-
近年来,随着经济建设的飞速发展,各种工业活动及城市生活所产生的固体废物排放量也逐年增加,其中很多固体废物都含有重金属,如有色金属生产工序中所排放的冶炼渣、尾矿,污水处理厂排放的污泥,受重金属污染的土壤,生活垃圾焚烧厂的垃圾焚烧飞灰等[1-3]. 这些固体废物堆存于环境中不仅占用了大量的土地空间,且其中所含的重金属(如Pb、Zn、Cd、Cu、Cr、Mn及类金属As等)会随着地表径流冲刷、雨水淋溶、风化等作用而浸出从而迁移到环境中,众所周知,重金属难于被生物降解,且在环境中迁移性强,易通过食物链富集,最终危害到生态环境及人体的健康[4-7]. 例如在加纳奥布阿西尾矿附近土壤种植的蔬菜中,重金属As、Pb和Hg超出了允许的限值,饮用水中As、Cd、Cr、Hg、Fe和Mn的含量均高于饮用水标准[8]. 因此,防治含重金属固废所带来的重金属污染已成为目前环境治理领域的研究热点.
固体废物的治理应遵循减量化、资源化、无害化的“三化”原则,但含重金属固体废物的环境风险严重影响了其治理. 固化/稳定化处理技术是通过一定的物理、化学或生物手段降低废物中有害元素的浸出性或生物有效性,使其达到安全稳定的一项废物处理技术[9],该技术已被广泛研究并应用于尾矿、冶炼废渣、受重金属污染土壤、垃圾焚烧灰及污泥等固体废物的处理,具有良好的处理效果. 近年来,重金属固化/稳定化技术的研究取得了很多新的成果,但未见有相关文献针对该技术进行系统性的总结. 因此,本文结合近年来相关学者的研究,综述了目前国内外最常用的几种固体废物重金属固化/稳定化技术的最新研究进展,包括水泥基固化/稳定化技术、地质聚合物基固化/稳定化技术、化学药剂稳定化技术以及微生物诱导矿物沉淀稳定化技术等,总结了各项技术的优点及存在的不足,并针对未来重金属固化/稳定化处理技术的发展提出了展望.
固体废物中重金属的固化/稳定化技术研究进展
Review on solidification/stabilization of heavy metals in solid waste
-
摘要: 含重金属固体废物的大量堆存不仅占用了大量的土地资源,且其中的重金属元素将会在地表径流冲刷、雨水淋溶、风化等作用下浸出从而对周遭环境生态造成巨大威胁. 固化/稳定化处理技术能够降低固体废物中重金属的浸出毒性或是生物有效性,是应对固体废物重金属环境污染的重要技术手段. 本文首先简要介绍了固化/稳定化技术的概念及效果评价方法,再结合近年来相关研究总结了现阶段常用的固化/稳定化技术的研究进展,包括水泥基固化/稳定化技术,地质聚合物基固化/稳定化技术,化学药剂稳定化技术以及微生物诱导矿化稳定化技术. 总结了各项技术的优点及存在的不足,并针对未来重金属固化/稳定化技术的发展提出了一定的看法.Abstract: The massive accumulation of solid waste containing heavy metals not only occupies a large amount of land resources, but also the heavy metal elements contained in solid waste will be leached out under the action of surface runoff erosion, rainwater leaching, weathering, and so on, which will pose a huge threat to the surrounding environment and ecology. The solidification/stabilization treatment technology can reduce the leaching toxicity or bioavailability of heavy metals in solid waste, and it’s an important technical means to deal with the environmental pollution of heavy metals in solid waste. First of all, this paper briefly introduces the concept and effect evaluation method of solidification/stabilization technology, and then summarizes the research progress of solidification/stabilization technology commonly used at the present stage, including cement-based solidification/stabilization technology, geopolymer-based solidification /stabilization technology, chemical agents stabilization technology and microbial-induced mineralization stabilization technology. The advantages and disadvantages of each technology are summarized, and some opinions are put forward for the development of solidification/stabilization technology in the future.
-
Key words:
- solid waste /
- heavy metal /
- leaching toxicity /
- solidification /
- stabilization.
-
表 1 固体废物中不同赋存形态重金属的迁移释放规律
Table 1. Migration and release of heavy metals in different forms
重金属赋存形态
Occurrence forms
of heavy metals迁移释放规律
Migration and release迁移性
Ability to
migrate可交换态 可进行离子交换及专性吸附,可在阳离子溶液中被释放,也可直接被生物所吸收利用 ★★★★★ 碳酸盐结合态 与碳酸盐结合的沉淀或共沉淀形态重金属,通过较温和的酸便能够从尾矿中溶出释放 ★★★★ 锰氧化物结合态 重金属被铁锰氧化物专性吸附或与之共沉淀,在还原条件下将会溶出释放 ★★★ 有机结合态 与有机质及配位基团相结合,较为稳定,但在强氧化及强碱性条件下将会溶出释放 ★★ 残渣态 重金属被包裹于矿物晶格中,较难迁移和被生物利用,仅在强酸条件下或是经特定微生物作用才会释放 ★ 表 2 水泥基固化处理含重金属固体废物研究进展
Table 2. Research progress of cement-based solidification treatment of solid waste containing heavy metals
水泥材料
Cement material固体废物
Solid waste废物掺量及
抗压强度
Waste content and the compressive strength重金属稳定化率
Stabilization rate of heavy metals固化/稳定化机理
Solidification/stabilization mechanism参考文献
ReferenceLC3 镍铁渣 — Cr :98.96—99.65%
Mn :85.8—90.43%LC3主要水化产物水合硅酸铝钙(C-A-S-H)和钙矾石(AFt) 形成低孔隙率的致密结构对重金属的封装作用 [28] 污泥焚烧渣基磷酸镁钾水泥(SIR-MKPC) 污泥焚烧渣 废物掺量:5%
抗压强度:40.32 MPaCr : 92.3%
