固相萃取-液相色谱串联质谱(LC-MS/MS)同步测定鸡蛋样品中有机磷酸酯及其代谢产物

周颖, 朱钰, 李宗睿, 徐森昊, 朱晓辉, 陈希超, 向明灯, 于云江. 固相萃取-液相色谱串联质谱(LC-MS/MS)同步测定鸡蛋样品中有机磷酸酯及其代谢产物[J]. 环境化学, 2023, 42(6): 1970-1980. doi: 10.7524/j.issn.0254-6108.2022011001
引用本文: 周颖, 朱钰, 李宗睿, 徐森昊, 朱晓辉, 陈希超, 向明灯, 于云江. 固相萃取-液相色谱串联质谱(LC-MS/MS)同步测定鸡蛋样品中有机磷酸酯及其代谢产物[J]. 环境化学, 2023, 42(6): 1970-1980. doi: 10.7524/j.issn.0254-6108.2022011001
ZHOU Ying, ZHU Yu, LI Zongrui, XU Senhao, ZHU Xiaohui, CHEN Xichao, XIANG Mingdeng, YU Yunjiang. Simultaneous determination of organophosphate esters and their specific metabolites in egg samples by solid-phase extraction with LC-MS/MS[J]. Environmental Chemistry, 2023, 42(6): 1970-1980. doi: 10.7524/j.issn.0254-6108.2022011001
Citation: ZHOU Ying, ZHU Yu, LI Zongrui, XU Senhao, ZHU Xiaohui, CHEN Xichao, XIANG Mingdeng, YU Yunjiang. Simultaneous determination of organophosphate esters and their specific metabolites in egg samples by solid-phase extraction with LC-MS/MS[J]. Environmental Chemistry, 2023, 42(6): 1970-1980. doi: 10.7524/j.issn.0254-6108.2022011001

固相萃取-液相色谱串联质谱(LC-MS/MS)同步测定鸡蛋样品中有机磷酸酯及其代谢产物

    通讯作者: Tel:020-29119807,E-mail:yuyunjiang@scies.org
  • 基金项目:
    国家重点研发计划项目(2019YFC1803403)和国家自然科学基金(42007347)资助.

Simultaneous determination of organophosphate esters and their specific metabolites in egg samples by solid-phase extraction with LC-MS/MS

    Corresponding author: YU Yunjiang, yuyunjiang@scies.org
  • Fund Project: the National Key R&D Program of China(2019YFC1803403)and the National Natural Science Foundation of China(42007347)
  • 摘要: 本研究基于固相萃取和液相色谱串联质谱(LC-MS/MS)建立了同步提取、净化和检测高脂肪含量生物样品中7种有机磷酸酯及其9种代谢产物的分析方法. 取鸡蛋样品用体积比为9 : 1乙腈 : 甲苯混合溶剂超声提取,用Florisil-PR 固相萃取柱初步净化,将含有目标物的溶液经Z-Sep/C18除脂,并采用Strata X-AW柱进一步净化,使用LC-MS/MS进行分析. 目标化合物在0.2—500.0 ng·mL−1范围内呈良好线性关系,相关系数R2介于0.997—0.999之间. OPEs(有机磷酸酯)和它们的代谢物(mOPEs)的加标回收率范围分别在69.9%—81.3%和61.2%—82.5%之间,相对标准偏差(RSDs)分别介于7.9%—20%和11%—24%之间. 利用本文建立的分析方法对12例鸡蛋样品中的16种OPEs和mOPEs进行同步检测,鸡蛋样品中Σ7OPEs的浓度范围为1.43—5.9 ng·g−1,TCPP浓度最高(浓度中值为2.13 ng·g−1),占OPEs总浓度的58.8%. 7种OPEs除TEHP外,其他OPEs均有检出. Σ9mOPEs的浓度范围为2.81—11.8 ng·g−1,DPHP(磷酸三(2-氯丙基)酯)为主要检出单体(浓度中值为3.14 ng·g−1),浓度贡献占比为54%. 9种mOPEs除BCEP(二-β,β'-氯乙基磷酸)和BCPP(双-(1-氯-2-丙基)磷酸)外,其他mOPEs均有检出.
  • 加载中
  • 图 1  目标化合物标准品色谱图

    Figure 1.  Ion chromatograms obtained with analyte standards

    表 1  有机磷酸酯及其代谢产物的中文全称、英文全称、简称及CAS

    Table 1.  Chinese name,English full name,abbreviation and CAS number of OPEs and their specific metabolites

