烷磺酸(PFOS)、邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DNBP)、邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸单异丁酯(miBP)、邻苯二甲酸单(2-乙基己基)酯(mEHP)、磷酸三苯酯(TPHP)、磷酸三(2-乙基己基)酯(TEHP)、2-乙基己基二苯基磷酸酯(EHDPP)、磷酸三(2-氯乙基)酯(TCEP)、磷酸三(2-氯丙基)酯(TCIPP)及十溴联苯醚(BDE 209),检出浓度介于1.09 —4951 ng·g−1之间. 该方法简单安全,有较高灵敏度和精确度,仅用少量样品和有机溶剂即可同步分析头发多种痕量新型有机污染物,可为人体多种有机污染物长期暴露研究提供技术参考.Abstract: In this study, a pretreatment method was established for the simultaneous analysis of polybrominated diphenyl ethers (PBDEs), organophosphorus flame retardants (OPFRs), perfluorinated and polyfluorinated alkyl compounds (PFASs), phthalate esters (PAEs) and their metabolites (mPAEs) in human hair based on ultrasonic extraction-dispersed solid phase extraction. Hair sample (0.1 g) was ground into powder/flocculent and then extracted with 4 mL hexane: acetone: ethyl acetate: acetonitrile (1:1:1:1, V/V/V/V) for three times, and 20 mg anhydrous sodium sulfate (Na2SO4) and 100 mg octadecyl bonded silica (C18) were added to purify and remove impurities. The extract was concentrated and reconstituted, and the target chemicals were analyzed by using GC-MS, GC-MS/MS and LC-MS/MS, respectively. The linearity of individual target chemicals was good in the corresponding concentration range, with correlation coefficient higher than 0.995. The detection limits of the target chemicals were 0.042—364.7 ng·g−1, the recoveries were 53.6%—138%, and the relative standard deviation and the intraday and interday precision were less than 20%. The developed method was applied to analyze target chemicals in 10 male hair samples. Perfluorooctane sulfonic acid (PFOS), dimethyl phthalate (DMP), diethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-N-butyl phthalate (DNBP), dis(2-ethyl)hexyl phthalate (DEHP), mono-isobutyl phthalate (miBP), mono-(2-ethylhexyl) phthalate (mEHP), triphenyl phosphate (TPHP), tri2-ethylhexyl phosphate (TEHP), 2-ethylhexyl diphenyl phosphate (EHDPP), tri (2-chloroethyl) phosphate (TCEP), tri (2-chloropropyl) phosphate (TCIPP) and decabromodiphenyl ether (BDE 209) were detected in all samples, with concentrations as 1.09—4951 ng·g−1. Only a small amount of hair sample and low volume of organic solvents were needed to simultaneously analyze a variety of trace emerging organic contaminants in hair, which can provide technical support for the study of long-term exposure to a variety of organic pollutants in human body.
-
表 1 目标化合物及内标标准品信息