Cu : 96.6%
Zn : 96.3%
Ni : 91.4%
Cd : 87.5%
Pb : 90.9%重金属在固化过程中以形成磷酸盐沉淀的形式被固定 [32] BC 高铅污染土壤 废物掺量50%
1.25—50 MPaPb : 99.98% BC丰富的C-S-H产物对重金属的吸附作用,重金属与磷酸盐或硫酸盐形成沉淀 [26] CSAB 金尾矿 废物掺量50%
12—20 MPaAs : >17%
Cr :>80%
Ni : >90%
Sb : >50%
Ba : >44%CSAB的水化反应生成C-S-H和单硫酸盐晶体对重金属的物理封装作用,重金属通过离子交换进入钙矾石晶格中 [33] Ⅰ型硅酸盐水泥 重金属污染黏土 废物掺量82%
1.2—1.7 MPaPb : 68%—95% 水解反应产生的高碱度溶液将SiO2和Al2O3溶解在黏土中,Pb2+离子被SiO2和Al2O3吸收并形成Pb3SiO5 [30] Ⅱ型硅酸盐水泥 含铅蒙脱石土壤 废物掺量80%
0.6—1.7 MPaPb :99.98% 固化/稳定过程中添加 NaOH能够消除 Pb对水泥水化的阻滞作用,促进了C-S-H的生成并封装住可溶性Pb离子 [31] (LC3) 铅锌冶炼渣 废物掺量90%
3.539 MPaPb : 99.14%
Zn :85%
Cd :99.82%LC3水化形成的低孔隙率结构对重金属的物理封装,重金属形成氢氧化物沉淀 [34] 氯氧镁水泥和磷酸镁水泥 电弧炉粉尘 — Hg : >99.99%
Pb : >98.46%
Se :>58%镁质水泥提供的高pH环境使大部分金属阳离子的溶解性降低,水解MgO产物的表面正电荷对金属类氧阴离子具有较高吸附性 [35] 表 3 GP在固体废物重金属固化/稳定化中的应用研究进展
Table 3. Research progress in application of GP in solidification/stabilization of heavy metals in solid waste
固体废物/GP原材料
Solid waste /GP
raw materials重金属稳定化率
Stabilization rate
of heavy metals抗压强度
compressive
strength固化/稳定化机理
Solidification/stabilization
mechanism参考文献
Reference城市垃圾焚烧飞灰
粉煤灰`Zn :99.4%
Pb :99.8%
Cd :99%14.3—22.4 MPa MSWI、粉煤灰地质聚合反应中生成了大量C-S-H以及Friedel盐、水铝钙石等新的相,表现出更致密的结构、优异的力学性能和对重金属的强吸附作用 [50] 铅锌冶炼渣(LZSS)
粉煤灰
高炉矿渣Pb: 97.26%
Zn: 99.3%
Cu: 84.46%
Cr: 99.43%15—47.39 MPa 重金属的固定是吸附和化学键合共同作用的结果 [51] 城市垃圾焚烧飞灰
Shell煤气化飞灰
偏高岭土
钢渣Pb: 93.12%—99.29%
Zn: 93.85%—96.74%
Cr: 95.44%—99.45%— Cr主要残留在铝硅酸盐晶格中. Pb和Zn以M—O—Al和M—O—Si(M=Pb或Zn)的形式嵌入到铝硅酸盐的三维结构中. [52] 金矿尾矿
偏高岭土
高炉矿渣Cr: >99.2%
Cu: >97.25%
Ni: >98.4%
Zn: >98.73%
Mn: >99.22%— 偏高岭土的加入提升了GP的Si/Al和Na/Al,导致形成了更多的凝胶相及更致密的结构,对重金属形成极强的包封作用 [53] 电解锰渣
粉煤灰
偏高岭土Pb: >99%
Cd: >99%18.4—31.4 MPa Pb2+和Cd2+可能主要通过取代Na+或Ca2+而固定在GP中 [45] 污水厂污泥
炼钢炉渣Cu: >95%
Zn: >95%
Pb: >95%46.96—89.03 MPa 炼钢炉渣中的铝硅酸盐容易与Zn和Cu等重金属形成硅酸盐金属化合物 [54] 稀土尾矿
偏高岭土Pb、Ba浸出浓度远低于危险废物浸出毒性标准 最高35 MPa Pb2+/Ba2+参与Si/Al凝胶相的缩聚,并与-[TOT]-(T:Si或Al)中的Si/Al或O结合形成PbO/BaSiO3固定框架 [55] 焚烧炉底灰
偏高岭土Pb: >99.99%
Cu: 99.91—99.95%
Sn: > 99.99%— Pb和Cr可能通过化学方式结合到材料基体上. 然而,无法说明金属是化学结合还是物理结合到结构上,因为这两种选择都可以是该过程的一部分 [49] 电厂粉煤灰 Pb; >99.99%
Cd: >99.99%
Mn: >99.99%
Cr: >99.99%35.98—49.34 MPa 通过取代Na+和Ca2+等金属离子,重金属可以潜在地固定在粉煤灰基地质聚合物中 [56] 表 4 不同化学药剂对固体废物中重金属的稳定效果
Table 4. Stabilization effects of different chemicals on heavy metals in solid waste
化学药剂
Chemicals固体废物
Solid waste药剂添加量
Dosage of
reagent重金属稳定化率
Stabilization rate
of heavy metals参考文献
Reference无机类 Na2S 不锈钢酸洗污泥 5wt% Cr(Ⅵ) 87.4%;Ni 93.5% [72] FeS Cr污染土壤 2.5 mg·g−1 Cr(Ⅵ)15% [73] Na2S 垃圾焚烧飞灰 0.1 mol·kg−1 Cd72%;Cr72%;Cu82%;Ni77%;Pb78%;Zn81% [68] Na2S 垃圾焚烧飞灰 10%wt Cd 86.22%;Se 97.19 [63] Na2HPO4 垃圾焚烧飞灰 10%wt Pb 99.25%;Zn 81.76% NaH2PO4 铅锌尾矿 10%wt Pb 98.42%;Zn 79.08% [67] KH2PO4 Pb污染土壤 — Pb70% [74] Na3PO4 垃圾焚烧飞灰 10%wt Pb85% [75] H3PO4 垃圾焚烧飞灰 45 mL·kg−1 Pb99.87%;Zn94.7% [76] 羟基磷灰石(HAP) 重金属污染沉积物 10%wt Zn76%;Mn28%;Pb78%;Cd85% [77] Ca(H2PO4)2 重金属污染沉积物 10%wt Zn66%;Mn16%;Pb86%;Cd82% FeCl2 含砷尾矿废渣 Fe/As物质的
量比大于1pH在6.5—7.5范围内As稳定化率大于96% [78] FeSO4 雄黄尾矿 20%wt As98.15% [61] 硅灰 垃圾焚烧灰 20%wt Cu84%;Pb89%;Zn97% [79] 有机类 四硫代二氨基甲酸(TBA) 垃圾焚烧飞灰 0.1 mol·kg−1 Cd大于99.99%;Cr60%;Cu95%;Ni92%;Pb82%;Zn74% [68] 六硫代胍酸(SGA) 垃圾焚烧飞灰 0.1 mol·kg−1 Cd81%;Cr84%;Cu95%;Ni82%;Pb80%;Zn78% 二甲基二硫代氨基甲酸钠(SDD) 垃圾焚烧飞灰 0.1 mol·kg−1 Cd64%;Cr64%;Cu90%;Ni86%;Pb60%;Zn61% 三巯基均三嗪三钠盐(TMT) 铅锌尾矿 4%wt Pb:99.31%;Zn80.92% [67] 二异丙基二硫代磷酸钾(DDP) 垃圾焚烧飞灰 1%wt Pb、Zn、Cu的稳定化率均大于95% [80] 巯基官能化树枝状聚合物
(TEPA-SNa)垃圾焚烧飞灰 3%wt Pb接近100% [75] 硫脲 垃圾焚烧飞灰 10%wt Pb94.6% 二甲基二硫代氨基甲酸钠(SDD) 垃圾焚烧飞灰 5%wt Pb97%;Cd88% [81] 二硫代羧基功能化四乙基五胺(TEPA-DTC) 垃圾焚烧飞灰 5%wt Pb98.7%;Cd99.8% 二硫代羧基功能化聚氨基酰胺树枝状聚合物(PAMAM-0G-DTC) 垃圾焚烧飞灰 1%wt Pb98.4%;Cd97% 复合类 1.2%Na2S+1.2%NaH2PO4+0.8% DDTP 垃圾焚烧飞灰 — 可使Cu、Zn、Cd、Cr、Ni、Pb达到填埋标准 [66] DTC+ NaH2PO4+ Na2S 垃圾焚烧飞灰 3%wt 对Cd和Pb稳定化率大于98% [82] Na2S+EDTA二钠+ NaH2PO4
