-
济南位于我国北方典型岩溶水区域,以泉水闻名全国. 地下水开采量激增,导致水位持续下降,泉水停喷. 人工补源是缓解地下水量不断降低的有效途径[1],2001年开始从卧虎山水库放水,通过玉符河自然下渗达到补给地下水目的. 因卧虎山水库水量无法一直保持充沛,回灌水源也使用黄河水和南水北调东线水. 补源水来源复杂,不同水源水质之间存在差异,而且整体水质劣于地下水,当补源水通过土壤表面渗透到含水层时,可能对地下水带来一定污染风险. 冯帆等[2]发现在Ca2+浓度高的区域,加大补源量会增加F−释放风险. Ding等[3]发现含氟喹诺酮类抗生素中水回灌地下水存在水质风险,另外,以受污染地表水补给地下水时,在受纳水体中发现了药物及其代谢产物的残留[4].
然而,关于济南人工补源研究,主要关注地下水量变化和无机物指标的水质特征[5],很少研究者关注补源过程中特定有机物指标的变化,本研究旨在通过表征水中有机物的荧光特性、分子量分布和结构特征,结合无机指标,分析玉符河补源过程中地表水和周边地下水水质特征变化,以评估人工补源工程的污染风险和长期实施的可行性.
济南玉符河人工补源地表水和周边地下水的水质特征
Study on quality characteristics of artificial supplementary surface water and surrounding groundwater in Yufuhe River of Jinan
-
摘要: 为研究济南玉符河人工补源工程对地下水水质的影响,采集玉符河地表水及其沿岸地下水水样进行跟踪检测研究。在对无机离子等常规指标测定基础上,还利用液相色谱-有机碳-有机氮检测仪(LC-OCD-OND)和三维荧光技术对溶解性有机物(DOM)及其分子量分级分布和荧光组分进行表征。结果表明,地表水和地下水水质化学类型均为HCO3-Ca·Na型,除K,Mg和F外,地下水中无机离子浓度均高于地表水。地表水中DOM及其不同分子量组分和荧光组分均高于地下水,两者优势荧光组分存在显著差异性。地表水中消毒副产物生成势(DBPFP)远高于地下水,腐殖质(HS)、腐殖质降解产物(BB)以及类腐殖质荧光组分C1和C2等4个指标与DBPFP显著相关。腐殖质碳氮比(HS-C/N)数值指示地下水受到补源水一定程度的影响,主成分分析结果显示地表水以有机物指标占主导,而地下水中无机化合物占优势,表明现阶段人工补源工程尚未对地下水水质特征产生明显改变。为防止长期人工补源对地下水产生次生污染风险,应对该区域水质进行长期系统性监测。Abstract: In order to study the impact of the Jinan artificial replenishment project of Yufuhe River on groundwater quality, the surface water of the Yufuhe River and the groundwater samples of its area of were collected for detection research. In addition to the determination of some conventional inorganic chemicals in the research, liquid chromatography-organic carbon-organic nitrogen detector (LC-OCD-OND) and three-dimensional fluorescence spectroscopy (EEMs) technology were used to determine dissolved organic carbon (DOC) and its different molecular weight components distribution and fluorescent components. The research results show that the chemical types of surface water and groundwater are both HCO3-Ca•Na type. Except for K, Mg and F, the concentration of inorganic ions in groundwater is higher than that of surface water. The DOM and its different molecular weight components and fluorescent components in surface water are higher than those in groundwater, but the dominant fluorescent components of the two are different. The formation potential of disinfection by-products(DBPFP) in surface water is much higher than that in groundwater. Four indicators, including humus (HS), humus degradation products (BB), and humus-like fluorescent components C1 and C2, are significantly related to DBPFP. The humus carbon-to-nitrogen ratio (HS-C/N) value indicates that the organic matter in groundwater is affected to a certain extent by the replenishing surface water, but the two still maintain their respective typical water quality characteristics. Surface water is dominated by organic matter indicators, while inorganic compounds in groundwater account for The advantages prove that the artificial replenishment project has not significantly changed the quality of groundwater at this stage. In order to prevent the occurrence of potential pollution risks of groundwater caused by long-term artificial replenishment, long-term systematic monitoring and analysis of replenishment water and groundwater in this area should be carried out.