Table 1. The information of target chemicals and internal standards
目标化合物
Target chemicals内标
Internal standards目标化合物
Target chemicals内标
Internal standards目标化合物
Target chemicals内标
Internal standards目标化合物
Target chemicals内标
Internal standards目标化合物
Target chemicals内标
Internal standardsPAEs PFASs OPFRs mPAEs PBDEs 邻苯二甲酸二甲酯(DMP)
d4-邻苯二甲酸二丁酯(d4-DNBP)全氟庚酸(PFHpA)
13C12-全氟辛酸(MPFOA)磷酸三苯酯(TPHP) d15-磷酸三苯酯(d15-TPHP) 邻苯二甲酸单(2-乙基-5-羟基己基)酯(5OH-MEHP) 13C4-邻苯二甲酸单2-乙基-5-羟基己基酯(13C4-5OH-mEHP) 2,4,4-三溴联苯醚(BDE28) 2,3',4,4',5-五溴联苯醚(BDE118) 邻苯二甲酸二乙酯(DEP) 全氟辛酸(PFOA) 磷酸三异丙酯(TIPRP) d18-三(2-氯丙基)磷酸酯(d18-TCIPP) 邻苯二甲酸单(2-乙氧-5-氧己基)酯(5Oxo-MEHP) 邻苯二甲酸单(2-乙氧-5-氧己基)酯-13C4,(5Oxo-MEHP-13C4) 2,2',4,4'-四溴联苯醚(BDE47) 邻苯二甲酸二异丁酯(DIBP) 全氟壬酸(PFNA) 磷酸三乙酯(TEP) d12-三(2-氯乙基)磷酸酯(d12-TCEP) 邻苯二甲酸单(2-乙基己基)酯(mEHP) 邻苯二甲酸单(2-乙基己基)酯-13C4(mEHP-13C4) 2,2',4,4',5-五溴联苯醚(BDE99) 邻苯二甲酸二丁酯(DNBP) 全氟癸酸(PFDA) 磷酸三丁酯(TNBP) d15-磷酸三苯酯(d15-TPHP) 邻苯二甲酸单乙酯(mEP) 13C4-邻苯二甲酸单乙酯(13C4-mEP) 2,2',4,4',6-五溴联苯醚(BDE100) 邻苯二甲酸二甲氧乙酯(DMEP) 全氟十一烷酸(PFUdA) 13C12-全氟辛烷磺酸(MPFOS) 磷酸三(2-丁氧乙基)酯(TBOEP) 邻苯二甲酸单辛基乙酯(mnOP) d4-邻苯二甲酸单辛酯(d4-mnOP) 2,2',4,4',5,5'-六溴联苯醚(BDE153) 2,2',3,3',4,4'-六溴联苯醚(BDE128) 邻苯二甲酸二-4-甲基-2-戊基酯(DMPP) 全氟十二烷酸(PFDoA) 磷酸三2-乙基己基酯(TEHP) 邻苯二甲酸单苄基酯(mBzP) 13C4-邻苯二甲酸单苄基酯(13C4-mBzP) 2,2',4,4',5,6'-六溴联苯醚(BDE154) 邻苯二甲酸双-2-乙氧基乙酯(DEEP) 全氟十三烷酸(PFTrDA) 13C12-全氟辛酸(MPFOA) 2-乙基己基二苯基磷酸酯(EHDPP) 邻苯二甲酸单异壬酯(minP) d4-邻苯二甲酸单辛酯(d4-mnOP) 2,2',3,4,4',5',6-七溴联苯醚(BDE183) 邻苯二甲酸二戊酯(DPP) 全氟十四烷酸(PFTeDA) 磷酸三(2-氯乙基)酯(TCEP) d12-三(2-氯乙基)磷酸酯(d12-TCEP) 邻苯二甲酸单异丁酯(miBP) 13C4-邻苯二甲酸单正丁酯(13C4-mnBP) 十溴联苯醚(BDE209) 13C12-十溴联苯醚(13C12-BDE209) 邻苯二甲酸二己酯(DHP) 全氟丁烷磺酸盐(PFBS) 13C12-全氟辛烷磺酸(MPFOS) 磷酸三(2-氯丙基)酯(TCIPP) d18-三(2-氯丙基)磷酸酯(d18-TCIPP) 邻苯二甲酸丁苄酯(BBP) 全氟己烷磺酸盐(PFHxS) 三(1,3-二氯-2-丙基)磷酸酯(TDCIPP) d15-三(1,3-二氯-2-丙基)磷酸酯(d15-TDCIPP) 邻苯二甲酸二(2-丁氧基)乙酯(BBEP) 全氟辛烷磺酸(PFOS) 磷酸三甲苯酯(TCP) 邻苯二甲酸二(2-乙基)己酯(DEHP) 全氟癸烷磺酸盐(PFDS) 邻苯二甲酸二苯酯(DPHP) 邻苯二甲酸二正辛酯(DOP) 邻苯二甲酸二壬酯(DNP) 表 2 OPFRs、PFASs及mPAEs的液相色谱和质谱参数
Table 2. Liquid chromatography and mass spectrometry parameters of OPFRs, PFASs and mPAEs
分析条件
Analytical ConditionsOPFRs PFASs mPAEs
色谱条件
(流动相、洗脱梯度)
Chromatographic conditions
(Mobile phase, elution gradient)A:甲醇,B:0.01 mol·L−1乙酸铵溶液;
0—0.1 min:65% B
0.1—9 min:65%—5% B
9—13 min:5%—0% B
13—14 min:0% B
14—15.1 min:0%—65% B
15.1—20 min:65% B
柱温40 ℃,流速250 μL·min−1A:乙腈,B:0.01 mol·L−1乙酸铵溶液;
0—1 min:20% A
1—8 min:20%—100% A
8—12.5 min:100% A
12.5—13 min:100%—20% A
13—18 min:20% A
柱温50 ℃,流速300 μL·min−1A:乙腈,B:0.1%甲酸水溶液,
0—12 min:15%—45% A
12—15 min:45% A
15—19 min:45%—98% A
19-21 min:98% A
21—21.1 min:98%—15% A