(2:1:2)垃圾焚烧飞灰 0.4%wt 可使Pb、Zn达到填埋标准 [83] 表 5 常用于重金属稳定化的微生物概述
Table 5. Overview of microorganisms commonly used for stabilization of heavy metals
类型
Type典型菌株
Typical strains诱导矿化机制
Mechanism of induced mineralization适宜条件
Conditions参考文献
ReferenceUPB 芽孢杆菌
克雷白氏杆菌
柠檬酸杆菌
赖氨酸芽胞杆菌CO(NH2)2+3H2O 2NH4++HCO3−+OH−$ \xrightarrow{\;\;\;{\text{脲酶}}\;\;\;} $
M2+ (aq)+CO32−(aq)→MCO3↓温度:25—35 ℃;
pH:7—9;[90-91] PSB 巨大芽孢杆菌
蜡样芽孢杆菌
阴沟肠杆菌
醋菌属有机磷酸盐+H2O PO43−/HPO42−$\xrightarrow{\;\;\;{\text{磷酸酶}}\;\;\;} $
M2+(aq)+PO43−/HPO42−(aq)→MPO4OH/MHPO4/M3(PO4)2↓温度:20—40 ℃;
pH:约7;
适合富含不溶性磷的环境[92-93] SRB 脱硫弧菌
脱硫单胞菌属CH3COO−+2H++SO42−→HS−+2H2O+2CO2
M2+(aq)+S2−(aq)→MS↓
M2+(aq)+CO32−(aq)→MCO3↓中温细菌:30—40 ℃;
高温细菌:55—60 ℃;
pH:5—10;
厌氧环境[94-95] 表 6 MIMP在重金属稳定化方面的研究进展
Table 6. Research progress in heavy metal stabilization by MIMP
类型
Type微生物
microbial固体废物
Solid waste重金属稳定化率
Stabilization rate of heavy metals稳定化机理/产物
Stabilization mechanism/product参考文献
ReferenceUPB 枯草芽孢杆菌 重金属污染土壤 Cr(Ⅲ): 99.95%;
Cu(Ⅱ): 95.90%;
Zn(Ⅱ): 86.59%沉淀和共沉淀;形成
Cu2(OH)2CO3、ZnCO3、NiCr2O4、FeCr2O3、ZN5(CO3)2(OH)6、CaCO3[87] 黏质沙雷氏菌 重金属污染土壤 Cd:65%—98% 形成CdCO3沉淀 [98] 阴沟肠杆菌 重金属污染土壤 Cd:80%—99% Cd与CaCO3的共沉淀 [98] 膨胀土杆菌 重金属污染土壤 Pb:100%; Cd100%; Zn:96%; Co:92%; Ni:90%; Cu:90% 形成ZnCO3、CuCO3、PbCO3、CdCO3、NiCO3和CoCO3沉淀. 土壤颗粒间隙有CaCO3晶体生成 [99] 蜡样芽孢杆菌NS4 重金属污染土壤 Ni可交换态降低了90% Ni在CaCO3的晶格中沉淀,并以 NiCO3的形式被稳定. [100] 巴氏杆菌 垃圾焚烧飞灰 Cu: 55.5%—93.5%;
Hg: 52.9%—60.6%
Pb: 56.9%—86.7%
Zn: 22.6%—35.2%
Ni: 34.9%—35.8%
Cr: 6.9%—11.7%
Cd: 13.3%—30.4%重金属转化为碳酸盐沉淀或是被大量形成的碳酸钙矿物所物理包封 [89] PSB 拉恩氏菌属 重金属污染土壤 Cu: 58.2%—75.8% Cu转化为棒状Cu3(OH)3PO4晶体 [101] 赖氨酸芽孢杆菌 重金属污染土壤 Pb:97.9% 形成Pb3(PO4)2、Pb5(PO4)3OH沉淀 [102] 植酸酶 铅锌尾矿 Pb;97.7% 形成了新辉石MgHPO4(H2O)3固化尾矿颗粒;Pb转化为Pb9(PO4)6 [103] SRB 脱硫孢子粉
氧化亚铁硫杆菌黄铜尾矿
铅锌尾矿Cu: 100%; Zn: 100%; Pb:84.62% 重金属形成了黑色金属硫化物沉淀 [94] 蜡样芽孢杆菌Cd01 重金属污染土壤 Cd:29.25% 细菌对Cd有生物吸附作用;
Cd形成CdS和Cd·xH3PO4沉淀[96] 梭状芽胞杆菌
脱硫肠状菌属废弃矿区尾矿 As残渣态比例从29%增加至69%;
Pb残渣态比例从49%增加至90%Pb和As转化为稳定的方铅矿(PbS)、雄黄(AsS)或雌黄(As2S3)等矿物 [88] 丙酸脱硫杆菌
脱硫弧菌金属冶炼厂污水沉积物 Cu: 100%; Pb: 100%
Cd: 98.5%; Zn: 90.69%重金属与硫化物形成金属硫化物沉淀 [104] 嗜酸氧化硫硫杆菌
氧化亚铁硫杆菌铅锌尾矿 Pb: 30%; Zn: 28% 两种微生物加速了尾矿中黄铁矿和黑云母类矿物的风化,促进了次生黄钾铁矾类矿物的生成,Pb和Zn被该类矿物固定 [105] -
[1] AKCIL A, ERUST C, OZDEMIROGLU S, et al. A review of approaches and techniques used in aquatic contaminated sediments: Metal removal and stabilization by chemical and biotechnological processes [J]. Journal of Cleaner Production, 2015, 86: 24-36. doi: 10.1016/j.jclepro.2014.08.009 [2] BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize? [J]. Journal of Hazardous Materials, 2014, 266: 141-166. doi: 10.1016/j.jhazmat.2013.12.018 [3] FAN C C, WANG B M, ZHANG T T. Review on cement stabilization/solidification of municipal solid waste incineration fly ash [J]. Advances in Materials Science and Engineering, 2018: 5120649. [4] 梁雅雅, 易筱筠, 党志, 等. 某铅锌尾矿库周边农田土壤重金属污染状况及风险评价 [J]. 农业环境科学学报, 2019, 38(1): 103-110. doi: 10.11654/jaes.2018-0252 LIANG Y Y, YI X Y, DANG Z, et al. Pollution and risk assessment of heavy metals in agricultural soils around a Pb-Zn tailing pond [J]. Journal of Agro-Environment Science, 2019, 38(1): 103-110(in Chinese). doi: 10.11654/jaes.2018-0252
