尖晶石型铁氧体处理废水中Cr(Ⅵ)研究现状与进展
Current status and prospects of aqueous Cr(Ⅵ) removal by spinel ferrites
-
摘要: 六价铬(Cr(Ⅵ))具有生物积累性、生物持久性和剧毒性三大特性,是致癌、致畸、致突变的“三致”污染物,严重危害生态环境和人类健康. 随着工业化的迅速发展,含Cr(Ⅵ)废水的排放日益增多,Cr(Ⅵ)污染日趋严重,必须对其进行无害化处理. 尖晶石型铁氧体具有吸附/催化还原Cr(Ⅵ)的能力和特殊的磁分离性能,是一种重要的Cr(Ⅵ)无害化处理材料. 本文综述了尖晶石型铁氧体在Cr(Ⅵ)无害化处理领域的应用现状,并展望了今后的研究重点和发展方向,以期为含Cr(Ⅵ)废水的无害化处理及绿色工业的发展提供建议.Abstract: Hexavalent chromium (Cr(Ⅵ)) is a highly toxic inorganic pollutant with the characteristics of bioaccumulation, biopersistence and high toxicity, and has strong carcinogenic, teratogenic and mutagenic effects on ecological environment and human health. With the rapid development of industrialization, the discharge of Cr(Ⅵ)-containing wastewater is gradually increasing, causing more and more serious Cr(Ⅵ) pollution, which has become a great threat to the human society. Removal of the toxic Cr(Ⅵ) is becoming an urgently task to be solved and has attracted more and more attention. Spinel ferrites, which possess adsorption and catalytic degradation ability of Cr(Ⅵ) and magnetic separation nature, are considered as the most promising candidates for harmless treatment of Cr(Ⅵ)-containing wastewater. Some research results and development directions of spinel ferrites used for Cr(Ⅵ) removal in the future are prospected in present paper. We hope this review will provide some useful guidance for the harmless treatment of Cr(Ⅵ)-containing wastewater, and arouse more attention to the development of green industry.
-
Key words:
- Cr(Ⅵ) pollution /
- spinel ferrites /
- adsorption /
- catalytic reduction.
-
表 1 部分尖晶石型铁氧体吸附剂吸附Cr(Ⅵ)性能对比
Table 1. Comparison of Cr(Ⅵ) adsorption properties of some spinel ferrite adsorbents
吸附剂
Adsorbent初始Cr(Ⅵ)浓度/(mg·L−1)
Initial Cr(Ⅵ) concentrationpH 处理时间/min
TimeCr(Ⅵ)吸附容量/(mg·g−1)
Cr(Ⅵ) adsorption capacity参考文献
ReferencesCoFe2O4 10 5.5 30 11 [29] CuFe2O4 88.2 3 60 20.286 [28] MnFe2O4/SiO2-CTAB 20 3 180 25.044 [31] CoFe2O4/Activated carbon 10 3 60 70 [35] MnFe2O4/Mn3O4 50 2 60 91.24 [30] CoFe2O4/MMFNCs 100 2 180 100 [36] NiFe2O4/MMFNCs 100 2 60 129.83 [37] MgFe2O4/MWCNTs 100 2 60 175.43 [34] MnFe2O4/bentonite 10 6 60 178.6 [33] NiFe2O4/PmPD/rGO 250 3 30 502.5 [32] MgFe2O4/diatomite 20 4 60 570 [38] 表 2 部分尖晶石型铁氧体紫外光催化还原Cr(Ⅵ)性能对比
Table 2. Comparison of photocatalytic reduction of Cr(Ⅵ) by some spinel ferrite photocatalysts under UV irradiation
光催化剂
Photocatalyst初始Cr(Ⅵ)
浓度/(mg·L−1)
Initial Cr(Ⅵ)
concentration催化剂用量/
(mg·L−1)
Dosage of
catalystpH 还原效率/%
Reduction
efficiency处理时间/
min
Time还原动力学常数/min−1
Kinetics parameters
of reduction(k)循环性/活性
保持率/%
Circularity/
Activity
maintenance参考文献
ReferencesCoFe2O4/TiO2/Ag 10 0.1 2 95.1 150 4.88×10−2 5/100 [58] MnFe2O4
Cd0.2Mn0.8Fe2O415 1 2 86
9630 9.52×10−1