21.1-25 min:15% A
柱温40 ℃,流速300 μL·min−1质谱条件
Mass spectrometry conditions正离子扫描方式;毛细管电压:4000 V;气体(N2)温度:550 ℃ 负离子扫描方式,离子喷雾电压为-4500 V,离子源温度为450℃ 负离子扫描方式,离子喷雾电压4000 V,气体(N2)温度350℃ 表 3 有机提取溶剂和分散固相萃取填料的4种前处理方案
Table 3. Four pretreatment schemes of organic extraction solvent and dispersed solid phase extraction filler
方案
Scheme有机提取溶剂
Organic extraction solvent分散固相萃取剂
Disperse solid phase extractant1 ACE,HEX,MTBE 无水MgSO4,PSA,C18 2 ACE,HEX,MTBE 无水Na2SO4,C18 3 EtAC,HEX,MTBE 4 EtAC,HEX,ACN,ACE 表 4 目标化合物相关系数(R)、定量限(LOQ)及检出限(LOD)(ng·g−1)
Table 4. Correlation coefficient (R), Limit of Quantification (LOQ) and Limit of Detection (LOD) of target chemicals
目标物
Target chemicals相关系数
(R)定量限
(LOQ)检出限
(LOD)目标物
Target chemicals相关系数
(R)定量限
(LOQ)检出限
(LOD)PAEs PFASs DMP 0.999 20.98 6.294 PFHpA 0.997 2.429 0.729 DEP 0.999 32.35 9.705 PFOA 0.998 1.788 0.537 DIBP 0.995 1215 364.7 PFNA 0.997 1.208 0.362 DNBP 0.998 856.0 256.8 PFDA 0.997 0.816 0.245 DMEP 0.998 15.11 4.533 PFUdA 0.996 0.668 0.200 DMPP 0.999 1.996 0.599 PFDoA 0.999 0.344 0.103 DEEP 0.997 17.29 5.186 PFTrDA 0.997 1.098 0.329 DPP 0.997 0.581 0.174 PFTeDA 0.997 1.457 0.437 DHP 0.999 0.297 0.089 PFBS 0.999 0.152 0.045 BBP 0.999 0.690 0.207 PFHxS 0.998 0.140 0.042 BBEP 0.999 1.129 0.339 PFOS 0.999 0.377 0.113 DEHP 0.997 1074 322.2 PFDS 0.997 0.457 0.137 DPHP 0.999 0.159 0.048 DOP 0.999 0.629 0.189 DNP 0.996 12.89 3.866 OPFRs mPAEs TPHP 0.995 1.044 0.313 5OH-MEHP 0.998 3.249 0.975 TIPRP 0.998 0.187 0.056 5Oxo-MEHP 0.998 0.146 0.044 TEP 0.999 0.574 0.172 mEHP 0.998 48.16 14.45 TNBP 0.995 17.12 5.135 mEP 0.999 2.874 0.862 TBOEP 0.997 1.280 0.384 mnOP 0.998 0.574 0.172 TEHP 0.999 4.726 1.575 mBzP 0.998 0.315 0.095 EHDPP 0.996 3.822 1.147 miNP 0.998 0.465 0.139 TCEP 0.999 12.44 3.731 miBP 0.997 21.79 6.538 TCIPP 0.998 6.327 1.898 TDCIPP 0.999 32.51 9.752 TCP 0.998 22.59 6.776 PBDEs PBDEs BDE 28 0.997 1.546 0.464 BDE 153 0.999 0.513 0.154 BDE 47 0.996 7.813 2.344 BDE 154 0.999 4.673 1.402 BDE 99 0.999 2.179 0.654 BDE 183 0.999 3.419 1.026 BDE 100 0.999 1.783 0.535 BDE 209 0.999 1.506 0.452 表 5 目标化合物的基质加标回收率±相对标准差及精密度(%)
Table 5. Matrix spiked recoveries, relative standard deviations and precisions of target chemicals
目标物
Target
chemicals回收率/%
(Rec.±RSD)
Recoveries日内精密度/%
Intraday
precisions日间精密度/%
Interday
precisions目标物
Target
chemicals回收率/%
(Rec.±RSD)
Recoveries日内精密度/%
Intraday
precisions日间精密度/%
Interday