    中文全称
    Chinese name
    英文全称
    English full name
    简称
    Abbreviation
    CAS内标
    Internal standard
    有机磷酸酯(OPEs)
    磷酸三丁酯Tributyl PhosphateTBP126-73-8d27-TBP
    磷酸三(2-氯乙基)酯Tris(2-Chloroethyl)PhosphateTCEP115-96-8d12-TCEP
    磷酸三(2-乙基己基)酯Tris(2-Ethylhexyl)PhosphateTEHP78-42-2d27-TBP
    磷酸三(1,3-二氯-2-丙基)磷酸酯Tris(1-Dichloro-2-propyl)PhosphateTDCPP13674-87-8d18-TCPP
    磷酸三苯酯Triphenyl PhosphateTPHP115-86-6d15-TPHP
    磷酸三(2-丁氧乙基)酯Tris(2-Butoxyethyl)PhosphateTBOEP78-51-3d27-TBOEP
    磷酸三(2-氯丙基)酯Tris(1-Chloro-2-propyl)PhosphateTCPP13674-84-5d18-TCPP
    有机磷酸酯代谢产物(mOPEs)
    磷酸二正丁酯Dibutyl PhosphateDBP107-66-4d10-BDCIPP
    二-β,β'-氯乙基磷酸Di-β,β'-Chloroethylphosphoric AcidBCEP3040-56-0d8-BCEP
    双 - (1-氯-2-丙基)磷酸Bis-(1-chloro-2-propyl)phosphateBCPP789440-10-4d10-DPHP
    双(1,3-二氯-2-丙基)磷酸Bis(1,3-dichloro-2-propyl) PhosphateBDCPP72236-72-7d10-BDCIPP
    磷酸二苯酯Diphenyl phosphateDPHP838-85-7d10-DPHP
    双(2-丁氧基乙基)2-羟基乙基磷酸三酯Bis(2-butoxyethyl) 2-Hydroxyethyl
    Phosphate Triester
    BBOEHEP1477494-86-2d4-BBOEHEP
    双(丁氧乙基)磷酸酯Bis(butoxyethyl) PhosphateBBOEP14260-97-0d8-BBOEP
    二(2-乙基己基)磷酸酯Di(2-ethylhexyl) phosphateBEHP298-07-7d8-BBOEP
    双(2-丁氧基乙基)2-(羟基丁氧基)乙基磷酸三酯Bis(2-butoxyethyl) 2-(3-Hydroxybutoxy)
    ethyl Phosphate Triester
    OH-TBOEP1477494-87-3d8-BBOEP
    中文全称
    Chinese name
    英文全称
    English full name
    简称
    Abbreviation
    CAS内标
    Internal standard
    有机磷酸酯(OPEs)
    磷酸三丁酯Tributyl PhosphateTBP126-73-8d27-TBP
    磷酸三(2-氯乙基)酯Tris(2-Chloroethyl)PhosphateTCEP115-96-8d12-TCEP
    磷酸三(2-乙基己基)酯Tris(2-Ethylhexyl)PhosphateTEHP78-42-2d27-TBP
    磷酸三(1,3-二氯-2-丙基)磷酸酯Tris(1-Dichloro-2-propyl)PhosphateTDCPP13674-87-8d18-TCPP
    磷酸三苯酯Triphenyl PhosphateTPHP115-86-6d15-TPHP
    磷酸三(2-丁氧乙基)酯Tris(2-Butoxyethyl)PhosphateTBOEP78-51-3d27-TBOEP
    磷酸三(2-氯丙基)酯Tris(1-Chloro-2-propyl)PhosphateTCPP13674-84-5d18-TCPP
    有机磷酸酯代谢产物(mOPEs)
    磷酸二正丁酯Dibutyl PhosphateDBP107-66-4d10-BDCIPP
    二-β,β'-氯乙基磷酸Di-β,β'-Chloroethylphosphoric AcidBCEP3040-56-0d8-BCEP
    双 - (1-氯-2-丙基)磷酸Bis-(1-chloro-2-propyl)phosphateBCPP789440-10-4d10-DPHP
    双(1,3-二氯-2-丙基)磷酸Bis(1,3-dichloro-2-propyl) PhosphateBDCPP72236-72-7d10-BDCIPP
    磷酸二苯酯Diphenyl phosphateDPHP838-85-7d10-DPHP
    双(2-丁氧基乙基)2-羟基乙基磷酸三酯Bis(2-butoxyethyl) 2-Hydroxyethyl
    Phosphate Triester
    BBOEHEP1477494-86-2d4-BBOEHEP
    双(丁氧乙基)磷酸酯Bis(butoxyethyl) PhosphateBBOEP14260-97-0d8-BBOEP
    二(2-乙基己基)磷酸酯Di(2-ethylhexyl) phosphateBEHP298-07-7d8-BBOEP
    双(2-丁氧基乙基)2-(羟基丁氧基)乙基磷酸三酯Bis(2-butoxyethyl) 2-(3-Hydroxybutoxy)
    ethyl Phosphate Triester
    OH-TBOEP1477494-87-3d8-BBOEP
    下载: 导出CSV

    表 2  流动相洗脱梯度

    Table 2.  Gradient elution of mobile phase

    时间/min
    Time
    (A)/%(B)/%流速/(μL·min−1
    Velocity
    0991500
    7.5199500
    11.5199500
    15.0991500
    时间/min
    Time
    (A)/%(B)/%流速/(μL·min−1
    Velocity
    0991500
    7.5199500
    11.5199500
    15.0991500
    下载: 导出CSV

    表 3  ESI-MS/MS参数

    Table 3.  ESI-MS/MS Parameter

    分析物

    Analytes
    母离子

    Precursor ion(m/z)
    子离子

    Product ion(m/z)
    时间 /min
    Time
    去簇电压 /V
    DP
    碰撞能/V
    CE
    正离子模式
    TBP267.398.7/154.99.2992/9020/15
    TCEP289.065.17.067846
    TCPP327.099.8/250.98,3633/6642/13
    TDCPP421.4147.2/221.19.47123/11331/31
    TPHP327.4152.4/215.09.0393/11245/33
    TBOEP399.2299.2/199.39.13115/7519/21
    TEHP435.499.2/211.112.15116/11617/11
    BBOEHEP342.9243.1/101.18.1575/5916/21
    OH-TBOEP415.1199.1/243.18.5782/8521/23
    负离子模式
    DBP209153/797.6−70/−70−20/−45
    BCEP221.1354.53−39−24
    BCPP249.0/250.935.1/37.16.57−30/−13−21/−21
    BDCPP316.835.17.94−42−31
    DPHP249.2/265.193.1/96.77.05−87/−97−36/−38
    BBOEP296.9182.58.3−76−46
    BEHP321.1209.2/7913.39−97/−102−28/−45
    分析物

    Analytes
    母离子

    Precursor ion(m/z)
    子离子

    Product ion(m/z)
    时间 /min
    Time
    去簇电压 /V
    DP
    碰撞能/V
    CE
    正离子模式
    TBP267.398.7/154.99.2992/9020/15
    TCEP289.065.17.067846
    TCPP327.099.8/250.98,3633/6642/13
    TDCPP421.4147.2/221.19.47123/11331/31
    TPHP327.4152.4/215.09.0393/11245/33
    TBOEP399.2299.2/199.39.13115/7519/21
    TEHP435.499.2/211.112.15116/11617/11
    BBOEHEP342.9243.1/101.18.1575/5916/21
    OH-TBOEP415.1199.1/243.18.5782/8521/23
    负离子模式
    DBP209153/797.6−70/−70−20/−45
    BCEP221.1354.53−39−24
    BCPP249.0/250.935.1/37.16.57−30/−13−21/−21
    BDCPP316.835.17.94−42−31
    DPHP249.2/265.193.1/96.77.05−87/−97−36/−38
    BBOEP296.9182.58.3−76−46
    BEHP321.1209.2/7913.39−97/−102−28/−45
    下载: 导出CSV

    表 4  不同萃取溶剂空白加标回收率(%)

    Table 4.  Blank standard recovery of different extraction solvents(%)

    分析物
    Analytes
    萃取溶剂
    Extraction solvents
    乙腈甲醇 :甲苯乙腈 :甲苯
    OPEs
    TCEP656667
    TCPP908888
    TDCPP485051
    TBP414852
    TBOEP105111109
    TEHP315790
    TPHP898890
    mOPEs
    DBP611098
    BCEP888394
    BCPP8611850
    BDCPP889194
    DPHP748080
    BBOEHEP737575
    BBOEP110103130
    BEHP601688
    OH-TBOEP818082
    分析物
    Analytes
    萃取溶剂
    Extraction solvents
    乙腈甲醇 :甲苯乙腈 :甲苯
    OPEs
    TCEP656667
    TCPP908888
    TDCPP485051
    TBP414852
    TBOEP105111109
    TEHP315790
    TPHP898890
    mOPEs
    DBP611098
    BCEP888394
    BCPP8611850
    BDCPP889194
    DPHP748080
    BBOEHEP737575
    BBOEP110103130
    BEHP601688
    OH-TBOEP818082
    下载: 导出CSV