[5] LI Z Y, MA Z W, van der KUIJP T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment [J]. Science of the Total Environment, 2014, 468/469: 843-853. doi: 10.1016/j.scitotenv.2013.08.090 [6] JIANG X W, LIU W H, XU H, et al. Characterizations of heavy metal contamination, microbial community, and resistance genes in a tailing of the largest copper mine in China [J]. Environmental Pollution, 2021, 280: 116947. doi: 10.1016/j.envpol.2021.116947 [7] ZHANG M J, SUN M J, WANG J L, et al. Geographical distribution and risk assessment of heavy metals: A case study of mine tailings pond [J]. Chemistry and Ecology, 2020, 36(1): 1-15. doi: 10.1080/02757540.2019.1676420 [8] BEMPAH C K, EWUSI A. Heavy metals contamination and human health risk assessment around Obuasi gold mine in Ghana [J]. Environmental Monitoring and Assessment, 2016, 188(5): 261. doi: 10.1007/s10661-016-5241-3 [9] 竹涛. 矿山固体废物处理与处置工程[M]. 北京: 冶金工业出版社, 2016. ZHU T. Mine solid waste treatment and disposal project [M]. Beijing: Metallurgical Industry Press, 2016(in Chinese).
[10] SAWYER S. International Waste Technologies/Geo-Con in situ stabilization/solidification: Applications analysis report[R]. Tech. Rep. EPA/540/A5-89/004, United States Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA, 1990. [11] BARTH E F. An overview of the history, present status, and future direction of solidification/stabilization technologies for hazardous waste treatment [J]. Journal of Hazardous Materials, 1990, 24(2/3): 103-109. [12] 环境保护部. 固体废物浸出毒性浸出方法 水平振荡法: HJ 557—2010[S]. 北京: 中国环境科学出版社, 2010. Ministry of Environmental Protection of the People's Republic of China. Solid waste-Extraction procedure for leaching toxicity-Horizontal vibration method: HJ 557—2010[S]. Beijing: China Environment Science Press, 2010(in Chinese).
[13] 刘锋, 王琪, 黄启飞, 等. 固体废物浸出毒性浸出方法标准研究 [J]. 环境科学研究, 2008, 21(6): 9-15. doi: 10.13198/j.res.2008.06.11.liuf.015 LIU F, WANG Q, HUANG Q F, et al. Study on the standard methods of leaching toxicity of solid waste [J]. Research of Environmental Sciences, 2008, 21(6): 9-15(in Chinese). doi: 10.13198/j.res.2008.06.11.liuf.015
[14] EPA U S. Toxicity Characteristics Leaching Procedure, Method 1311[S]. 1992. [15] INSTITUTION B S. En 12457 Leaching - Compliance Test For Leaching Of Granular Waste Materials[S]. 1996. [16] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017 [17] URE A M, QUEVAUVILLER P, MUNTAU H, et al. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European communities [J]. International Journal of Environmental Analytical Chemistry, 1993, 51(1/2/3/4): 135-151. [18] LIU J X, JIANG X M, ZHANG Y C, et al. Size segregation behavior of heavy metals in superfine pulverized coal using synchrotron radiation-induced X-ray fluorescence [J]. Fuel, 2016, 181: 1081-1088. doi: 10.1016/j.fuel.2016.04.115 [19] JIANG L, SUN H J, PENG T J, et al. Comprehensive evaluation of environmental availability, pollution level and leaching heavy metals behavior in non-ferrous metal tailings [J]. Journal of Environmental Management, 2021, 290: 112639. doi: 10.1016/j.jenvman.2021.112639 [20] RAZZELL W E. Chemical fixation, solidification of hazardous waste [J]. Waste Management & Research, 1990, 8(2): 105-111. [21] CONNER J R, HOEFFNER S L. A critical review of stabilization/solidification technology [J]. Critical Reviews in Environmental Science and Technology, 1998, 28(4): 397-462. doi: 10.1080/10643389891254250 [22] 段荣国. 中国水泥生产的物质消耗和环境排放分析 [J]. 工程技术(文摘版)·建筑, 2017(1): 92. DUAN R G. Material consumption and environmental emission analysis of Cement production in China [J]. Engineering Technology (Abstract Edition)· Architecture, 2017(1): 92(in Chinese).