precisionsPAEs PFASs DMP 91.0±0.47 2.19 3.86 PFHpA 53.6±0.94 10.4 11.1 DEP 93.1±0.50 1.99 2.63 PFOA 61.4±2.19 9.75 11.5 DIBP 106±1.11 2.58 9.14 PFNA 76.6±0.08 4.90 5.51 DNBP 126±16.0 1.87 2.41 PFDA 71.1±0.30 3.55 11.7 DMEP 98.5±4.04 3.43 9.66 PFUdA 69.8±0.01 1.95 2.98 DMPP 98.9±1.45 2.11 15.5 PFDoA 74.7±6.78 1.47 3.09 DEEP 96.2±3.85 5.09 13.7 PFTrDA 58.6±3.37 2.02 3.01 DPP 89.1±1.99 4.12 13.3 PFTeDA 74.4±8.36 2.69 2.47 DHP 105±3.70 7.89 14.3 PFBS 98.2±9.26 2.93 3.58 BBP 107±4.10 5.72 13.9 PFHxS 84.7±0.51 4.38 4.23 BBEP 102±0.45 3.34 10.1 PFOS 84.1±0.12 3.11 2.86 DEHP 88.3±4.70 4.01 3.91 PFDS 86.3±1.00 3.96 3.75 DPHP 133±3.67 7.12 14.1 DOP 116±5.20 17.1 14.6 DNP 93.5±0.44 17.7 16.7 mPAEs OPFRs 5OH-MEHP 104±2.47 2.77 7.42 TPHP 138±1.71 3.53 6.07 5Oxo-MEHP 127±1.30 3.08 11.2 TIPRP 120±1.93 2.59 1.31 mEHP 122±3.21 4.84 7.23 TEP 87.4±3.52 5.88 3.16 mEP 106±12.4 8.24 9.32 TNBP 86.8±9.29 6.24 4.64 mnOP 97.2±2.20 5.07 8.89 TBOEP 69.8±2.41 3.42 4.23 mBzP 107±0.81 3.72 8.37 TEHP 132±6.31 3.25 5.90 miNP 133±0.72 2.44 2.00 EHDPP 54.7±0.42 5.40 10.4 miBP 104±12.6 6.22 6.88 TCEP 83.3±1.18 3.27 5.85 TCIPP 101±1.60 2.22 0.66 TDCIPP 65.2±2.04 1.53 1.20 TCP 67.7±8.31 2.16 0.64 PBDEs PBDEs BDE 28 127±0.47 2.07 5.76 BDE 153 105±1.85 5.91 10.2 BDE 47 104±0.45 0.66 5.66 BDE 154 104±1.97 4.28 9.02 BDE 99 111±1.68 0.89 4.94 BDE 183 98.4±0.38 5.41 8.02 BDE 100 112±3.82 4.58 6.26 BDE 209 96.4±0.36 0.18 0.12 表 6 经研磨和消解处理后测得的头发样品中EOCs的检出率和浓度范围
Table 6. Detection frequency and concentration range of EOCs detected by hair samples after grinding and digestion
化合物
Chemicals研磨
Grind消解
Digestion检出率/%
Detection frequency浓度范围/(ng·g−1)
Concentration range检出率/%
Detection frequency浓度范围/(ng·g−1)
Concentration rangeOPFRs TPHP 100 6.32—332 100 20.9—476 TIPRP 0 nd 0 nd TEP 0 nd 0 nd TNBP 30 nd—7.85 55 nd—7.37 TBOEP 60 nd—33.5 33 nd—2.54 TEHP 100 2.69—30.3 100 3.63—30.2 EHDPP 100 8.14—176 100 16.2—174 TCEP 100 6.38—36.6 100 4.04—44.7 TCIPP 100 14.9—132 100 1.38—48.0 TDCIPP 80 nd—390 66 nd—177 TCP 0 nd 0 nd PBDEs BDE 28 0 nd 0 nd BDE 47 0 nd 0 nd BDE 99 0 nd 0 nd BDE 100 0 nd 0 nd BDE 153 0 nd 0 nd BDE 154 0 nd 0 nd BDE 183 0 nd 0 nd BDE 209 100 1.09—36.6 100 0.57—41.4 PFASs PFHpA 30 nd—2.04 0 nd PFOA 70 nd—2.47 0 nd PFNA 60 nd—1.05 0 nd PFDA 30 nd—0.36 0 nd PFUdA 90 nd—0.58 0 nd PFDoA 70 nd—0.24 0 nd PFTrDA 10 nd—0.47 0 nd PFTeDA 30 nd—0.08 0 nd PFBS 0 nd 0 nd PFHxS 0 nd 0 nd PFOS 100 1.40—17.9 0 nd PFDS 0 nd 0 nd PAEs DMP 100 63.9—181 na na DEP 100 127—2593 na na DIBP 100 804—4823 na na DNBP 100 1074—4402 na na DMEP 0 nd na na DMPP 0 nd na na DEEP 0 nd na na DPP 20 nd—334 na na DHP 0 nd na na BBP 0 nd na na BBEP 0 nd na na DEHP 100 326—4951 na na DPHP 20 nd—1.50 na na DOP 0 nd na na DNP 0 nd na na mPAEs 5OH-MEHP 60 nd—4.53 0 nd 5Oxo-MEHP 0 nd 0 nd mEHP 100 27.0—298 0 nd mEP 30 nd—260 0 nd mnOP 0 nd 0 nd mBzP 0 nd 0 nd miNP 0 nd 0 nd miBP 100 15.0—38.6 0 nd 注:nd 未检出;na 未获得. Note: nd, not detected, na, not available. -