    表 5  目标化合物的线性回归方程、相关系数及方法定量限

    Table 5.  Linear regression equations, correlation coefficients and method detection limit of quantification for analyte compounds

    分析物
    Analytes
    线性回归方程
    Linear regression equations
    相关系数
    Correlation coefficient
    空白浓度/(ng·g−1
    Blank
    方法定量限/( ng·g−1
    MDL
    OPEs
    TBPY=0.07186x+0.001790.997160.044 ± 0.0070.063
    TCEPY=0.33848x+0.003470.999280.044 ± 0.0060.060
    TCPPY=2.01067x+0.034630.998750.22 ± 0.040.33
    TDCPPY=0.55785x+8.209430.997610.033 ± 0.0060.051
    TPHPY=1.00853x+0.010980.99971nd0.0040
    TBOEPY=0.49885x+8.770550.99830nd0.045
    TEHPY=0.04196x+1.391580.99814nd0.0040
    mOPEs
    DBPY=34.50089x+0.024570.998710.0088±0.0030.016
    BCEPY=0.38345x+0.001820.99942nd0.0040
    BCPPY=0.07190x+9.459270.99849nd.0.040
    BDCPPY=1.83710x+0.004690.99837nd0.0040
    DPHPY=0.72931x+7.463030.999450.018 ± 0.0040.028
    BBOEHEPY=1.70772x+0.014100.999090.23 ± 0.030.33
    BBOEPY=0.45782x+0.012080.99659nd0.0040
    BEHPY=1.20436x+0.007170.999310.00089 ± 0.00020.0015
    OH-TBOEPY=31.84854x+0.023180.998780.041 ± 0.0040.054
      注:Y,峰面积比值;x,质量浓度,ng·g−1;nd,未检出. Note:Y,peak area ratio;x,concentration,ng·g−1;nd,not detected.
    分析物
    Analytes
    线性回归方程
    Linear regression equations
    相关系数
    Correlation coefficient
    空白浓度/(ng·g−1
    Blank
    方法定量限/( ng·g−1
    MDL
    OPEs
    TBPY=0.07186x+0.001790.997160.044 ± 0.0070.063
    TCEPY=0.33848x+0.003470.999280.044 ± 0.0060.060
    TCPPY=2.01067x+0.034630.998750.22 ± 0.040.33
    TDCPPY=0.55785x+8.209430.997610.033 ± 0.0060.051
    TPHPY=1.00853x+0.010980.99971nd0.0040
    TBOEPY=0.49885x+8.770550.99830nd0.045
    TEHPY=0.04196x+1.391580.99814nd0.0040
    mOPEs
    DBPY=34.50089x+0.024570.998710.0088±0.0030.016
    BCEPY=0.38345x+0.001820.99942nd0.0040
    BCPPY=0.07190x+9.459270.99849nd.0.040
    BDCPPY=1.83710x+0.004690.99837nd0.0040
    DPHPY=0.72931x+7.463030.999450.018 ± 0.0040.028
    BBOEHEPY=1.70772x+0.014100.999090.23 ± 0.030.33
    BBOEPY=0.45782x+0.012080.99659nd0.0040
    BEHPY=1.20436x+0.007170.999310.00089 ± 0.00020.0015
    OH-TBOEPY=31.84854x+0.023180.998780.041 ± 0.0040.054
      注:Y,峰面积比值;x,质量浓度,ng·g−1;nd,未检出. Note:Y,peak area ratio;x,concentration,ng·g−1;nd,not detected.
    下载: 导出CSV

    表 6  样品基质加标回收率

    Table 6.  Recovery rate of substrate

    分析物
    Analytes
    基质加标 Spiked substrate
    回收率/%
    Recovery rate
    相对标准偏差/%
    RSD
    OPEsTCEP75.419
    TCPP69.912
    TDCPP81.317
    TBP75.020
    TBOEP71.917
    TEHP78.47.9
    TPHP78.110
    mOPEsDBP71.923
    BCEP61.413
    BCPP62.115
    BDCPP61.818
    DPHP73.120
    BBOEHEP61.217
    BBOEP82.524
    BEHP75.916
    OH-TBOEP76.911
    分析物
    Analytes
    基质加标 Spiked substrate
    回收率/%
    Recovery rate
    相对标准偏差/%
    RSD
    OPEsTCEP75.419
    TCPP69.912
    TDCPP81.317
    TBP75.020
    TBOEP71.917
    TEHP78.47.9
    TPHP78.110
    mOPEsDBP71.923
    BCEP61.413
    BCPP62.115
    BDCPP61.818
    DPHP73.120
    BBOEHEP61.217
    BBOEP82.524
    BEHP75.916
    OH-TBOEP76.911
    下载: 导出CSV