1.06×10−1— [60] NiFe2O4/SiO2/TiO2 10 2 4 96.5 300 1.05×10−2 3/71.42 [66] MgFe2O4/diatomite 20 1 4 99 180 — — [38] ZnFe2O4(with EDTA) 10 0.4 3 100 180 2.6×10−2 — [57] 表 3 部分尖晶石型铁氧体可见光催化还原Cr(Ⅵ)性能对比
Table 3. Comparison of photocatalytic reduction of Cr(Ⅵ) by some spinel ferrite photocatalysts under visible light
光催化剂
Photocatalyst初始Cr(Ⅵ)
浓度/(mg·L−1)
Initial Cr(Ⅵ)
concentration催化剂用量/
(mg·L−1)
Dosage of
catalystpH 还原效率/%
Reduction
efficiency处理时间/
min
Time还原动力学
常数/min−1
Kinetics
parameters of
reduction(k)循环性/活性
保持率/%
Circularity/
Activity
maintenance参考文献
ReferencesZnFe2O4
ZnFe2O4/CPVC100 1 3.1 23.2
55.8240 — — [65] Co0.5Zn0.5Fe2O4 20 0.52 5.4 60 60 2.94×10−2 6/90 [72] CuFe2O4/CdS 10.6 1 3 72 360 — — [28] ZnFe2O4/g-C3N4/PANI 20 10 5 75 120 1.12×10−2 4/95.1 [73] ZnFe2O4/BC 20 1 3 80 160 — 5/89 [71] CoFe2O4/ZrO2 10 0.4 2 83 180 9.45×10−3 — [74] Ion imprinted
ZnFe2O410 0.5 — 92.67 120 — 5/100 [75] MnFe2O4/ZnFe2O4 50 0.5 5 99 180 1.44×10−2 3/99 [76] 表 4 部分尖晶石型铁氧体太阳光催化还原Cr(Ⅵ)性能对比
Table 4. Comparison of photocatalytic reduction of Cr(Ⅵ) by some spinel ferrite photocatalysts under solar light
光催化剂
Photocatalyst初始Cr(Ⅵ)
浓度/(mg·L−1)
Initial Cr(Ⅵ)
concentration催化剂用量/
(mg·L−1)
Dosage of
catalystpH 还原效率/%
Reduction
efficiency处理时间/min
Time还原动力学常数/min−1
Kinetics parameters
of reduction(k)循环性/活性
保持率/%
Circularity/
Activity maintenance参考文献
ReferencesCaFe2O4
CaFe2O4 (with oxalic acid)105.38 0.1 4 56.39
98.65120 1.83×10−3
1.96×10−2— [78] CaFe2O4/ZnO 2.91 1 6 45.84 210 2×10−3 — [79] ZnFe2O4
ZnFe2O4/CNT10 1 3 48
8260 2.7×10−2 4/100 [81] CoFe2O4/TiO2/Ag 10 0.1 2 92.1 150 4.51×10−2 5/100 [58] -
[1] CHEN L F, ZHANG J, ZHU Y X, et al. Interaction of chromium(Ⅲ) or chromium(Ⅵ) with catalase and its effect on the structure and function of catalase: An in vitro study [J]. Food Chemistry, 2018, 244: 378-385. doi: 10.1016/j.foodchem.2017.10.062 [2] 刘炜珍, 郑嘉毅, 吴智诚, 等. 表界面调控晶体变化微观机制探索与铬渣治理研究的结合 [J]. 化学进展, 2017, 29(9): 1053-1061. doi: 10.7536/PC170513 LIU W Z, ZHENG J Y, WU Z C, et al. The application of micro-mechanism of crystal changes under the surface/interface control in treating chromium-containing residues [J]. Progress in Chemistry, 2017, 29(9): 1053-1061(in Chinese). doi: 10.7536/PC170513
[3] 李茹霞, 钟文彬, 谢林华, 等. 金属有机框架材料对Cr(Ⅵ)离子的吸附去除研究进展 [J]. 无机化学学报, 2021, 37(3): 385-400. doi: 10.11862/CJIC.2021.068 LI R X, ZHONG W B, XIE L H, et al. Recent advances in adsorptive removal of Cr(Ⅵ) ions by metal-organic frameworks [J]. Chinese Journal of Inorganic Chemistry, 2021, 37(3): 385-400(in Chinese). doi: 10.11862/CJIC.2021.068
[4] GRACEPAVITHRA K, JAIKUMAR V, KUMAR P S, et al. A review on cleaner strategies for chromium industrial wastewater: present research and future perspective [J]. Journal of Cleaner Production, 2019, 228: 580-593. doi: 10.1016/j.jclepro.2019.04.117 [5] GB8978—1996. 中华人民共和国污水综合排放标准[S]. GB8978—1996. Integrated wastewater discharge standard[S].