[23] GRÜNHÄUSER SOARES E, CASTRO-GOMES J. Carbonation curing influencing factors of Carbonated Reactive Magnesia Cements (CRMC) - A review [J]. Journal of Cleaner Production, 2021, 305: 127210. doi: 10.1016/j.jclepro.2021.127210 [24] CHEN I A, HARGIS C W, JUENGER M C G. Understanding expansion in calcium sulfoaluminate-belite cements [J]. Cement and Concrete Research, 2012, 42(1): 51-60. doi: 10.1016/j.cemconres.2011.07.010 [25] ZHANG H Q, YANG Y Y, YI Y C. Effect of sulfate erosion on strength and leaching characteristic of stabilized heavy metal contaminated red clay [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(3): 666-675. doi: 10.1016/S1003-6326(17)60074-8 [26] WANG L, YU K Q, LI J S, et al. Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil [J]. Chemical Engineering Journal, 2018, 351: 418-427. doi: 10.1016/j.cej.2018.06.118 [27] LI Z D, LI T H, SHI L Z, et al. The rainfall effect onto solidification and stabilization of heavy metal-polluted sediments [J]. Royal Society Open Science, 2020, 7(7): 192234. doi: 10.1098/rsos.192234 [28] GU Y C, LI J L, PENG J K, et al. Immobilization of hazardous ferronickel slag treated using ternary limestone calcined clay cement [J]. Construction and Building Materials, 2020, 250: 118837. doi: 10.1016/j.conbuildmat.2020.118837 [29] GÁLVEZ-MARTOS J L, VALENTE A, MARTÍNEZ-FERNÁNDEZ M, et al. Eco-efficiency assessment of calcium sulfoaluminate clinker production [J]. Journal of Industrial Ecology, 2020, 24(3): 695-706. doi: 10.1111/jiec.12967 [30] TEERAWATTANASUK C, VOOTTIPRUEX P, HORPIBULSUK S. Improved heavy metal immobilization of compacted clay by cement treatment [J]. Heliyon, 2021, 7(4): e06917. doi: 10.1016/j.heliyon.2021.e06917 [31] OUHADI V R, YONG R N, DEIRANLOU M. Enhancement of cement-based solidification/stabilization of a lead-contaminated smectite clay [J]. Journal of Hazardous Materials, 2021, 403: 123969. doi: 10.1016/j.jhazmat.2020.123969 [32] CAO X, MA R, ZHANG Q S, et al. The factors influencing sludge incineration residue (SIR)-based magnesium potassium phosphate cement and the solidification/stabilization characteristics and mechanisms of heavy metals [J]. Chemosphere, 2020, 261: 127789. doi: 10.1016/j.chemosphere.2020.127789 [33] KIVENTERÄ J, PIEKKARI K, ISTERI V, et al. Solidification/stabilization of gold mine tailings using calcium sulfoaluminate-belite cement [J]. Journal of Cleaner Production, 2019, 239: 118008. doi: 10.1016/j.jclepro.2019.118008 [34] REDDY V A, SOLANKI C H, KUMAR S, et al. Comparison of limestone calcined clay cement and ordinary Portland cement for stabilization/solidification of Pb-Zn smelter residue [J]. Environmental Science and Pollution Research International, 2022, 29(8): 11393-11404. doi: 10.1007/s11356-021-16421-w [35] PANTAZOPOULOU E, NTINOUDI E, ZOUBOULIS A I, et al. Heavy metal stabilization of industrial solid wastes using low-grade magnesia, Portland and magnesia cements [J]. Journal of Material Cycles and Waste Management, 2020, 22(4): 975-985. doi: 10.1007/s10163-020-00985-9 [36] FAHIM HUSEIEN G, MIRZA J, ISMAIL M, et al. Geopolymer mortars as sustainable repair material: A comprehensive review [J]. Renewable and Sustainable Energy Reviews, 2017, 80: 54-74. doi: 10.1016/j.rser.2017.05.076 [37] DAVIDOVITS J. Geopolymers [J]. Journal of Thermal Analysis, 1991, 37(8): 1633-1656. doi: 10.1007/BF01912193 [38] ALBITAR M, MOHAMED ALI M S, VISINTIN P. Experimental study on fly ash and lead smelter slag-based geopolymer concrete columns [J]. Construction and Building Materials, 2017, 141: 104-112. doi: 10.1016/j.conbuildmat.2017.03.014 [39] NATH S K, MUKHERJEE S, MAITRA S, et al. Kinetics study of geopolymerization of fly ash using isothermal conduction calorimetry [J]. Journal of Thermal Analysis and Calorimetry, 2017, 127(3): 1953-1961. doi: 10.1007/s10973-016-5823-x [40] KOMNITSAS K, ZAHARAKI D. Geopolymerisation: A review and prospects for the minerals industry [J]. Minerals Engineering, 2007, 20(14): 1261-1277. doi: 10.1016/j.mineng.2007.07.011 [41] PÉREZ-VILLAREJO L, BONET-MARTÍNEZ E, ELICHE-QUESADA D, et al. Biomass fly ash and aluminium industry slags-based geopolymers [J]. Materials Letters, 2018, 229: 6-12. doi: 10.1016/j.matlet.2018.06.100 [42] ZHANG Z H, ZHU H J, ZHOU C H, et al. Geopolymer from Kaolin in China: An overview [J]. Applied Clay Science, 2016, 119: 31-41. doi: 10.1016/j.clay.2015.04.023 [43] (法)约瑟夫·戴维德维斯. 地聚合物化学及应用[M]. 北京: 国防工业出版社, 2011. JOSEPH D. Geopolymer chemistry & applications[M]. Beijing: National Defense Industry Press, 2011(in Chinese).