    表 7  鸡蛋样品中OPEs和mOPEs的浓度(ng·g−1

    Table 7.  Concentration of OPEs and mOPEs in egg samples(ng·g−1

    编号
    No.
    OPEs
    TCEPTCPPTDCPPTBPTBOEPTEHPTPHPΣ7OPEs
    10.1262.140.1520.8910.134ndnd3.45
    20.09721.93nd0.6120.123nd1.464.22
    30.2082.72nd0.7860.126ndnd3.84
    40.0781.66ndnd0.101ndnd1.84
    50.1391.63nd0.630ndnd1.543.95
    60.1422.900.1411.010.104ndnd4.29
    70.1122.160.2010.967ndndnd3.45
    80.1702.84ndnd0.108ndnd3.12
    90.1712.81nd0.6640.150ndnd3.79
    100.1472.11nd0.7340.485nd2.415.90
    110.1011.74nd0.447ndndnd2.28
    120.1920.988ndnd0.249ndnd1.43
    均值0.1402.140.1650.7480.1761.813.46
    中值0.1412.130.1520.7340.1261.543.62
    检出率/%100100257575025
    编号
    No.
    mOPEs
    DBPBCEPBCPPBDCPPDPHPBBOEHEPBBOEPBEHPOH-TBOEPΣ9mOPEs
    10.0241ndnd1.051.13nd0.2351.540.02784.01
    20.102ndnd0.3693.380.1160.07621.03nd5.08
    30.137ndnd5.623.32nd0.1712.41nd11.7
    40.0411ndndnd1.97nd0.1191.98nd4.11
    50.0733ndnd0.7264.39nd0.1331.47nd6.80
    60.0370ndnd0.06392.95nd0.2726.27nd9.59
    70.0291ndnd0.04092.17nd0.1770.7880.04873.25
    80.0586ndndnd1.61ndnd1.15nd2.81
    90.0235ndnd0.5621.63nd0.1500.6410.09733.10
    100.153ndnd3.214.04nd0.1872.34nd9.94
    110.506ndnd0.048611.1ndnd0.149nd11.8
    120.148ndndnd6.90nd0.1222.86nd10.0
    平均值0.1111.303.720.1160.1641.890.05796.85
    中值0.06600.5623.140.1160.1601.510.04875.94
    检出率/%10000751008.383.310025
      注:nd,未检出; Σ7OPEs,7种OPEs的总和. Σ9mOPEs,9种OPEs代谢产物的总和.
      Note:nd,not detected;Σ7OPEs,sum of 7 OPEs. Σ9mOPEs,sum of 9 OPEs metabolites.
    编号
    No.
    OPEs
    TCEPTCPPTDCPPTBPTBOEPTEHPTPHPΣ7OPEs
    10.1262.140.1520.8910.134ndnd3.45
    20.09721.93nd0.6120.123nd1.464.22
    30.2082.72nd0.7860.126ndnd3.84
    40.0781.66ndnd0.101ndnd1.84
    50.1391.63nd0.630ndnd1.543.95
    60.1422.900.1411.010.104ndnd4.29
    70.1122.160.2010.967ndndnd3.45
    80.1702.84ndnd0.108ndnd3.12
    90.1712.81nd0.6640.150ndnd3.79
    100.1472.11nd0.7340.485nd2.415.90
    110.1011.74nd0.447ndndnd2.28
    120.1920.988ndnd0.249ndnd1.43
    均值0.1402.140.1650.7480.1761.813.46
    中值0.1412.130.1520.7340.1261.543.62
    检出率/%100100257575025
    编号
    No.
    mOPEs
    DBPBCEPBCPPBDCPPDPHPBBOEHEPBBOEPBEHPOH-TBOEPΣ9mOPEs
    10.0241ndnd1.051.13nd0.2351.540.02784.01
    20.102ndnd0.3693.380.1160.07621.03nd5.08
    30.137ndnd5.623.32nd0.1712.41nd11.7
    40.0411ndndnd1.97nd0.1191.98nd4.11
    50.0733ndnd0.7264.39nd0.1331.47nd6.80
    60.0370ndnd0.06392.95nd0.2726.27nd9.59
    70.0291ndnd0.04092.17nd0.1770.7880.04873.25
    80.0586ndndnd1.61ndnd1.15nd2.81
    90.0235ndnd0.5621.63nd0.1500.6410.09733.10
    100.153ndnd3.214.04nd0.1872.34nd9.94
    110.506ndnd0.048611.1ndnd0.149nd11.8
    120.148ndndnd6.90nd0.1222.86nd10.0
    平均值0.1111.303.720.1160.1641.890.05796.85
    中值0.06600.5623.140.1160.1601.510.04875.94
    检出率/%10000751008.383.310025
      注:nd,未检出; Σ7OPEs,7种OPEs的总和. Σ9mOPEs,9种OPEs代谢产物的总和.
      Note:nd,not detected;Σ7OPEs,sum of 7 OPEs. Σ9mOPEs,sum of 9 OPEs metabolites.
    下载: 导出CSV
  • [1] MARKLUND A, ANDERSSON B, HAGLUND P. Screening of organophosphorus compounds and their distribution in various indoor environments [J]. Chemosphere, 2003, 53(9): 1137-1146. doi: 10.1016/S0045-6535(03)00666-0
    [2] STAPLETON H M, KLOSTERHAUS S, KELLER A, et al. Identification of flame retardants in polyurethane foam collected from baby products [J]. Environmental Science & Technology, 2011, 45(12): 5323-5331.
    [3] STAPLETON H M, SHARMA S, GETZINGER G, et al. Novel and high volume use flame retardants in US couches reflective of the 2005 PentaBDE phase out [J]. Environmental Science & Technology, 2012, 46(24): 13432-13439.
    [4] WEI G L, LI D Q, ZHUO M N, et al. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure [J]. Environmental Pollution, 2015, 196: 29-46. doi: 10.1016/j.envpol.2014.09.012
    [5] van der VEEN I, de BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067
    [6] ZHANG T, BAI X Y, LU S Y, et al. Urinary metabolites of organophosphate flame retardants in China: Health risk from tris(2-chloroethyl) phosphate (TCEP) exposure [J]. Environment International, 2018, 121: 1363-1371. doi: 10.1016/j.envint.2018.11.006
    [7] 胡晓辉, 仇雁翎, 朱志良, 等. 环境中有机磷酸酯阻燃剂分析方法的研究进展 [J]. 环境化学, 2014, 33(12): 2076-2086.

    HU X H, QIU Y L, ZHU Z L, et al. Research progress on analytical methods of organophosphate ester flame retardants in the environment [J]. Environmental Chemistry, 2014, 33(12): 2076-2086(in Chinese).

    [8] SUNDKVIST A M, OLOFSSON U, HAGLUND P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk [J]. Journal of Environmental Monitoring, 2010, 12(4): 943-951. doi: 10.1039/b921910b
    [9] MIHAJLOVIC I, MILORADOV M V, FRIES E. Application of Twisselmann extraction, SPME, and GC-MS to assess input sources for organophosphate esters into soil [J]. Environmental Science & Technology, 2011, 45(6): 2264-2269.
    [10] CASTRO- JIMÉNEZ J, BERROJALBIZ N, PIZARRO M, et al. Organophosphate ester (OPE) flame retardants and plasticizers in the open Mediterranean and Black Seas atmosphere [J]. Environmental Science & Technology, 2014, 48(6): 3203-3209.
    [11] KHAN M U, LI J, ZHANG G, et al. First insight into the levels and distribution of flame retardants in potable water in Pakistan: An underestimated problem with an associated health risk diagnosis [J]. Science of the Total Environment, 2016, 565: 346-359. doi: 10.1016/j.scitotenv.2016.04.173
    [12] 魏莱, 黄清辉, 许宜平, 等. 崇明岛小白鹭鸟卵中有机磷阻燃剂污染特征 [J]. 环境科学学报, 2019, 39(5): 1691-1697. doi: 10.13671/j.hjkxxb.2019.0007

    WEI L, HUANG Q H, XU Y P, et al. Occurrence of organophosphorus flame retardants in little egret eggs from Chongming Island [J]. Acta Scientiae Circumstantiae, 2019, 39(5): 1691-1697(in Chinese). doi: 10.13671/j.hjkxxb.2019.0007

    [13] 张洛红, 朱钰, 李宗睿, 等. 有机磷酸酯污染现状及其生物富集和生物转化研究进展 [J]. 环境化学, 2021, 40(8): 2355-2370.