[6] RAJAPAKSHA A U, ALAM M S, CHEN N, et al. Removal of hexavalent chromium in aqueous solutions using biochar: chemical and spectroscopic investigations [J]. Science of the Total Environment, 2018, 625: 1567-1573. doi: 10.1016/j.scitotenv.2017.12.195 [7] AKRAM M, BHATTI H N, IQBAL M, et al. Biocomposite efficiency for Cr(Ⅵ) adsorption: kinetic, equilibrium and thermodynamics studies [J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 400-411. doi: 10.1016/j.jece.2016.12.002 [8] ZHAO D L, GAO X, WU C N, et al. Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr(Ⅵ) [J]. Applied Surface Science, 2016, 384: 1-9. doi: 10.1016/j.apsusc.2016.05.022 [9] HABIBA U, AFIFI A M, SALLEH A, et al. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+ [J]. Journal of Hazardous Materials, 2017, 322: 182-194. doi: 10.1016/j.jhazmat.2016.06.028 [10] 席改红, 石国荣, 李强, 等. 木本泥炭对Cr(Ⅵ)的吸附性能 [J]. 环境化学, 2019, 38(1): 202-208. doi: 10.7524/j.issn.0254-6108.2018082304 XI G H, SHI G R, LI Q, et al. Adsorption performance of woody peat for Cr(Ⅵ) [J]. Environmental Chemistry, 2019, 38(1): 202-208(in Chinese). doi: 10.7524/j.issn.0254-6108.2018082304
[11] XIE B H, SHAN C, XU Z, et al. One-step removal of Cr(Ⅵ) at alkaline pH by UV/sulfite process: reduction to Cr(Ⅲ) and in situ Cr(Ⅲ) precipitation [J]. Chemical Engineering Journal, 2017, 308: 791-797. doi: 10.1016/j.cej.2016.09.123 [12] ZOU Y D, WANG X X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review [J]. Environmental Science & Technology, 2016, 50(14): 7290-7304. [13] MEENA A H, ARAI Y. Effects of common groundwater ions on chromate removal by magnetite: importance of chromate adsorption [J]. Geochemical Transactions, 2016, 17: 1. doi: 10.1186/s12932-016-0033-9 [14] ZHOU R, LIU F Y, WEI N, et al. Comparison of Cr(Ⅵ) removal by direct and pulse current electrocoagulation: implications for energy consumption optimization, sludge reduction and floc magnetism [J]. Journal of Water Process Engineering, 2020, 37: 101387. doi: 10.1016/j.jwpe.2020.101387 [15] BIANCHI E, BIANCALANI A, BERARDI C, et al. Improving the efficiency of wastewater treatment plants: bio-removal of heavy-metals and pharmaceuticals by azolla filiculoides and lemna minuta [J]. Science of the Total Environment, 2020, 746: 141219. doi: 10.1016/j.scitotenv.2020.141219 [16] WANG H, YUAN X Z, WU Y, et al. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(Ⅵ) reduction [J]. Journal of Hazardous Materials, 2015, 286: 187-194. doi: 10.1016/j.jhazmat.2014.11.039 [17] KHARISOV B I, DIAS H V R, KHARISSOVA O V. Mini-review: ferrite nanoparticles in the catalysis [J]. Arabian Journal of Chemistry, 2019, 12(7): 1234-1246. doi: 10.1016/j.arabjc.2014.10.049 [18] 高卫国, 钱林波, 韩璐, 等. 锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理 [J]. 环境化学, 2018, 37(7): 1525-1533. doi: 10.7524/j.issn.0254-6108.2017101302 GAO W G, QIAN L B, HAN L, et al. Iron manganese minerals catalyzed Cr(Ⅵ) reduction by citric acid and its mechanism [J]. Environmental Chemistry, 2018, 37(7): 1525-1533(in Chinese). doi: 10.7524/j.issn.0254-6108.2017101302
[19] ROCA A G, COSTO R, REBOLLEDO A F, et al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine [J]. Journal of Physics D:Applied Physics, 2009, 42(22): 224002. doi: 10.1088/0022-3727/42/22/224002 [20] PRAVEENA K, CHEN H W, LIU H L, et al. Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high frequency applications [J]. Journal of Magnetism and Magnetic Materials, 2016, 420: 129-142. doi: 10.1016/j.jmmm.2016.07.011 [21] BINDU K, SRIDHARAN K, AJITH K M, et al. Microwave assisted growth of stannous ferrite microcubes as electrodes for potentiometric nonenzymatic H2O2 sensor and supercapacitor applications [J]. Electrochimica Acta, 2016, 217: 139-149. doi: 10.1016/j.electacta.2016.09.083 [22] LIANG P L, YUAN L Y, DENG H, et al. Photocatalytic reduction of uranium(Ⅵ) by magnetic ZnFe2O4 under visible light [J]. Applied Catalysis B:Environmental, 2020, 267: 118688. doi: 10.1016/j.apcatb.2020.118688 [23] KEFENI K K, MSAGATI T A M, MAMBA B B. Ferrite nanoparticles: synthesis, characterisation and applications in electronic device [J]. Materials Science and Engineering:B, 2017, 215: 37-55. doi: 10.1016/j.mseb.2016.11.002 [24] CHEN B, ZHAO X S, LIU Y, et al. Highly stable and covalently functionalized magnetic nanoparticles by polyethyleneimine for Cr(Ⅵ) adsorption in aqueous solution [J]. RSC Advances, 2015, 5(2): 1398-1405. doi: 10.1039/C4RA10602D [25] 秦艳敏, 王敦球, 梁美娜, 等. 桑树杆活性炭/铁锰氧化物复合吸附剂的制备及其对Cr(Ⅵ)的吸附 [J]. 环境化学, 2016, 35(4): 783-792. doi: 10.7524/j.issn.0254-6108.2016.04.2015101902 QIN Y M, WANG D Q, LIANG M N, et al. Preparation of mulberry stem activated carbon/Fe-Mn oxide composite sorbent and its effects on the adsorption of Cr(Ⅵ) [J]. Environmental Chemistry, 2016, 35(4): 783-792(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.04.2015101902