-
表 1 基本理化特征指标
Table 1. Basic physical and chemical characteristics
水样
类型
Sample
type采样点
Sampl-
ing sitepH 电导率/
(μS·cm−1)
Specific conductance总硬度/
(mg·L−1)
Total
hardnessNH4-N/
(mg·L−1)NO3−/
(mg·L−1)NO2−/
(mg·L−1)K/
(mg·L−1)Na/
(mg·L−1)Ca/
(mg·L−1)Mg/
(mg·L−1)HCO3/
(mg·L−1)F−/
(mg·L−1)Cl−/
(mg·L−1)SO42−/
(mg·L−1)地表水Surface water 1# 8.15 642 288 0.05 2.09 0.012 6.5 25.7 86.5 20.5 200 0.22 30.5 124 2# 8.30 633 282 0.05 2.14 0.013 6.3 25.7 73.6 22.2 183 0.21 28.6 118 3# 8.36 638 281 0.03 2.10 0.008 6.1 24.9 71.7 20.7 180 0.20 29.8 118 地下水
Ground-water4# 8.22 656 288 0.04 2.50 ND 5.8 27.5 80.8 20.4 193 0.21 32.3 123 5# 7.70 820 296 N.D. 3.29 ND 3.4 62.3 102.5 18.2 230 0.18 64.0 161 6# 7.68 874 331 N.D. 4.17 ND 3.0 57.3 113.6 18.6 225 0.17 79.6 171 7# 7.53 844 387 N.D. 13.90 ND 2.9 25.1 149.3 16.8 279 0.30 52.0 150 8# 7.44 1157 551 N.D. 37.15 ND 1.9 31.1 211.0 20.5 295 0.19 88.3 148 9# 7.86 759 305 N.D. 3.32 ND 4.0 40.4 89.2 19.6 222 0.25 47.0 142 各指标测定下限 Reliable Quantit-
ation Limit— — 0.01 1 0.03 0.05 0.005 0.7 0.05 0.01 0.002 1 0.05 0.1 1 注:N.D.为未检出. 表 2 有机物指标相关性矩阵
Table 2. Correlation matrix of organic matter index
BP HS BB LMWN C1 C2 C3 C4 HS-SUVA CODMn UV254 DOC THMFP DCAAFP BP 1 0.758** 0.742** 0.791** 0.739** 0.700** 0.752** 0.491** 0.468** 0.730** 0.568** 0.702** 0.621** 0.624** HS 1 0.991** 0.979** 0.823** 0.855** 0.752** 0.394* 0.696** 0.988** 0.769** 0.977** 0.956** 0.930** BB 1 0.966** 0.771** 0.800** 0.703** 0.352 0.651** 0.965** 0.717** 0.981** 0.966** 0.947** LMWN 1 0.840** 0.864** 0.784** 0.389* 0.674** 0.968** 0.748** 0.939** 0.923** 0.878** C1 1 0.951** 0.954** 0.508** 0.795** 0.868** 0.765** 0.745** 0.732** 0.617** C2 1 0.893** 0.486** 0.821** 0.898** 0.771** 0.776** 0.754** 0.672** C3 1 0.448* 0.676** 0.787** 0.686** 0.671** 0.670** 0.530** C4 1 0.389* 0.433* 0.423* 0.302 0.279 0.268 HS-SUVA 1 0.756** 0.712** 0.631** 0.671** 0.553** CODMn 1 0.809** 0.956** 0.936** 0.901** UV254 1 0.758** 0.725** 0.680** DOC 1 0.948** 0.963** THMFP 1 0.915** DCCAFP 1 *在0.1水平(双侧)上显著相关;**在0.05水平(双侧)上显著相关. 表 3 水质指标主成分分析总方差解释
Table 3. Total variance interpretation of principal component analysis of water quality indicators
主成分
Principal Component特征值
Eigenvalue方差贡献率
Percentage of varianc累积方贡献率
Cumulative主成分
Principal Component特征值
Eigenvalue方差贡献率
Percentage of varianc累积方贡献率
Cumulative1 11.35733 51.62% 51.62% 12 0.11313 0.51% 98.80% 2 4.47767 20.35% 71.98% 13 0.08798 0.40% 99.20% 3 2.43275 11.06% 83.04% 14 0.05889 0.27% 99.47% 4 0.89466 4.07% 87.10% 15 0.04363 0.20% 99.67% 5 0.76532 3.48% 90.58% 16 0.03212 0.15% 99.82% 6 0.46994 2.14% 92.72% 17 0.01275 0.06% 99.87% 7 0.35438 1.61% 94.33% 18 0.00819 0.04% 99.91% 8 0.32121 1.46% 95.79% 19 0.00775 0.04% 99.95% 9 0.22235 1.01% 96.80% 20 0.00656 0.03% 99.98% 10 0.17368 0.79% 97.59% 21 0.00372 0.02% 99.99% 11 0.15468 0.70% 98.29% 22 0.00133 0.01% 100.00% 表 4 提取2个主成分的成分矩阵
Table 4. Component matrix of extracting two principal components
水质指标
Water quality indicatorsPC1 PC2 水质指标
Water quality indicatorsPC1 PC2 BP 0.714 -0.181 总硬度 -0.523 0.595 HS 0.950 -0.053 HCO3− -0.849 0.210 C1 0.731 -0.427 F− 0.785 0.388 C4 0.371 -0.208 NO3− -0.522 0.567 pH 0.875 -0.180 Cl− 0.437 0.855 NH4-N 0.737 -0.198 SO42− 0.513 0.719 K 0.935 0.139 UV254 0.747 -0.181 Ca -0.694 0.469 DOC 0.962 0.073 Mg 0.717 0.544 THMFP 0.927 0.122 Na 0.687 0.483 DCAAFP 0.937 0.183 电导率 -0.002 0.944 藻类 0.251 -0.530 -
[1] 刘立才, 郑凡东, 李炳华, 等. 南水北调水源在密怀顺水源地回灌的地下水水质变化试验 [J]. 水文地质工程地质, 2015, 42(4): 18-22,55. LIU L C, ZHENG F D, LI B H, et al. Experiment of groundwater quality change for simulating the South-to-North water into the Mihuaishun aquifer [J]. Hydrogeology & Engineering Geology, 2015, 42(4): 18-22,55(in Chinese).