    ZHANG L H, ZHU Y, LI Z R, et al. Pollution status, bioaccumulation and biotransformation of organophosphate esters: A review [J]. Environmental Chemistry, 2021, 40(8): 2355-2370(in Chinese).

    [14] ZHANG Q, LU M Y, DONG X W, et al. Potential estrogenic effects of phosphorus-containing flame retardants [J]. Environmental Science & Technology, 2014, 48(12): 6995-7001.
    [15] ZHANG Q, JI C Y, YIN X H, et al. Thyroid hormone-disrupting activity and ecological risk assessment of phosphorus-containing flame retardants by in vitro, in vivo and in silico approaches [J]. Environmental Pollution (Barking, Essex:1987), 2016, 210: 27-33. doi: 10.1016/j.envpol.2015.11.051
    [16] DISHAW L V, POWERS C M, RYDE I T, et al. Is the PentaBDE replacement, tris (1, 3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant?Studies in PC12 cells [J]. Toxicology and Applied Pharmacology, 2011, 256(3): 281-289. doi: 10.1016/j.taap.2011.01.005
    [17] MEEKER J D, STAPLETON H M. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters [J]. Environmental Health Perspectives, 2010, 118(3): 318-323. doi: 10.1289/ehp.0901332
    [18] CEQUIER E, IONAS A C, COVACI A, et al. Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway [J]. Environmental Science & Technology, 2014, 48(12): 6827-6835.
    [19] L IU H H, HU Y J, LUO P, et al. Occurrence of halogenated flame retardants in sediment off an urbanized coastal zone: Association with urbanization and industrialization [J]. Environmental Science & Technology, 2014, 48(15): 8465-8473.
    [20] BRANDSMA S H, LEONARDS P E G, LESLIE H A, et al. Tracing organophosphorus and brominated flame retardants and plasticizers in an estuarine food web [J]. Science of the Total Environment, 2015, 505: 22-31. doi: 10.1016/j.scitotenv.2014.08.072
    [21] HOU R, LIU C, GAO X Z, et al. Accumulation and distribution of organophosphate flame retardants (PFRs) and their di-alkyl phosphates (DAPs) metabolites in different freshwater fish from locations around Beijing, China [J]. Environmental Pollution, 2017, 229: 548-556. doi: 10.1016/j.envpol.2017.06.097
    [22] POMA G, LIU Y, CUYKX M, et al. Occurrence of organophosphorus flame retardants and plasticizers in wild insects from a former e-waste recycling site in the Guangdong Province, South China [J]. The Science of the Total Environment, 2019, 650: 709-712. doi: 10.1016/j.scitotenv.2018.09.067
    [23] CEQUIER E, MARCÉ R M, BECHER G, et al. Comparing human exposure to emerging and legacy flame retardants from the indoor environment and diet with concentrations measured in serum [J]. Environment International, 2015, 74: 54-59. doi: 10.1016/j.envint.2014.10.003
    [24] HOU R, XU Y P, WANG Z J. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research [J]. Chemosphere, 2016, 153: 78-90. doi: 10.1016/j.chemosphere.2016.03.003
    [25] MEEKER J D, COOPER E M, STAPLETON H M, et al. Urinary metabolites of organophosphate flame retardants: Temporal variability and correlations with house dust concentrations [J]. Environmental Health Perspectives, 2013, 121(5): 580-585. doi: 10.1289/ehp.1205907
    [26] BUTT C M, CONGLETON J, HOFFMAN K, et al. Metabolites of organophosphate flame retardants and 2-ethylhexyl tetrabromobenzoate in urine from paired mothers and toddlers [J]. Environmental Science & Technology, 2014, 48(17): 10432-10438.
    [27] van den EEDE N, HEFFERNAN A L, AYLWARD L L, et al. Age as a determinant of phosphate flame retardant exposure of the Australian population and identification of novel urinary PFR metabolites [J]. Environment International, 2015, 74: 1-8. doi: 10.1016/j.envint.2014.09.005
    [28] HE C, ENGLISH K, BADUEL C, et al. Concentrations of organophosphate flame retardants and plasticizers in urine from young children in Queensland, Australia and associations with environmental and behavioural factors [J]. Environmental Research, 2018, 164: 262-270. doi: 10.1016/j.envres.2018.02.040
    [29] DODSON R E, van den EEDE N, COVACI A, et al. Urinary biomonitoring of phosphate flame retardants: Levels in California adults and recommendations for future studies [J]. Environmental Science & Technology, 2014, 48(23): 13625-13633.
    [30] KIM J W, ISOBE T, MUTO M, et al. Organophosphorus flame retardants (PFRs) in human breast milk from several Asian countries [J]. Chemosphere, 2014, 116: 91-97. doi: 10.1016/j.chemosphere.2014.02.033
    [31] TAN H L, YANG L, YU Y J, et al. Co-existence of organophosphate di- and tri-esters in house dust from South China and Midwestern United States: Implications for human exposure [J]. Environmental Science & Technology, 2019, 53(9): 4784-4793.
    [32] DOMINGO J L. Health risks of human exposure to chemical contaminants through egg consumption: A review [J]. Food Research International, 2014, 56: 159-165. doi: 10.1016/j.foodres.2013.12.036
    [33] CHEN D, LETCHER R J, CHU S G. Determination of non-halogenated, chlorinated and brominated organophosphate flame retardants in herring gull eggs based on liquid chromatography-tandem quadrupole mass spectrometry [J]. Journal of Chromatography A, 2012, 1220: 169-174. doi: 10.1016/j.chroma.2011.11.046
    [34] ZHENG X B, XU F C, LUO X J, et al. Phosphate flame retardants and novel brominated flame retardants in home-produced eggs from an e-waste recycling region in China [J]. Chemosphere, 2016, 150: 545-550. doi: 10.1016/j.chemosphere.2015.09.098
    [35] SU G Y, CRUMP D, LETCHER R J, et al. Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes [J]. Environmental Science & Technology, 2014, 48(22): 13511-13519.
    [36] XU F C, GARCÍA-BERMEJO Á, MALARVANNAN G, et al. Multi-contaminant analysis of organophosphate and halogenated flame retardants in food matrices using ultrasonication and vacuum assisted extraction, multi-stage cleanup and gas chromatography-mass spectrometry [J]. Journal of Chromatography A, 2015, 1401: 33-41. doi: 10.1016/j.chroma.2015.05.001
    [37] GREAVES A K, LETCHER R J. Comparative body compartment composition and in ovo transfer of organophosphate flame retardants in North American Great Lakes herring gulls [J]. Environmental Science & Technology, 2014, 48(14): 7942-7950.
    [38] GUO J H, SIMON K, ROMANAK K, et al. Accumulation of flame retardants in paired eggs and plasma of bald eagles [J]. Environmental Pollution, 2018, 237: 499-507. doi: 10.1016/j.envpol.2018.02.056
    [39] HUANG Q H, WEI L, BIGNERT A, et al. Organophosphate flame retardants in heron eggs from Upper Yangtze River Basin, southwest China [J]. Chemosphere, 2019, 236: 124327. doi: 10.1016/j.chemosphere.2019.07.058
    [40] POMA G, SALES C, BRUYLAND B, et al. Occurrence of organophosphorus flame retardants and plasticizers (PFRs) in Belgian foodstuffs and estimation of the dietary exposure of the adult population [J]. Environmental Science & Technology, 2018, 52(4): 2331-2338.
    [41] STUBBINGS W A, GUO J H, SIMON K, et al. Flame retardant metabolites in addled bald eagle eggs from the great lakes region [J]. Environmental Science & Technology Letters, 2018, 5(6): 354-359.
  • 加载中
图( 1) 表( 7)
计量
  • 文章访问数:  2473
  • HTML全文浏览数:  2473
  • PDF下载数:  87
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-01-10
  • 录用日期:  2022-04-16
  • 刊出日期:  2023-06-27