[26] OWLAD M, AROUA M K, DAUD W A W, et al. Removal of hexavalent chromium-contaminated water and wastewater: a review [J]. Water, Air, and Soil Pollution, 2009, 200(1-4): 59-77. doi: 10.1007/s11270-008-9893-7 [27] REDDY D H K, YUN Y S. Spinel ferrite magnetic adsorbents: alternative future materials for water purification [J]. Coordination Chemistry Reviews, 2016, 315: 90-111. doi: 10.1016/j.ccr.2016.01.012 [28] NASRALLAH N, KEBIR M, KOUDRI Z, et al. Photocatalytic reduction of Cr(Ⅵ) on the novel hetero-system CuFe2O4/CdS [J]. Journal of Hazardous Materials, 2011, 185(2): 1398-1404. [29] JOVANOVIĆC S, KUMRIĆC K, BAJUK-BOGDANOVIĆC D, et al. Cobalt ferrite nanospheres as a potential magnetic adsorbent for chromium(Ⅵ) ions [J]. Journal of Nanoscience and Nanotechnology, 2019, 19(8): 5027-5034. doi: 10.1166/jnn.2019.16803 [30] BHOWMIK K L, DEBNATH A, NATH R K, et al. Synthesis of MnFe2O4 and Mn3O4 magnetic nano-composites with enhanced properties for adsorption of Cr(Ⅵ): artificial neural network modeling [J]. Water Science and Technology, 2017, 76(11): 3368-3378. [31] LI N, FU F L, LU J W, et al. Facile preparation of magnetic mesoporous MnFe2O4@SiO2−CTAB composites for Cr(Ⅵ) adsorption and reduction [J]. Environmental Pollution, 2017, 220: 1376-1385. doi: 10.1016/j.envpol.2016.10.097 [32] WANG W, CAI K, WU X F, et al. A novel poly(m-phenylenediamine)/reduced graphene oxide/nickel ferrite magnetic adsorbent with excellent removal ability of dyes and Cr(Ⅵ) [J]. Journal of Alloys and Compounds, 2017, 722: 532-543. doi: 10.1016/j.jallcom.2017.06.069 [33] AHMADI A, FOROUTAN R, ESMAEILI H, et al. The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(Ⅲ) and Cr(Ⅵ) from aqueous media [J]. Environmental Science and Pollution Research International, 2020, 27(12): 14044-14057. doi: 10.1007/s11356-020-07756-x [34] VERMA B, BALOMAJUMDER C. Magnetic magnesium ferrite-doped multi-walled carbon nanotubes: an advanced treatment of chromium-containing wastewater [J]. Environmental Science and Pollution Research International, 2020, 27(12): 13844-13854. doi: 10.1007/s11356-020-07988-x [35] FOROUTAN R, MOHAMMADI R, RAMAVANDI B, et al. Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon [J]. Korean Journal of Chemical Engineering, 2018, 35(11): 2207-2219. doi: 10.1007/s11814-018-0145-2 [36] VERMA B, BALOMAJUMDER C. Fabrication of magnetic cobalt ferrite nanocomposites: an advanced method of removal of toxic dichromate ions from electroplating wastewater [J]. Korean Journal of Chemical Engineering, 2020, 37(7): 1157-1165. doi: 10.1007/s11814-020-0516-3 [37] VERMA B, BALOMAJUMDER C. Synthesis of magnetic nickel ferrites nanocomposites: an advanced remediation of electroplating wastewater [J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112: 106-115. doi: 10.1016/j.jtice.2020.07.006 [38] DU Y C, WANG X K, WU J S, et al. Mg3Si4O10(OH)2 and MgFe2O4 in situ grown on diatomite: highly efficient adsorbents for the removal of Cr(Ⅵ) [J]. Microporous and Mesoporous Materials, 2018, 271: 83-91. doi: 10.1016/j.micromeso.2018.04.036 [39] SAMUEL M S, SHAH S S, SUBRAMANIYAN V, et al. Preparation of graphene oxide/chitosan/ferrite nanocomposite for chromium(Ⅵ) removal from aqueous solution [J]. International Journal of Biological Macromolecules, 2018, 119: 540-547. doi: 10.1016/j.ijbiomac.2018.07.052 [40] WANG X, LIANG Y H, AN W J, et al. Removal of chromium (Ⅵ) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light [J]. Applied Catalysis B:Environmental, 2017, 219: 53-62. doi: 10.1016/j.apcatb.2017.07.008 [41] 王洪红, 雷文, 李孝建, 等. 催化还原降解Cr(Ⅵ) [J]. 化学进展, 2020, 32(12): 1990-2003. WANG H H, LEI W, LI X J, et al. Catalytic reductive degradation of Cr(Ⅵ) [J]. Progress in Chemistry, 2020, 32(12): 1990-2003(in Chinese).