[44] HAJIMOHAMMADI A, NGO T, KASHANI A. Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders [J]. Journal of Cleaner Production, 2018, 193(aug.20): 593-603. [45] LI J, LI J X, WEI H, et al. Alkaline-thermal activated electrolytic manganese residue-based geopolymers for efficient immobilization of heavy metals [J]. Construction and Building Materials, 2021, 298: 123853. doi: 10.1016/j.conbuildmat.2021.123853 [46] LI Y C, MIN X B, KE Y, et al. Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation [J]. Waste Management, 2019, 83: 202-208. doi: 10.1016/j.wasman.2018.11.019 [47] ZHANG X L, ZHANG S Y, LIU H, et al. Disposal of mine tailings via geopolymerization [J]. Journal of Cleaner Production, 2021, 284: 124756. doi: 10.1016/j.jclepro.2020.124756 [48] KRÄNZLEIN E, HARMEL J, PÖLLMANN H, et al. Influence of the Si/Al ratio in geopolymers on the stability against acidic attack and the immobilization of Pb2+ and Zn2+ [J]. Construction and Building Materials, 2019, 227: 116634. doi: 10.1016/j.conbuildmat.2019.08.015 [49] BOCA SANTA R A A, SOARES C, RIELLA H G. Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals [J]. Journal of Hazardous Materials, 2016, 318: 145-153. doi: 10.1016/j.jhazmat.2016.06.059 [50] FAN C C, WANG B M, AI H M, et al. A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash [J]. Journal of Cleaner Production, 2021, 319: 128790. doi: 10.1016/j.jclepro.2021.128790 [51] XIA M, MUHAMMAD F, ZENG L H, et al. Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer [J]. Journal of Cleaner Production, 2019, 209: 1206-1215. doi: 10.1016/j.jclepro.2018.10.265 [52] CHEN Y C, CHEN F Y, ZHOU F, et al. Early solidification/stabilization mechanism of heavy metals (Pb, Cr and Zn) in Shell coal gasification fly ash based geopolymer [J]. Science of the Total Environment, 2022, 802: 149905. doi: 10.1016/j.scitotenv.2021.149905 [53] KIVENTERÄ J, LANCELLOTTI I, CATAURO M, et al. Alkali activation as new option for gold mine tailings inertization [J]. Journal of Cleaner Production, 2018, 187: 76-84. doi: 10.1016/j.jclepro.2018.03.182 [54] SUN S C, LIN J H, ZHANG P X, et al. Geopolymer synthetized from sludge residue pretreated by the wet alkalinizing method: Compressive strength and immobilization efficiency of heavy metal [J]. Construction and Building Materials, 2018, 170: 619-626. doi: 10.1016/j.conbuildmat.2018.03.068 [55] HU S X, ZHONG L L, YANG X J, et al. Synthesis of rare earth tailing-based geopolymer for efficiently immobilizing heavy metals [J]. Construction and Building Materials, 2020, 254: 119273. doi: 10.1016/j.conbuildmat.2020.119273 [56] WANG Y G, HAN F L, MU J Q. Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers [J]. Construction and Building Materials, 2018, 160: 818-827. doi: 10.1016/j.conbuildmat.2017.12.006 [57] DERAKHSHAN NEJAD Z, JUNG M C, KIM K H. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology [J]. Environmental Geochemistry and Health, 2018, 40(3): 927-953. doi: 10.1007/s10653-017-9964-z [58] LEI C, CHEN T, ZHANG Q Y, et al. Remediation of lead polluted soil by active silicate material prepared from coal fly ash [J]. Ecotoxicology and Environmental Safety, 2020, 206: 111409. doi: 10.1016/j.ecoenv.2020.111409 [59] YUAN X Z, XIONG T, WANG H, et al. Immobilization of heavy metals in two contaminated soils using a modified magnesium silicate stabilizer [J]. Environmental Science and Pollution Research, 2018, 25(32): 32562-32571. doi: 10.1007/s11356-018-3140-6 [60] BAKER M R, COUTELOT F M, SEAMAN J C. Phosphate amendments for chemical immobilization of uranium in contaminated soil [J]. Environment International, 2019, 129: 565-572. doi: 10.1016/j.envint.2019.03.017 [61] WANG X, ZHANG H, WANG L L, et al. Transformation of arsenic during realgar tailings stabilization using ferrous sulfate in a pilot-scale treatment [J]. Science of the Total Environment, 2019, 668: 32-39. doi: 10.1016/j.scitotenv.2019.02.289 [62] CARLSON L, BIGHAM J M, SCHWERTMANN U, et al. Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: A comparison with synthetic analogues [J]. Environmental Science & Technology, 2002, 36(8): 1712-1719. [63] 刘引, 杨为中, 孙晓龙, 等. 无机试剂无害化处理垃圾焚烧飞灰的研究 [J]. 环境科学导刊, 2015, 34(5): 72-77. doi: 10.3969/j.issn.1673-9655.2015.05.020 LIU Y, YANG W Z, SUN X L, et al. Experimental study of heavy metal stabilization in fly ash of waste combustion using inorganic reagents [J]. Environmental Science Survey, 2015, 34(5): 72-77(in Chinese). doi: 10.3969/j.issn.1673-9655.2015.05.020
[64] 殷景华, 王雅珍, 鞠刚. 功能材料概论[M]. 哈尔滨: 哈尔滨工业大学出版社, 2017. YIN J H, WANG Y Z, JU G. An introduction to functional materials[M]. Harbin: Harbin Institute of Technology Press, 2017(in Chinese).