[1] PAL A, GIN K Y H, LIN A Y C, et al. Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects [J]. Science of the Total Environment, 2010, 408(24): 6062-6069. doi: 10.1016/j.scitotenv.2010.09.026 [2] LIU B, ZHANG S G, CHANG C C. Emerging pollutants - part II: Treatment [J]. Water Environment Research:a Research Publication of the Water Environment Federation, 2017, 89(10): 1829-1865. doi: 10.2175/106143017X15023776270674 [3] GARCÍA J, GARCÍA-GALÁN M J, DAY J W, et al. A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts [J]. Bioresource Technology, 2020, 307: 123228. doi: 10.1016/j.biortech.2020.123228 [4] ZHONG M M, WANG T L, ZHAO W X, et al. Emerging organic contaminants in Chinese surface water: Identification of priority pollutants [J]. Engineering, 2022, 11: 111-125. doi: 10.1016/j.eng.2020.12.023 [5] ZENG Y Q, PAN W J, DING N, et al. Brominated flame retardants in home dust and its contribution to brominated flame retardants bioaccumulation in children hair [J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2020, 55(13): 1528-1533. [6] LIU L Y, HE K, HITES R A, et al. Hair and nails as noninvasive biomarkers of human exposure to brominated and organophosphate flame retardants [J]. Environmental Science & Technology, 2016, 50(6): 3065-3073. [7] KATSIKANTAMI I, SIFAKIS S, TZATZARAKIS M N, et al. A global assessment of phthalates burden and related links to health effects [J]. Environment International, 2016, 97: 212-236. doi: 10.1016/j.envint.2016.09.013 [8] ZHANG Y, JIAO Y Q, LI Z X, et al. Hazards of phthalates (PAEs) exposure: A review of aquatic animal toxicology studies [J]. Science of the Total Environment, 2021, 771: 145418. doi: 10.1016/j.scitotenv.2021.145418 [9] HOUDE M, MARTIN J W, LETCHER R J, et al. Biological monitoring of polyfluoroalkyl substances: A review [J]. Environmental Science & Technology, 2006, 40(11): 3463-3473. [10] 徐方萍. 传统和新型全氟化合物在室内灰尘和孕妇血浆中污染特征研究[D]. 广州: 暨南大学, 2020. XU F P. Pollution characteristics of legacy and emerging per- and polyfluoroalkyl substances in indoor dust and pregnancy women plasma[D]. Guangzhou: Jinan University, 2020(in Chinese).