固相萃取-液相色谱串联质谱(LC-MS/MS)同步测定鸡蛋样品中有机磷酸酯及其代谢产物

    通讯作者: Tel:020-29119807,E-mail:yuyunjiang@scies.org
  • 1. 锦州医科大学,锦州,121000
  • 2. 生态环境部华南环境科学研究所,国家环境保护环境污染健康风险评价重点实验室,广州,510655
  • 3. 西安工程大学环境与化学工程学院,西安,710048
基金项目:
国家重点研发计划项目(2019YFC1803403)和国家自然科学基金(42007347)资助.

摘要: 本研究基于固相萃取和液相色谱串联质谱(LC-MS/MS)建立了同步提取、净化和检测高脂肪含量生物样品中7种有机磷酸酯及其9种代谢产物的分析方法. 取鸡蛋样品用体积比为9 : 1乙腈 : 甲苯混合溶剂超声提取,用Florisil-PR 固相萃取柱初步净化,将含有目标物的溶液经Z-Sep/C18除脂,并采用Strata X-AW柱进一步净化,使用LC-MS/MS进行分析. 目标化合物在0.2—500.0 ng·mL−1范围内呈良好线性关系,相关系数R2介于0.997—0.999之间. OPEs(有机磷酸酯)和它们的代谢物(mOPEs)的加标回收率范围分别在69.9%—81.3%和61.2%—82.5%之间,相对标准偏差(RSDs)分别介于7.9%—20%和11%—24%之间. 利用本文建立的分析方法对12例鸡蛋样品中的16种OPEs和mOPEs进行同步检测,鸡蛋样品中Σ7OPEs的浓度范围为1.43—5.9 ng·g−1,TCPP浓度最高(浓度中值为2.13 ng·g−1),占OPEs总浓度的58.8%. 7种OPEs除TEHP外,其他OPEs均有检出. Σ9mOPEs的浓度范围为2.81—11.8 ng·g−1,DPHP(磷酸三(2-氯丙基)酯)为主要检出单体(浓度中值为3.14 ng·g−1),浓度贡献占比为54%. 9种mOPEs除BCEP(二-β,β'-氯乙基磷酸)和BCPP(双-(1-氯-2-丙基)磷酸)外,其他mOPEs均有检出.

English Abstract

  • 有机磷酸酯(OPEs)具有良好的阻燃作用,增塑和润滑效果,在建材工业、电子设备、食品包装、室内装饰和纺织品中得到了广泛应用. 随着多溴联苯醚等溴系阻燃剂逐步禁止使用[1-3],作为重要替代品的OPEs ,其生产量和使用量显著增长[4]. 2006年,OPEs的全球使用量为46.5万吨[5], 2015年达到68万吨,呈以7.9%逐年递增[6]. 据估计,中国的OPEs产量每年将增加15%[4].OPEs以物理方式添加于各种材料,而不是化学键结合的形式[7], 随着时间的推移它们易通过挥发和磨损、渗漏而进入环境介质,如水体、土壤、大气及生物体内[8-13],从而导致人体通过多种途径暴露.OPEs具有潜在生物累积性,长期暴露于人体会对其健康产生不利影响. 大量研究证实,OPEs具有甲状腺和内分泌干扰作用[14-15]、神经毒性[16]和生殖毒性[17],并且具有致癌性[4-5]. 由于其潜在的毒性作用,以及在环境和生物体内的广泛存在,日益引起人们的关注[4-5].

    目前已有大量的研究报道了OPEs在空气、室内灰尘、土壤、水体和沉积物等环境介质中的赋存情况[18-20]. 但是针对生物样品而言,其脂肪含量相对较高,前处理过程相对复杂,对于生物体内OPEs的研究仍比较有限[4-5, 21-22]. 与此同时,由于OPEs在生物体内能够发生快速的代谢转化[23-24],近年来越来越多的研究开始关注OPEs的代谢产物(mOPEs),并将其作为暴露标志物研究人体对OPEs的暴露情况[25-30]. 然而,Liu等[31]在室内灰尘中同时检出了OPEs和mOPEs,表明环境介质中同时存在OPEs和mOPEs. 因此,mOPEs除源自生物体对OPEs的代谢转化外,也可能来自外源直接摄入. 膳食摄入被认为是人体暴露阻燃剂的重要途径[32] ,此前的研究在北美洲休伦湖银鸥蛋[33]和广东清远电子废弃物回收区域鸡蛋中[34]均检测到了一定程度的OPEs. 有机磷酸酯具有神经、生殖毒性及致癌作用已被广泛报道,目前对于OPEs的研究较多,而关于代谢产物mOPEs的研究较少. 研究表明,部分mOPEs的毒性很可能比其母体化合物更高,如Su等[35]采用鸡胚胎细胞实验发现,DPHP(磷酸二苯酯)对神经系统发育的负面作用比其母体化合物TPHP(磷酸三苯酯)更强,这也提示我们需要更加关注mOPEs的毒性效应. 由于鸡蛋是一种高脂肪含量的生物样本,从前检测鸡蛋中OPEs的方法在萃取、纯化和测定过程中存在一定不足,如萃取和纯化过程复杂,且少有能同时萃取、纯化和测定鸡蛋中OPEs和mOPEs的方法. 因此,建立能同时提取鸡蛋中OPEs和mOPEs的高效、灵敏、准确的分析方法对研究OPEs和mOPEs的生物富集和人体暴露评估都具有十分重要的意义.