[2] 冯帆, 姜永海, 廉新颖, 等. 地下水回补引发含水层氟释放次生风险的模拟研究 [J]. 环境科学研究, 2020, 33(6): 1440-1450. FENG F, JIANG Y H, LIAN X Y, et al. Simulation study on secondary risk of aquifer fluoride release induced by groundwater recharge [J]. Research of Environmental Sciences, 2020, 33(6): 1440-1450(in Chinese).
[3] DING G Y, CHEN G L, LIU Y D, et al. Occurrence and risk assessment of fluoroquinolone antibiotics in reclaimed water and receiving groundwater with different replenishment pathways [J]. Science of the Total Environment, 2020, 738: 139802. doi: 10.1016/j.scitotenv.2020.139802 [4] HEBERER T, ADAM M. Transport and attenuation of pharmaceutical residues during artificial groundwater replenishment [J]. Environmental Chemistry, 2004, 1: 22-25. doi: 10.1071/EN04008 [5] 成世才, 卢兆群, 张强, 等. 济南西部地区地下水水化学特征及演变机理浅析 [J]. 山东国土资源, 2017, 33(1): 55-58. doi: 10.3969/j.issn.1672-6979.2017.01.007 CHENG S C, LU Z Q, ZHANG Q, et al. Research on hydro-chemical characteristics and evolution of groundwater sources in west of Jinan City [J]. Shandong Land and Resources, 2017, 33(1): 55-58(in Chinese). doi: 10.3969/j.issn.1672-6979.2017.01.007
[6] 吴兴波, 牛景涛, 牛景霞. 玉符河大型人工回灌补给地下水保泉试验研究 [J]. 水电能源科学, 2003, 21(4): 53-55. doi: 10.3969/j.issn.1000-7709.2003.04.017 WU X B, NIU J T, NIU J X. Experimental research on artificial compensation in yufu river for groundwater to protect springs [J]. Hydroelectric Energy, 2003, 21(4): 53-55(in Chinese). doi: 10.3969/j.issn.1000-7709.2003.04.017
[7] 李凤丽, 王维平, 徐巧艺, 等. 济南市玉符河多水源回灌岩溶水水质风险评价 [J]. 中国岩溶, 2017, 36(5): 751-758. LI F L, WANG W P, XU Q Y, et al. Assessment of water quality risk from Karst aquifer recharge with multi-source water in the Yufuhe River, Ji'nan [J]. Carsologica Sinica, 2017, 36(5): 751-758(in Chinese).
[8] 朱彪, 陈喜, 张志才, 等. 西南喀斯特流域枯季地下水电导率特征及水-岩作用分析 [J]. 地球与环境, 2019, 47(4): 459-463. ZHU B, CHEN X, ZHANG Z C, et al. Characteristics of groundwater conductivity in dry season and water-rock interaction implications in a southwest Karst Basin [J]. Earth and Environment, 2019, 47(4): 459-463(in Chinese).
[9] 夏绮文, 李炳华, 何江涛, 等. 潮白河再生水生态补给河道区浅层地下水氮转化 [J]. 环境科学研究, 2021, 34(3): 618-628. XIA Q W, LI B H, HE J T, et al. Nitrogen transformation of shallow groundwater in river area of ecological recharge of reclaimed water in chaobai river [J]. Research of Environmental Sciences, 2021, 34(3): 618-628(in Chinese).