[11] LI J G, GUO F F, WANG Y X, et al. Development of extraction methods for the analysis of perfluorinated compounds in human hair and nail by high performance liquid chromatography tandem mass spectrometry [J]. Journal of Chromatography A, 2012, 1219: 54-60. doi: 10.1016/j.chroma.2011.11.015 [12] LIEW Z, GOUDARZI H, OULHOTE Y. Developmental exposures to perfluoroalkyl substances (PFASs): An update of associated health outcomes [J]. Current Environmental Health Reports, 2018, 5(1): 1-19. doi: 10.1007/s40572-018-0173-4 [13] ZHANG W Z, ZHENG X W, GU P, et al. Distribution and risk assessment of phthalates in water and sediment of the Pearl River Delta [J]. Environmental Science and Pollution Research International, 2020, 27(11): 12550-12565. doi: 10.1007/s11356-019-06819-y [14] PENG F J, HARDY E M, BERANGER R, et al. Human exposure to PCBs, PBDEs and bisphenols revealed by hair analysis: A comparison between two adult female populations in China and France [J]. Environmental Pollution, 2020, 267: 115425. doi: 10.1016/j.envpol.2020.115425 [15] 王晓伟, 刘景富, 阴永光. 有机磷酸酯阻燃剂污染现状与研究进展 [J]. 化学进展, 2010, 22(10): 1983-1992. WANG X W, LIU J F, YIN Y G. The pollution status and research progress on organophosphate ester flame retardants [J]. Progress in Chemistry, 2010, 22(10): 1983-1992(in Chinese).
[16] 李珺琪. 北京大学生暴露于室内灰尘中有机阻燃剂状况的研究[D]. 北京: 中央民族大学, 2019. LI J Q. Study on the exposure of Beijing college students to organic flame retardants in indoor dust[D]. Beijing: Central University for Nationalities, 2019(in Chinese).
[17] CHOU T H, OU M H, WU T Y, et al. Temporal and spatial surveys of polybromodiphenyl ethers (PBDEs) contamination of soil near a factory using PBDEs in northern Taiwan [J]. Chemosphere, 2019, 236: 124117. doi: 10.1016/j.chemosphere.2019.06.087 [18] LI B B, HU L X, YANG Y Y, et al. Contamination profiles and health risks of PFASs in groundwater of the Maozhou River Basin [J]. Environmental Pollution, 2020, 260: 113996. doi: 10.1016/j.envpol.2020.113996 [19] HE C, WANG X Y, THAI P, et al. Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure [J]. Environmental Pollution, 2018, 235: 670-679. doi: 10.1016/j.envpol.2017.12.017 [20] XU Y Y, WENG R, LU Y S, et al. Evaluation of phthalic Acid esters in fish samples using gas chromatography tandem mass spectrometry with simplified QuEChERS technique [J]. Food Analytical Methods, 2018, 11(12): 3293-3303. doi: 10.1007/s12161-018-1313-z [21] ZAFEIRAKI E, COSTOPOULOU D, VASSILIADOU I, et al. Perfluoroalkylated substances (PFASs) in home and commercially produced chicken eggs from the Netherlands and Greece [J]. Chemosphere, 2016, 144: 2106-2112. doi: 10.1016/j.chemosphere.2015.10.105 [22] ALVES A, JACOBS G, VANERMEN G, et al. New approach for assessing human perfluoroalkyl exposure via hair [J]. Talanta, 2015, 144: 574-583. doi: 10.1016/j.talanta.2015.07.009 [23] CHEN Z J, LIU H Y, CHENG Z, et al. Polybrominated diphenyl ethers (PBDEs) in human samples of mother-newborn pairs in South China and their placental transfer characteristics [J]. Environment International, 2014, 73: 77-84. doi: 10.1016/j.envint.2014.07.002 [24] WANG Y X, ZHONG Y X, LI J G, et al. Occurrence of perfluoroalkyl substances in matched human serum, urine, hair and nail [J]. Journal