[42] YUAN G Q, LI F L, LI K Z, et al. Research progress on photocatalytic reduction of Cr(Ⅵ) in polluted water [J]. Bulletin of the Chemical Society of Japan, 2021, 94(4): 1142-1155. doi: 10.1246/bcsj.20200317 [43] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38. doi: 10.1038/238037a0 [44] CHONG M N, JIN B, CHOW C W K, et al. Recent developments in photocatalytic water treatment technology: a review [J]. Water Research, 2010, 44(10): 2997-3027. doi: 10.1016/j.watres.2010.02.039 [45] TONG H, OUYANG S X, BI Y P, et al. Nano-photocatalytic materials: possibilities and challenges [J]. Advanced Materials, 2012, 24(2): 229-251. doi: 10.1002/adma.201102752 [46] YUAN R R, YUE C L, QIU J L, et al. Highly efficient sunlight-driven reduction of Cr(Ⅵ) by TiO2@NH2-MIL-88B(Fe) heterostructures under neutral conditions [J]. Applied Catalysis B:Environmental, 2019, 251: 229-239. doi: 10.1016/j.apcatb.2019.03.068 [47] WANG C C, DU X D, LI J, et al. Photocatalytic Cr(Ⅵ) reduction in metal-organic frameworks: a mini-review [J]. Applied Catalysis B:Environmental, 2016, 193: 198-216. doi: 10.1016/j.apcatb.2016.04.030 [48] BARRERA C E, LUGO-LUGO V, BILYEU B. A review of chemical, electrochemical and biological methods for aqueous Cr(Ⅵ) reduction [J]. Journal of Hazardous Materials, 2012, 223: 1-12. [49] BARAKAT M A. New trends in removing heavy metals from industrial wastewater [J]. Arabian Journal of Chemistry, 2011, 4(4): 361-377. doi: 10.1016/j.arabjc.2010.07.019 [50] FUJISHIMA A, ZHANG X T, TRYK D A. TiO2 photocatalysis and related surface phenomena [J]. Surface Science Reports, 2008, 63(12): 515-582. doi: 10.1016/j.surfrep.2008.10.001 [51] SHI L, WANG T, ZHANG H B, et al. An amine-functionalized iron(Ⅲ) metal-organic framework as efficient visible-light photocatalyst for Cr(Ⅵ) reduction [J]. Advanced Science, 2015, 2(3): 1500006. doi: 10.1002/advs.201500006 [52] HISATOMI T, KUBOTA J, DOMEN K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting [J]. Chemical Society Reviews, 2014, 43(22): 7520-7535. doi: 10.1039/C3CS60378D [53] WEI Y C, WU X X, ZHAO Y L, et al. Efficient photocatalysts of TiO2 nanocrystals-supported PtRu alloy nanoparticles for CO2 reduction with H2O: synergistic effect of Pt-Ru [J]. Applied Catalysis B:Environmental, 2018, 236: 445-457. doi: 10.1016/j.apcatb.2018.05.043 [54] LI C Q,. SUN Z M, SONG A K, et al. Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO2/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum [J]. Applied Catalysis B:Environmental, 2018, 236: 76-87. doi: 10.1016/j.apcatb.2018.04.083 [55] MAHMOOD M, YOUSUF M A, BAIG M M, et al. Spinel ferrite magnetic nanostructures at the surface of graphene sheets for visible light photocatalysis applications [J]. Physica B:Condensed Matter, 2018, 550: 317-323. doi: 10.1016/j.physb.2018.08.043 [56] SONU, DUTTA V, SHARMA S, et al. Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water [J]. Journal of Saudi Chemical Society, 2019, 23(8): 1119-1136. doi: 10.1016/j.jscs.2019.07.003 [57] ISLAM J B, ISLAM M R, FURUKAWA M, et al. Performance of EDTA modified magnetic ZnFe2O4 during photocatalytic reduction of Cr(Ⅵ) in aqueous solution under UV irradiation [J]. Journal of Environmental Science and Health Part A, 2021, 56(1): 44-51. doi: 10.1080/10934529.2020.1835389 [58] IBRAHIM I, KALTZOGLOU A, ATHANASEKOU C, et al. Magnetically separable TiO2/CoFe2O4/Ag nanocomposites for the photocatalytic reduction of hexavalent chromium pollutant under UV and artificial solar light [J]. Chemical Engineering Journal, 2020, 381: 