    本研究建立了基于固相萃取和LC-MS/MS同步检测鸡蛋中16种OPEs和mOPEs的分析方法,并利用建立的方法分析了12例鸡蛋中OPEs和mOPEs的含量水平,本研究的结果为准确测定高脂肪含量生物样品中的OPEs和mOPEs提供了有效的支撑.

    • (1)仪器:真空冷冻干燥机(博医康实验仪器,北京),涡旋振荡器(Troemner,美国),离心机(Thermo Fisher Scientific,美国),2600TH超声机,真空固相萃取装置(Polytech,北京),Milli-Q超纯水系统(Merck,德国),氮吹仪(Organomation,美国),Agilent 1260液相色谱仪(Agilent,美国),HPLC-MS/MS 液相色谱串联三重四级杆质谱仪(AB SCIEX 6500,美国),SunergiTM Fusion-RP 100A色谱柱(50 mm×2.1 mm,2.5 μm)(菲诺美,美国).

      (2)试剂与材料:Strata Florisil(FR-PR)小柱、Strata X-AW小柱(飞诺美,美国),Supel TM QuE Z-Sep/C18纯化管(色谱科,美国)色谱纯乙腈、色谱纯甲苯、色谱纯正己烷、色谱纯三乙胺(TEA)(上海安谱实验科技,中国),色谱纯甲醇(默克,德国),OPEs化合物标准品TBP、TCEP、TCPP、TDCPP、TPHP、TBOEP、TEHP(AccuStandard,美国),氘代同位素标准品d27-TBOEP、d15-TPHP、d27-TBP、d18-TCPP(CIL(Cambrige Isotope Laboratorie)美国),d12-TCEP(TRC(Toronto Research Chemcals)德国)、OPEs代谢产物标准品DBP、BCEP、BCPP、BDCPP、DPHP、BBOEHEP、BBOEP、BEHP、OH-TBOEP(Toronto Research Chemcals,德国),氘代同位素标准品d8-BBOEP、d4-BBOEHEP、d10-DPHP、d8-BCEP、d10-BDCPP(Toronto Research Chemcals,德国)具体见表1.

    • 本次研究采用的12枚鸡蛋样品均购自本地农贸市场. 采集的鸡蛋样品用干净的铝箔纸包好,置于PP密封袋中运回实验室. 鸡蛋清洗后打破,将蛋黄和蛋清置于小烧杯中混匀并编号,随后置于−20 ℃的冰箱中冷冻保存.

    • 准确称量OPEs标准品,溶解在甲醇中;mOPEs和内标的标准品,溶解在乙腈中,得到质量浓度为10 mg·L−1的储备液,储存于-20 ℃冰箱. 将每种内标储备液取100 μL于细胞瓶,添加乙腈稀释至1 mL,得到质量浓度为1 mg·L−1内标混合溶液,储存于−20 ℃冰箱.

    • 样品处理参考Xu等[36]的方法并进行优化. 鸡蛋样品经48 h冷冻干燥后,充分研磨为均匀粉末. 将1.5 g干重样品放入15 mL离心管中,加入20 μL内标混合液后,用5 mL体积比为9:1乙腈 : 甲苯混合溶剂超声提取30 min,4000 r·min−1离心10 min后取上清液,此步骤重复两次,合并上清液于15 mL离心管中. 在40 ℃下将提取液氮吹至近干,并将溶剂转换为正己烷,随后以Florisil-PR固相萃取柱净化样品,首先用6 mL正己烷淋洗并弃掉,再用8 mL甲醇洗脱并收集,将含有目标物的溶液经Z-Sep/C18柱除脂后,采用Strata X-AW柱进一步净化,用体积比为5%三乙胺:乙腈溶液洗脱,氮吹至近干后,加入100 μL体积比为1:1超纯水:乙腈溶液定容,使用HPLC-MS/MS进行分析.

    • 液相色谱条件:16种目标化合物(7种OPEs和9种mOPEs)使用SunergiTM Fusion-RP 100A色谱柱(50×2.1 mm,2.5 μm),在正/负离子模式下同步分析. 设置流动相流速为500 μL·min−1,流动相组成为0.1%乙酸的甲醇 : 水(5 : 95,V/V)溶液(A)和0.1%乙酸的甲醇 : 水(95 : 5,V/V)溶液(B),进样量为5 μL,柱温设置为45 ℃. 洗脱梯度见表2.

      质谱条件:电喷雾电离源(ESI),离子源温度550 ℃;离子源电离模式为正/负离子源,其中7种OPEs以及BBOEHEP、OH-TBOEP两种mOPEs的质谱检测在正离子模式(ESI+)下进行,另外7种mOPEs的质谱检测在负离子模式(ESI-)下进行,毛细管电压为4500 V.检测模式均为多反应监测模式(MRM),载气为高纯度氮气,载气温度为550 ℃;入口电压-10 V;碰撞室出口电压-15 V;离子喷雾电压为4500 V.

    • 用甲醇稀释16种目标化合物的标准品储备液,包括7种OPEs(TBP、TCEP、TCPP、TDCPP、TPHP、TBOEP、TEHP)和9种mOPEs(DBP、BCEP、BCPP、BDCPP、DPHP、BBOEHEP、BBOEP、BEHP、OH-TBOEP),从小到大依次配制10个浓度(0.2、0.5、1.0、5.0、10.0、20.0、50.0、100.0、200.0、500.0 ng·mL−1)的化合物混合溶液. 加入1 mg·L−1内标混合溶液,最终得到同位素内标均为100 ng·mL−1的不同梯度的混合标准溶液. 将同位素标记的OPEs(d27-TBOEP、d15-TPHP、d27-TBP、d18-TCPP、d12-TCEP)和mOPEs(d8-BBOEP、d4-BBOEHEP、d10-DPHP、d8-BCEP、d10-BDCPP)作为分析物的定量内标. 以分析物的质量浓度为横坐标,以分析物的峰面积与其对应的定量内标的峰面积比值作为纵坐标,建立标准曲线.

      采用鸡蛋作为基质,制备基质加标样品3个;分别制备空白加标样品3个,空白不加标样品3个(加标浓度20 ng·g−1). 按照1.4节的方法进行前处理,上机检测,计算加标回收率.

    • 将16种浓度均为200 ng·mL−1的目标化合物以5 μL·min−1的流量注入离子源,结合总离子流和质谱数据明确目标物的母离子和子离子,并通过响应情况进一步优化去簇电压以及碰撞能. 16种目标化合物的离子对及碰撞能见表3,标准品色谱图见图1.