of Environmental Sciences, 2018, 67: 191-197. doi: 10.1016/j.jes.2017.08.017 [25] LI J H, LI Q, LI J F, et al. Simultaneous determination of poly- and perfluoroalkyl substances and organophosphorus flame retardants in serum by ultra-performance liquid chromatography/tandem mass spectrometry [J]. Rapid Communications in Mass Spectrometry:RCM, 2022, 36(14): e9312. [26] CHEN J A, LIU H J, QIU Z Q, et al. Analysis of di-n-butyl phthalate and other organic pollutants in Chongqing women undergoing parturition [J]. Environmental Pollution, 2008, 156(3): 849-853. doi: 10.1016/j.envpol.2008.05.019 [27] 李树飞, 杜美玲, 王开亮, 等. 待产孕妇血清中PAEs暴露水平及其与胎儿生长发育的相关性研究 [J]. 中国妇幼保健, 2013, 28(25): 4194-4197. doi: 10.7620/zgfybj.j.issn.1001-4411.2013.25.45 LI S F, DU M L, WANG K L, et al. Study on the correlation between exposure level of PAEs in serum of predelivery women and growth and development of fetuses [J]. Maternal and Child Health Care of China, 2013, 28(25): 4194-4197(in Chinese). doi: 10.7620/zgfybj.j.issn.1001-4411.2013.25.45
[28] 崔恒威, 严浩轩, 陈丽梅. 多溴二苯醚的生殖发育毒性 [J]. 卫生研究, 2021, 50(3): 510-514. doi: 10.19813/j.cnki.weishengyanjiu.2021.03.028 CUI H W, YAN H X, CHEN L M. Reproductive and developmental toxicity of polybrominated diphenyl ethers [J]. Journal of Hygiene Research, 2021, 50(3): 510-514(in Chinese). doi: 10.19813/j.cnki.weishengyanjiu.2021.03.028
[29] MAMMANA S B, ABRAHAM E C, CAMARGO A B, et al. Enzymatic digestion coupled to surfactant-assisted dispersive liquid-liquid microextraction: A mild approach for determining polybrominated diphenyl ethers in human hair sample [J]. ChemistrySelect, 2020, 5(7): 2179-2184. doi: 10.1002/slct.201904795 [30] MARTINEZ G, NIU J, TAKSER L, et al. A review on the analytical procedures of halogenated flame retardants by gas chromatography coupled with single quadrupole mass spectrometry and their levels in human samples [J]. Environmental Pollution, 2021, 285: 117476. doi: 10.1016/j.envpol.2021.117476 [31] YIN S S, BEEN F, LIU W P, et al. Hair as an alternative matrix to monitor human exposure to plasticizers - Development of a liquid chromatography - tandem mass spectrometry method [J]. Journal of Chromatography B, 2019, 1104: 94-101. doi: 10.1016/j.jchromb.2018.09.031 [32] LIANG S, XU F, TANG W B, et al. Brominated flame retardants in the hair and serum samples from an e-waste recycling area in southeastern China: The possibility of using hair for biomonitoring [J]. Environmental Science and Pollution Research, 2016, 23(15): 14889-14897. doi: 10.1007/s11356-016-6491-x [33] TADEO J L, SANCHEZ-BRUNETE C, MIGUEL E. Determination of polybrominated diphenyl ethers in human hair by gas chromatography-mass spectrometry [J]. Talanta, 2009, 78(1): 138-143. doi: 10.1016/j.talanta.2008.10.054 [34] HE M J, LU J F, MA J Y, et al. Organophosphate esters and phthalate esters in human hair from rural and urban areas, Chongqing, China: Concentrations, composition profiles and sources in comparison to street dust [J]. Environmental Pollution, 2018, 237: 143-153. doi: 10.1016/j.envpol.2018.02.040 [35] 高倍. 头发指甲作为人类全氟化合物暴露评价指示物的研究[D]. 大连: 大连理工大学, 2014. GAO B. Human hair and nail As bioindicator of exposure to perfluoroalkyl acids[D]. Dalian: Dalian University of Technology, 2014(in Chinese).