122730. doi: 10.1016/j.cej.2019.122730 [59] SURESH R, RAJENDRAN S, KUMAR P S, et al. Recent advancements of spinel ferrite based binary nanocomposite photocatalysts in wastewater treatment [J]. Chemosphere, 2021, 274: 129734. doi: 10.1016/j.chemosphere.2021.129734 [60] OTHMAN ALI I, MOSTAFA A G. Photocatalytic reduction of chromate oxyanions on MMnFe2O4 (M=Zn, Cd) nanoparticles [J]. Materials Science in Semiconductor Processing, 2015, 33: 189-198. doi: 10.1016/j.mssp.2015.01.030 [61] WANG M, ZHANG Y L, DONG C J, et al. Preparation and electromagnetic shielding effectiveness of cobalt ferrite nanoparticles/carbon nanotubes composites [J]. Nanomaterials and Nanotechnology, 2019, 9: 1-7. [62] ZHANG S W, LI J X, ZENG M Y, et al. In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance [J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12735-12743. [63] NIU M, CAO D P, SUI K Y, et al. InP/TiO2 heterojunction for photoelectrochemical water splitting under visible-light [J]. International Journal of Hydrogen Energy, 2020, 45(20): 11615-11624. doi: 10.1016/j.ijhydene.2020.02.094 [64] VOZNYY O, SUTHERLAND B R, IP A H, et al. Engineering charge transport by heterostructuring solution-processed semiconductors [J]. Nature Reviews Materials, 2017, 2: 17026. doi: 10.1038/natrevmats.2017.26 [65] XU B, DING T, ZHANG Y C, et al. A new efficient visible-light-driven composite photocatalyst comprising ZnFe2O4 nanoparticles and conjugated polymer from the dehydrochlorination of polyvinyl chloride [J]. Materials Letters, 2017, 187: 123-125. doi: 10.1016/j.matlet.2016.10.094 [66] OJEMAYE M O, OKOH O O, OKOH A I. Performance of NiFe2O4-SiO2-TiO2 magnetic photocatalyst for the effective photocatalytic reduction of Cr(Ⅵ) in aqueous solutions [J]. Journal of Nanomaterials, 2017, 2017: 5264910. [67] CHENG C, CHEN D Y, LI N J, et al. ZnIn2S4 grown on nitrogen-doped hollow carbon spheres: an advanced catalyst for Cr(Ⅵ) reduction [J]. Journal of Hazardous Materials, 2020, 391: 122205. doi: 10.1016/j.jhazmat.2020.122205 [68] PAN J W, GUAN Z J, YANG J J, et al. Facile fabrication of ZnIn2S4/SnS2 3D heterostructure for efficient visible-light photocatalytic reduction of Cr(Ⅵ) [J]. Chinese Journal of Catalysis, 2020, 41(1): 200-208. doi: 10.1016/S1872-2067(19)63422-4 [69] QIU J H, LI M, XU J, et al. Bismuth sulfide bridged hierarchical Bi2S3/BiOCl@ZnIn2S4 for efficient photocatalytic Cr(Ⅵ) reduction [J]. Journal of Hazardous Materials, 2020, 389: 121858. doi: 10.1016/j.jhazmat.2019.121858 [70] ZHANG G P, CHEN D Y, LI N J, et al. Preparation of ZnIn2S4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr(Ⅵ) [J]. Applied Catalysis B:Environmental, 2018, 232: 164-174. doi: 10.1016/j.apcatb.2018.03.017 [71] SHEN X F, ZHENG T, YANG J Y, et al. Removal of Cr(Ⅵ) from acid wastewater by BC/ZnFe2O4 magnetic nanocomposite via the synergy of absorption-photocatalysis [J]. ChemCatChem, 2020, 12(16): 4121-4131. doi: 10.1002/cctc.202000619 [72] THOMAS B, ALEXANDER L K. Enhanced synergetic effect of Cr(Ⅵ) ion removal and anionic dye degradation with superparamagnetic cobalt ferrite meso-macroporous nanospheres [J]. Applied Nanoscience, 2018, 8(1): 125-135. [73] PATNAIK S, DAS K K, MOHANTY A, et al. Enhanced photo catalytic reduction of Cr (Ⅵ) over polymer-sensitized g-C3N4/ZnFe2O4 and its synergism with phenol oxidation under visible light irradiation [J]. Catalysis Today, 2018, 315: 52-66. doi: 10.1016/j.cattod.2018.04.008 [74] EMADIAN S S, GHORBANI M, BAKERI G. Magnetically separable CoFe2O4/ZrO2 nanocomposite for the