[65] ZHENG L, WANG W, LI Z F, et al. Immobilization of heavy metal using dithiocarbamate agent [J]. Journal of Material Cycles and Waste Management, 2019, 21(3): 652-658. doi: 10.1007/s10163-019-00829-1 [66] ZHU J M, HAO Q J, CHEN J J, et al. Distribution characteristics and comparison of chemical stabilization ways of heavy metals from MSW incineration fly ashes [J]. Waste Management, 2020, 113: 488-496. doi: 10.1016/j.wasman.2020.06.032 [67] LUO Z T, TANG C B, HAO Y H, et al. Solidification/stabilization of heavy metals and its efficiency in lead-zinc tailings using different chemical agents [J]. Environmental Technology, 2020: 1-11. [68] WANG F H, ZHANG F, CHEN Y J, et al. A comparative study on the heavy metal solidification/stabilization performance of four chemical solidifying agents in municipal solid waste incineration fly ash [J]. Journal of Hazardous Materials, 2015, 300: 451-458. doi: 10.1016/j.jhazmat.2015.07.037 [69] XU Y. Stabilization of heavy metal-contaminated sediment with a Chelator and humic acid mixture [J]. Water, Air, & Soil Pollution, 2016, 228(1): 1-11. [70] 蒋建国, 王伟, 李国鼎, 等. 重金属螯合剂处理焚烧飞灰的稳定化技术研究 [J]. 环境科学, 1999, 20(3): 13-17. doi: 10.3321/j.issn:0250-3301.1999.03.004 JIANG J G, WANG W, LI G D, et al. Experimental study on the chemical stabilization technology in treating with fly ash using heavy metal chelating agent [J]. Environmental Science, 1999, 20(3): 13-17(in Chinese). doi: 10.3321/j.issn:0250-3301.1999.03.004
[71] 朱节民, 李梦雅, 郑德聪, 等. 重庆市垃圾焚烧飞灰中重金属分布特征及药剂稳定化处理 [J]. 环境化学, 2018, 37(4): 880-888. doi: 10.7524/j.issn.0254-6108.2017091407 ZHU J M, LI M Y, ZHENG D C, et al. Distribution and chemical stabilization of heavy metals in municipal solid waste incineration fly ash of Chongqing [J]. Environmental Chemistry, 2018, 37(4): 880-888(in Chinese). doi: 10.7524/j.issn.0254-6108.2017091407
[72] SU P D, ZHANG J K, LI Y D. Investigation of chemical associations and leaching behavior of heavy metals in sodium sulfide hydrate stabilized stainless steel pickling sludge [J]. Process Safety and Environmental Protection, 2019, 123: 79-86. doi: 10.1016/j.psep.2019.01.001 [73] LYU H H, ZHAO H, TANG J C, et al. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite [J]. Chemosphere, 2018, 194: 360-369. doi: 10.1016/j.chemosphere.2017.11.182 [74] OSBORNE L R, BAKER L L, STRAWN D G. Lead immobilization and phosphorus availability in phosphate-amended, mine-contaminated soils [J]. Journal of Environmental Quality, 2015, 44(1): 183-190. doi: 10.2134/jeq2014.07.0323 [75] ZHANG B R, ZHOU W X, ZHAO H P, et al. Stabilization/solidification of lead in MSWI fly ash with mercapto functionalized dendrimer Chelator [J]. Waste Management, 2016, 50: 105-112. doi: 10.1016/j.wasman.2016.02.001 [76] 郑鹏, 刘建国, 刘锋, 等. 垃圾焚烧飞灰磷酸洗涤对重金属的固定效应研究 [J]. 环境工程学报, 2007, 1(1): 121-125. doi: 10.3969/j.issn.1673-9108.2007.01.031 ZHENG P, LIU J G, LIU F, et al. Effects of phosphoric acid washing on immobilization of heavy metals in municipal solid waste incineration fly ash [J]. Chinese Journal of Environmental Engineering, 2007, 1(1): 121-125(in Chinese). doi: 10.3969/j.issn.1673-9108.2007.01.031
[77] ZHANG Z B, SHI X H, ZHANG Y H, et al. Study on immobilization of diatomite, Ca(H2PO4)2, CaCO3, HAP and nano-HAP for heavy metal contaminated sediment [J]. Water Quality Research Journal, 2020, 55(4): 370-381. doi: 10.2166/wqrj.2020.117 [78] 陆俏利, 瞿广飞, 吴斌, 等. 矿区含砷尾矿及废渣稳定化研究 [J]. 环境工程学报, 2016, 10(5): 2587-2594. doi: 10.12030/j.cjee.201412257 LU Q L, QU G F, WU B, et al. Study on stabilization of arsenic tailings and waste residue [J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2587-2594(in Chinese). doi: 10.12030/j.cjee.201412257
[79] LI X Y, CHEN Q Y, ZHOU Y S, et al. Stabilization of heavy metals in MSWI fly ash using silica fume [J]. Waste Management, 2014, 34(12): 2494-2504. doi: 10.1016/j.wasman.2014.08.027 [80] XU Y, CHEN Y, FENG Y Y. Stabilization treatment of the heavy metals in fly ash from municipal solid waste incineration using diisopropyl dithiophosphate potassium [J]. Environmental Technology, 2013, 34(9/10/11/12): 1411-1419. [81] ZHANG M L, GUO M R, ZHANG B R, et al. Stabilization of heavy metals in MSWI fly ash with a novel dithiocarboxylate-functionalized polyaminoamide dendrimer [J]. Waste Management, 2020, 105: 289-298. doi: 10.1016/j.wasman.2020.02.004 [82] 李静, 周斌, 易新建, 等. 垃圾焚烧飞灰重金属稳定化药剂处理效果 [J]. 环境工程学报, 2016, 10(6): 3242-3248. doi: 10.12030/j.cjee.201501090 LI J, ZHOU B, YI X J, et al. Treatment efficiencies of heavy metals in municipal solid waste incineration fly ash with stabilization agents [J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3242-3248(in Chinese). doi: 10.12030/j.cjee.201501090
[83] 刘元元, 王里奥, 林祥, 等. 城市垃圾焚烧飞灰重金属药剂配伍稳定化实验研究 [J]. 环境工程学报, 2007, 1(10): 94-99. doi: 10.3969/j.issn.1673-9108.2007.10.022 LIU Y Y, WANG L, LIN X, et al. Experimental study of the stabilization of heavy metals in municipal solid waste incineration fly ash by chemical agent matching [J]. Chinese Journal of Environmental Engineering, 2007, 1(10): 94-99(in Chinese). doi: 10.3969/j.issn.1673-9108.2007.10.022