    • 参考Xu[36]等的研究,对加标鸡蛋样品进行处理. 比较了几种不同萃取溶剂的处理效果,分别为乙腈、体积比9:1的甲醇 : 甲苯、体积比9:1的乙腈 : 甲苯,空白加标回收率如表4. 结果显示体积比为9:1的乙腈 : 甲苯的萃取效果最佳. 对于脂肪含量较高的生物样品,有效的除脂过程对于降低基质干扰效应具有重要的作用,本文通过d-SPE(分散固相萃取)的方法,采用Z-Sep和DSC-18两种填料对鸡蛋样品进行除脂. 此外,为了提高mOPEs的回收率,本研究选用弱阴离子交换柱StrataX AW对鸡蛋样品进一步净化,减少了基质干扰的同时保证了目标化合物的回收率.

    • 本文采用内标法定量,16种分析物浓度配制成0.2、0.5、1.0、5.0、10.0、20.0、50.0、100.0、200.0、500.0 ng·mL−1 的10个梯度,建立标准曲线. 上机检测后以目标化合物的峰面积与其对应的定量内标的峰面积Y对其质量浓度X进行回归分析,各分析物的线性回归方程和相关系数见表5.

      计算空白样品的平均浓度加3倍标准差,确定为目标化合物定量限(LOQ). 若空白样品中的目标物未检出,10倍信噪比(S/N)(以标准曲线最低浓度点进行计算)为该目标物的LOQ.结果显示,空白样品中检出了TCEP、TCPP、TDCPP、TBP等4种OPEs,DBP、DPHP、BBOEHEP、BEHP、OH-TBOEP等5种mOPEs,目标化合物的空白含量和方法定量限见表5.

    • 分别在鸡蛋中添加16种目标化合物标准品(混合标准品浓度为100 ng·g−1)和同位素内标制备基质加标样品和基质不加标样品各1组,每组3个平行样品,以进行回收率测定. 经仪器检测后计算加标回收率. 加标实验结果如表6所示,基质加标样品中OPEs和mOPEs回收率分别在69.9%—81.3%和61.2%—82.5%之间,平行样相对标准偏差(RSD)分别介于7.9%—20%和11%—24%,表明该前处理方法和仪器分析条件满足16种目标化合物的分析要求.

    • 利用本文建立的分析方法对12个鸡蛋样品中的16种目标化合物进行同步检测,鸡蛋中7种OPEs的含量和9种mOPEs的含量如表7所示. 鸡蛋样品中OPEs除TEHP外,其他OPEs均有检出,TCEP和TCPP的检出率为100%,TBP和TBOEP的检出率为75%,而TDCPP和TPHP的检出率只有25%. ΣOPEs的浓度范围为1.43—5.9 ng·g−1,TCPP浓度最高,占OPEs总量的58.8%. 鸡蛋样品中mOPEs除BCEP和BCPP外,其他mOPEs均有检出,DBP、DPHP和BEHP的检出率为100%,BBOEP的检出率为83%,BDCPP的检出率为75%,而OH-TBOEP和BBOEHEP的检出率分别只有25%和8%. ΣmOPEs的浓度范围为2.81—11.8 ng·g−1,DPHP为主要检出单体,浓度贡献占比为54%. 鸡蛋是中国最常见的食物之一,对于人体鸡蛋摄入的健康风险,我们通过中国成年人的鸡蛋消费量计算了OPEs和mOPEs的估计日摄入量(EDIs, ng·g−1体重/天). Σ9mOPEs和Σ7OPEs的EDIs分别为0.67 ng·g−1和1.32 ng·g−1体重/天. 通过食用鸡蛋暴露OPEs和mOPEs的潜在健康风险较低.

      12个鸡蛋样品中OPEs的浓度中值为3.62 ng·g−1,与Chen等[33]报道的北美地区银鸥蛋(6.83—13.61 ng·g−1)中OPEs的含量相近,但远低于五大湖地区银鸥蛋((14.8 ± 2.4) ng·g−1[37]和白头海雕蛋(4.76— 760  ng·g−1[38],以及中国西南长江上游地区黑冠夜鹭、池鹭、小白鹭和牛白鹭蛋(48  ng·g−1,中值)[39]中OPEs的含量. 鸡蛋中OPEs的含量略高于比利时市售鸡蛋(0.39 ng·g−1,中值)[40],表明野生鸟类由于处在食物链较高位置,食物来源复杂,OPEs的暴露量很可能远高于人工饲养的家禽,导致产蛋中OPEs的含量存在较大差异. 目前国内外同步分析鸟蛋中OPEs和mOPEs的研究十分有限,本研究鸡蛋样品中mOPEs的浓度中位数为5.94 ng·g−1,大幅低于Stubbings等[41]报道的北美地区白头海雕蛋的含量(27±3.0) ng·g−1,与OPEs的规律类似,可能也与野生鸟类复杂的栖息环境和食物来源等因素有关.

      本研究鸡蛋中mOPEs的浓度显著高于OPEs的浓度(Paired t test,P < 0.01). 由于OPEs在生物体内容易发生代谢转化,此前关于mOPEs的研究大多将其作为OPEs的暴露标志物,但近年来的研究发现灰尘等环境介质中OPEs和mOPEs同时存在,表明生物体内的mOPEs很可能不是全部来自于对OPEs的代谢转化,还可能存在对mOPEs的直接暴露. 因此,本研究鸡蛋中的mOPEs除母鸡对OPEs的代谢作用外,也可能存在母鸡通过饲料、土壤等途径对mOPEs的直接摄入.

    • 本研究在整合国内外现有文献报道的基础上,对生物样品中OPEs和mOPEs的前处理和仪器分析条件进行优化,建立了能够同时提取、净化和分析高脂肪含量生物样品中16种OPEs和mOPEs的检测方法. 该方法选用体积比为9 : 1的乙腈和甲苯混合溶剂进行提取,采用d-SPE除脂,并通过Strata X-AW柱进一步净化,最后通过液相色谱串联三重四极杆质谱(LC-MS/MS)进行定量分析,测得的16种目标化合物的回收率范围在61.2%—82.5%之间. 本研究12个鸡蛋样品中均检出了多种OPEs和mOPEs,浓度中值分别为3.62 ng·g−1和5.94 ng·g−1,mOPEs的含量显著高于OPEs的含量. 本研究的结果为准确评估高脂肪含量生物样品中OPEs和mOPEs的含量提供了有效的支撑,同时由于鸡蛋是一类重要的食物来源,研究结果也表明需要进一步关注通过食物直接摄入的mOPEs及其潜在健康风险.

    参考文献 (41)

目录

/

返回文章
返回