photocatalytic reduction of hexavalent chromium under visible light irradiation [J]. Synthetic Metals, 2020, 267: 116470. doi: 10.1016/j.synthmet.2020.116470 [75] HE F, LU Z Y, SONG M S, et al. Construction of ion imprinted layer modified ZnFe2O4 for selective Cr(Ⅵ) reduction with simultaneous organic pollutants degradation based on different reaction channels [J]. Applied Surface Science, 2019, 483: 453-462. doi: 10.1016/j.apsusc.2019.03.311 [76] SKLIRI E, VAMVASAKIS I, PAPADAS I T, et al. Mesoporous composite networks of linked MnFe2O4 and ZnFe2O4 nanoparticles as efficient photocatalysts for the reduction of Cr(Ⅵ) [J]. Catalysts, 2021, 11(2): 199. doi: 10.3390/catal11020199 [77] BEHERA A, KANDI D, MAJHI S M, et al. Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation [J]. Beilstein Journal of Nanotechnology, 2018, 9: 436-446. doi: 10.3762/bjnano.9.42 [78] OLADOJA N A, ANTHONY E T, OLOLADE I A, et al. Self-propagation combustion method for the synthesis of solar active nano ferrite for Cr(Ⅵ) reduction in aqua system [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2018, 353: 229-239. doi: 10.1016/j.jphotochem.2017.11.026 [79] ANTHONY E T, LAWAL I A, BANKOLE M O, et al. Solar active heterojunction of p-CaFe2O4/n-ZnO for photoredox reactions [J]. Environmental Technology & Innovation, 2020, 20: 101060. [80] YANG M Q, ZHANG N, XU Y J. Synthesis of fullerene carbon nanotube and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study [J]. ACS Applied Materials & Interfaces, 2013, 5(3): 1156-1164. [81] BEHERA A, MANSINGH S, DAS K K, et al. Synergistic ZnFe2O4-carbon allotropes nanocomposite photocatalyst for norfloxacin degradation and Cr(Ⅵ) reduction [J]. Journal of Colloid and Interface Science, 2019, 544: 96-111. doi: 10.1016/j.jcis.2019.02.056 [82] SUN S H, ZENG H, ROBINSON D B, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles [J]. Journal of the American Chemical Society, 2004, 126(1): 273-279. doi: 10.1021/ja0380852 [83] SUN M, ZHANG G, QIN Y H, et al. Redox conversion of chromium(Ⅵ) and arsenic(Ⅲ) with the intermediates of chromium(Ⅴ) and arsenic(Ⅳ) via AuPd/CNTs electrocatalysis in acid aqueous solution [J]. Environmental Science & Technology, 2015, 49(15): 9289-9297. [84] LUO T, WANG S F, HOU X H, et al. Cr-Zn redox battery with NiFe2O4 as catalyst for enhanced degradation of Cr(Ⅵ) pollution [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 111-116. [85] XUE C, MAO Y P, WANG W L, et al. Current status of applying microwave-associated catalysis for the degradation of organics in aqueous phase a review [J]. Journal of Environmental Sciences, 2019, 81: 119-135. doi: 10.1016/j.jes.2019.01.019 [86] WEI R, WANG P, ZHANG G S, et al. Microwave-responsive catalysts for wastewater treatment: a review [J]. Chemical Engineering Journal, 2020, 382: 122781. doi: 10.1016/j.cej.2019.122781 [87] WANG L X, GUAN Y K, QIU X, et al. Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal organic framework [J]. Chemical Engineering Journal, 2017, 326: 945-955. doi: 10.1016/j.cej.2017.06.006 [88] QUAN X, ZHANG Y B, CHEN S, et al. Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances [J]. Journal of Molecular Catalysis A:Chemical, 2007, 263(1): 216-222. [89] HE J, LIU S, DENG L W, et al. Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites [J]. Applied Surface Science, 2020, 504: 144210. doi: 10.1016/j.apsusc.2019.144210 [90] YOSHIKAWA N, XIE G Q, CAO Z P, et al. Microstructure of selectively heated (hot spot) region in Fe3O4 powder compacts by microwave irradiation [J]. Journal of the European Ceramic Society, 2012, 32(2): 419-424. doi: 10.1016/j.jeurceramsoc.2011.08.028 [91] POLAERT I, BASTIEN S, LEGRAS B, et al. Dielectric and magnetic properties of NiFe2O4 at 2.45 GHz and heating capacity for potential uses under microwaves [J]. Journal of Magnetism and Magnetic Materials, 2015, 374: 731-739. doi: 10.1016/j.jmmm.2014.09.027 [92] TSAY C Y, LIANG S C, LEI C M, et al. A comparative study of the magnetic and microwave properties of Al3+ and In3+ substituted Mg-Mn ferrites [J]. Ceramics International, 2016, 42(4): 4748-4753. doi: 10.1016/j.ceramint.2015.11.154 [93] GAO J, YANG S G, LI N, et al. Rapid degradation of azo dye direct black BN by magnetic MgFe2O4-SiC under microwave radiation [J]. Applied Surface Science, 2016, 379: 140-149. doi: 10.1016/j.apsusc.2016.04.041 [94] ZHANG L, LIU X Y, GUO X J, et al. Investigation on the degradation of brilliant green induced oxidation by NiFe2O4 under microwave irradiation [J]. Chemical Engineering Journal, 2011, 173(3): 737-742. doi: 10.1016/j.cej.2011.08.041 [95] PANG Y X, KONG L J, CHEN D Y, et al. Rapid Cr(Ⅵ) reduction in aqueous solution using a novel microwave-based treatment with MoS2-MnFe2O4 composite [J]. Applied Surface Science, 2019, 471: 408-416. doi: 10.1016/j.apsusc.2018.11.180 [96] ZHU C Q, LIU F Q, SONG L, et al. Magnetic Fe3O4@polyaniline nanocomposites with a tunable core–shell structure for ultrafast microwave-energy-driven reduction of Cr(Ⅵ) [J]. Environmental Science:Nano, 2018, 5(2): 487-496. doi: 10.1039/C7EN01075C [97] HORIKOSHI S, SERPONE N. On the influence of the microwaves thermal and non-thermal effects in titania photoassisted reactions [J]. Catalysis Today, 2014, 224: 225-235. doi: 10.1016/j.cattod.2013.10.056 [98] LIU X Y, AN S, SHI W, et al. Microwave-induced catalytic oxidation of malachite green under magnetic Cu-ferrites: new insight into the degradation mechanism and pathway [J]. Journal of Molecular Catalysis A:Chemical, 2014, 395: 243-250. doi: 10.1016/j.molcata.2014.08.028 [99] SHEN M L, FU L, TANG J H, et al. Microwave hydrothermal-assisted preparation of novel spinel-NiFe2O4/natural mineral composites as microwave catalysts for degradation of aquatic organic pollutants [J]. Journal of Hazardous Materials, 2018, 350: 1-9. doi: 10.1016/j.jhazmat.2018.02.014 [100] 刘金燕, 刘立华, 薛建荣, 等. 重金属废水吸附处理的研究进展 [J]. 环境化学, 2018, 37(9): 2016-2024. doi: 10.7524/j.issn.0254-6108.2017110105 LIU J Y, LIU L H, XUE J R, et al. Research progress on treatment of heavy metal wastewater by adsorption [J]. Environmental Chemistry, 2018, 37(9): 2016-2024(in Chinese). doi: 10.7524/j.issn.0254-6108.2017110105
[101] 鲍家泽, 马玉银, 赵伟荣, 等. 基于铬物料资源化利用的制革含铬废水处理技术现状及对策建议 [J]. 广东化工, 2018, 45(11): 187-188. doi: 10.3969/j.issn.1007-1865.2018.11.085 BAO J Z, MA Y Y, ZHAO W R, et al. Status and countermeasures of chrome wastewater treatment technology based on resource utilization of chromium material [J]. Guangdong Chemical Industry, 2018, 45(11): 187-188(in Chinese). doi: 10.3969/j.issn.1007-1865.2018.11.085
[102] 吕斌, 聂军凯, 高党鸽, 等. 控制制革含铬废水污染技术的研究进展 [J]. 中国皮革, 2017, 46(10): 13-20. doi: 10.13536/j.cnki.issn1001-6813.2017-010-003 LV B, NIE J K, GAO D G, et al. Research progress on tannery pollution control of chromium-containing wastewater [J]. China Leather, 2017, 46(10): 13-20(in Chinese). doi: 10.13536/j.cnki.issn1001-6813.2017-010-003
[103] COETZEE J J, BANSAL N, CHIRWA E M N. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation [J]. Exposure and Health, 2020, 12(1): 51-62. doi: 10.1007/s12403-018-0284-z