[84] CHOI S G, CHANG I, LEE M, et al. Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers [J]. Construction and Building Materials, 2020, 246: 118415. doi: 10.1016/j.conbuildmat.2020.118415 [85] KRAJEWSKA B. Urease-aided calcium carbonate mineralization for engineering applications: A review [J]. Journal of Advanced Research, 2018, 13: 59-67. doi: 10.1016/j.jare.2017.10.009 [86] HAN L J, LI J S, XUE Q, et al. Bacterial-induced mineralization (BIM) for soil solidification and heavy metal stabilization: A critical review [J]. Science of the Total Environment, 2020, 746: 140967. doi: 10.1016/j.scitotenv.2020.140967 [87] MAITY J P, CHEN G S, HUANG Y H, et al. Ecofriendly heavy metal stabilization: Microbial induced mineral precipitation (MIMP) and biomineralization for heavy metals within the contaminated soil by indigenous bacteria [J]. Geomicrobiology Journal, 2019, 36(7): 612-623. doi: 10.1080/01490451.2019.1597216 [88] VALENZUELA E I, GARCÍA-FIGUEROA A C, AMÁBILIS-SOSA L E, et al. Stabilization of potentially toxic elements contained in mine waste: A microbiological approach for the environmental management of mine tailings [J]. Journal of Environmental Management, 2020, 270: 110873. doi: 10.1016/j.jenvman.2020.110873 [89] CHEN P, ZHENG H, XU H, et al. Microbial induced solidification and stabilization of municipal solid waste incineration fly ash with high alkalinity and heavy metal toxicity [J]. PLoS One, 2019, 14(10): e0223900. doi: 10.1371/journal.pone.0223900 [90] QIAN C X, YU X N, WANG X. Potential uses and cementing mechanism of bio-carbonate cement and bio-phosphate cement [J]. AIP Advances, 2018, 8(9): 095224. doi: 10.1063/1.5040730 [91] WANG Z Y, ZHANG N, CAI G J, et al. Review of ground improvement using microbial induced carbonate precipitation (MICP) [J]. Marine Georesources & Geotechnology, 2017, 35(8): 1135-1146. [92] LI C K, LI Q S, WANG Z P, et al. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite [J]. Scientific Reports, 2019, 9(1): 15291. doi: 10.1038/s41598-019-51804-7 [93] YU X N, JIANG J G. Phosphate microbial mineralization consolidation of waste incineration fly ash and removal of lead ions [J]. Ecotoxicology and Environmental Safety, 2020, 191: 110224. doi: 10.1016/j.ecoenv.2020.110224 [94] LIU X Y, ZHANG M J, LI Y B, et al. In situ bioremediation of tailings by sulfate reducing bacteria and iron reducing bacteria: Lab- and field-scale remediation of sulfidic mine tailings [J]. Solid State Phenomena, 2017, 262: 651-655. doi: 10.4028/www.scientific.net/SSP.262.651 [95] SHEORA N A S, SHEORAN V, CHOUDHARY R P. Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: A review [J]. Minerals Engineering, 2010, 23(14): 1073-1100. doi: 10.1016/j.mineng.2010.07.001 [96] LI F, WANG W, LI C C, et al. Self-mediated pH changes in culture medium affecting biosorption and biomineralization of Cd2+ by Bacillus cereus Cd [J]. Journal of Hazardous Materials, 2018, 358: 178-186. doi: 10.1016/j.jhazmat.2018.06.066 [97] KANG C H, KWON Y J, SO J S. Bioremediation of heavy metals by using bacterial mixtures [J]. Ecological Engineering, 2016, 89: 64-69. doi: 10.1016/j.ecoleng.2016.01.023 [98] BHATTACHARYA A, NAIK S N, KHARE S K. Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (Ⅱ) [J]. Journal of Environmental Management, 2018, 215: 143-152. doi: 10.1016/j.jenvman.2018.03.055 [99] LI M, CHENG X H, GUO H X, et al. Biomineralization of carbonate by Terrabacter tumescens for heavy metal removal and biogrouting applications [J]. Journal of Environmental Engineering, 2016, 142(9): 1-5. [100] ZHU X J, LI W L, ZHAN L, et al. The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil [J]. Environmental Pollution, 2016, 219: 149-155. doi: 10.1016/j.envpol.2016.10.047 [101] ZHAO X M, DO H, ZHOU Y, et al. Rahnella sp. LRP3 induces phosphate precipitation of Cu (Ⅱ) and its role in copper-contaminated soil remediation [J]. Journal of Hazardous Materials, 2019, 368: 133-140. doi: 10.1016/j.jhazmat.2019.01.029 [102] ZHANG K J, ZHANG D W, WU X J, et al. Continuous and efficient immobilization of heavy metals by phosphate-mineralized bacterial consortium [J]. Journal of Hazardous Materials, 2021, 416: 125800. doi: 10.1016/j.jhazmat.2021.125800 [103] HAN L J, LI J S, XUE Q, et al. Enzymatically induced phosphate precipitation (EIPP) for stabilization/solidification (S/S) treatment of heavy metal tailings [J]. Construction and Building Materials, 2022, 314: 125577. doi: 10.1016/j.conbuildmat.2021.125577 [104] LI X, WU Y E, ZHANG C, et al. Immobilizing of heavy metals in sediments contaminated by nonferrous metals smelting plant sewage with sulfate reducing bacteria and micro zero valent iron [J]. Chemical Engineering Journal, 2016, 306: 393-400. doi: 10.1016/j.cej.2016.07.079 [105] LIU Y J, WU S L, SOUTHAM G, et al. Bioaugmentation with Acidithiobacillus species accelerates mineral weathering and formation of secondary mineral cements for hardpan development in sulfidic Pb-Zn tailings [J]. Journal of Hazardous Materials, 2021, 411: 124988. doi: 10.1016/j.jhazmat.2020.124988