[36] RUAN Y F, LALWANI D, KWOK K Y, et al. Assessing exposure to legacy and emerging per- and polyfluoroalkyl substances via hair - The first nationwide survey in India [J]. Chemosphere, 2019, 229: 366-373. doi: 10.1016/j.chemosphere.2019.04.195 [37] WANG Y, SHI Y L, VESTERGREN R, et al. Using hair, nail and urine samples for human exposure assessment of legacy and emerging per- and polyfluoroalkyl substances [J]. Science of the Total Environment, 2018, 636: 383-391. doi: 10.1016/j.scitotenv.2018.04.279 [38] GAO Y, ZHANG Q H, LI X M, et al. Simultaneous determination of legacy and emerging per- and polyfluoroalkyl substances in fish by QuEChERS coupled with ultrahigh performance liquid chromatography tandem mass spectrometry [J]. Analytical Methods, 2018, 10(47): 5715-5722. doi: 10.1039/C8AY01478G [39] MARTÍN J, MÖDER M, GAUDL A, et al. Multi-class method for biomonitoring of hair samples using gas chromatography-mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2015, 407(29): 8725-8734. doi: 10.1007/s00216-015-9026-2 [40] LIN M Q, TANG J, MA S T, et al. Simultaneous determination of polybrominated diphenyl ethers, polycyclic aromatic hydrocarbons and their hydroxylated metabolites in human hair: A potential methodology to distinguish external from internal exposure [J]. Analyst, 2019, 144(24): 7227-7235. doi: 10.1039/C9AN01359H [41] KUCHARSKA A, COVACI A, VANERMEN G, et al. Development of a broad spectrum method for measuring flame retardants - Overcoming the challenges of non-invasive human biomonitoring studies [J]. Analytical and Bioanalytical Chemistry, 2014, 406(26): 6665-6675. doi: 10.1007/s00216-014-8106-z [42] 唐斌, 蔡凤珊, 王美欢, 等. 室内灰尘和空气中有机磷系阻燃剂和塑化剂的赋存、分配和暴露风险评估[C]//. 2020中国环境科学学会科学技术年会论文集(第一卷). 南京, 2020∶1078—1084. [43] 熊仕茂, 朱晓辉, 蔡凤珊, 等. 灰尘中有机磷系阻燃剂及其降解产物检测方法的建立 [J]. 环境化学, 2019, 38(11): 2457-2466. XIONG S M, ZHU X H, CAI F S, et al. Establishment of detection method for organic phosphorus flame retardants and their degradation products in dust [J]. Environmental Chemistry, 2019, 38(11): 2457-2466(in Chinese).
[44] 任梦圆, 贾晓倩, 王盈, 等. 北京市海淀区孕妇膳食频率与头发中邻苯二甲酸酯水平的关联研究 [J]. 中国生育健康杂志, 2021, 32(2): 101-105. REN M Y, JIA X Q, WANG Y, et al. Association between food frequency and hair concentration of phthalates among pregnant women in Haidian District, Beijing [J]. Chinese Journal of Reproductive Health, 2021, 32(2): 101-105(in Chinese).
[45] TAN H H, GU Y P, LIU S H, et al. Rapid residue determination of cyenopyrafen in Citrus peel, pulp, and whole fruit using ultra-performance liquid chromatography/tandem mass spectrometry [J]. Food Analytical Methods, 2018, 11(8): 2123-2130. doi: 10.1007/s12161-018-1197-y [46] LOCKWOOD T E, TALEBI M, MINETT A, et al. Micro solid-phase extraction for the analysis of per- and polyfluoroalkyl substances in environmental waters [J]. Journal of Chromatography A, 2019, 1604: 460495. doi: 10.1016/j.chroma.2019.460495 [47] ZHENG J, LUO X J, YUAN J G, et al. Levels and sources of brominated flame retardants in human hair from urban, e-waste, and rural areas in South China [J]. Environmental Pollution, 2011, 159(12): 3706-3713. doi: 10.1016/j.envpol.2011.07.009 [48] QIAO L, ZHENG X B, ZHENG J, et al. Legacy and currently used organic contaminants in human hair and hand wipes of female E-waste dismantling workers and workplace dust in South China [J]. Environmental Science & Technology, 2019, 53(5): 2820-2829. [49] KATSIKANTAMI I, TZATZARAKIS M N, KARZI V, et al. Biomonitoring of bisphenols A and S and phthalate metabolites in hair from pregnant women in Crete [J]. Science of the Total Environment, 2020, 712: 135651. doi: 10.1016/j.scitotenv.2019.135651 [50] TANG B, XIONG S M, ZHENG J, et al. Analysis of polybrominated diphenyl ethers, hexabromocyclododecanes, and legacy and emerging phosphorus flame retardants in human hair [J]. Chemosphere, 2021, 262: 127807. doi: 10.1016/j.chemosphere.2020.127807