[10] 鲁垠涛, 刘芳, 姚宏, 等. 北京密云水库小流域地下水硝酸盐污染来源示踪 [J]. 环境化学, 2016, 35(1): 180-188. doi: 10.7524/j.issn.0254-6108.2016.01.2015052501 LU Y T, LIU F, YAO H, et al. Source analysis of nitrate pollution source in groundwater in A Small Watershed of Miyun Reservoir in Beijing [J]. Environmental Chemistry, 2016, 35(1): 180-188(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.01.2015052501
[11] 王卓微, 赵新锋, 庞园, 等. 流溪河流域地下水水化学时空特征及源辨析 [J]. 环境化学, 2017, 36(12): 2701-2710. doi: 10.7524/j.issn.0254-6108.2017032306 WANG Z W, ZHAO X F, PANG Y, et al. Spatial and seasonal geochemical and stable isotopic characteristics of groundwater associated with flow system and source identification in Liuxi River catchment [J]. Environmental Chemistry, 2017, 36(12): 2701-2710(in Chinese). doi: 10.7524/j.issn.0254-6108.2017032306
[12] HUBER S A, BALZ A, ABERT M, et al. Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography - organic carbon detection - organic nitrogen detection (LC-OCD-OND) [J]. Water Research, 2011, 45(2): 879-885. doi: 10.1016/j.watres.2010.09.023 [13] 王雪莲, 席彩杰, 杨琦, 等. 包气带中污染物的天然降解作用 [J]. 新疆环境保护, 2005, 27(3): 40-43. doi: 10.3969/j.issn.1008-2301.2005.03.011 WANG X L, XI C J, YANG Q, et al. Natural degradation of contaminants in unsaturated zone [J]. Environmental Protection of Xinjiang, 2005, 27(3): 40-43(in Chinese). doi: 10.3969/j.issn.1008-2301.2005.03.011
[14] 武宇辉, 杨悦锁, 赵传起, 等. 水土环境中微生物胞外聚合物对污染物迁移和归宿影响的研究进展 [J]. 化工学报, 2018, 69(8): 3303-3317. WU Y H, YANG Y S, ZHAO C Q, et al. A review on effects of extracellular polymeric substances on contaminants fate & transport in soil and water environment [J]. CIESC Journal, 2018, 69(8): 3303-3317(in Chinese).
[15] RUTLIDGE H, MCDONOUGH L K, OUDONE P, et al. Characterisation of groundwater dissolved organic matter using LCOCD: Implications for water treatment [J]. Water Research, 2021, 188: 116422. doi: 10.1016/j.watres.2020.116422 [16] 张远, 张彦, 于涛. 太湖典型湖区沉积物外源有机质贡献率研究 [J]. 环境科学研究, 2011, 24(3): 251-258. ZHANG Y, ZHANG Y, YU T. Contribution rate of exogenous organic matter in sediments from typical areas of Taihu Lake [J]. Research of Environmental Sciences, 2011, 24(3): 251-258(in Chinese).
[17] HOOD E, WILLIAMS M W, MCKNIGHT D M. Sources of dissolved organic matter (DOM) in a Rocky Mountain stream using chemical fractionation and stable isotopes [J]. Biogeochemistry, 2005, 74(2): 231-255. doi: 10.1007/s10533-004-4322-5 [18] 袁博, 郭梦京, 郑兴, 等. 灞河流域溶解性有机质分子量分级表征及其与水质的相关性 [J]. 应用生态学报, 2018, 29(11): 3773-3782. YUAN B, GUO M J, ZHENG X, et al. Molecular weight fractionated characterization of dissolved organic matter and its correlation with water quality in the Bahe River Basin, Northwest China [J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3773-3782(in Chinese).
[19] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial [J]. Limnology and Oceanography:Methods, 2008, 6(11): 572-579. doi: 10.4319/lom.2008.6.572 [20] 陈永娟, 胡玮璇, 庞树江, 等. 北运河水体中荧光溶解性有机物空间分布特征及来源分析 [J]. 环境科学, 2016, 37(8): 3017-3025. CHEN Y J, HU W X, PANG S J, et al. Spatial distribution characteristics and source analysis of dissolved organic matter in Beiyun River [J]. Environmental Science, 2016, 37(8): 3017-3025(in Chinese).
[21] 程庆霖, 郑丙辉, 王圣瑞, 等. 滇池水体有色溶解性有机质(CDOM)三维荧光光谱特征 [J]. 光谱学与光谱分析, 2014, 34(3): 698-703. doi: 10.3964/j.issn.1000-0593(2014)03-0698-06 CHENG Q L, ZHENG B H, WANG S R, et al. Optical signatures of chromophoric dissolved organic matter in water body of Tien Lake [J]. Spectroscopy and Spectral Analysis, 2014, 34(3): 698-703(in Chinese). doi: 10.3964/j.issn.1000-0593(2014)03-0698-06
[22] SHAO S L, LIANG H, QU F S, et al. Fluorescent natural organic matter fractions responsible for ultrafiltration membrane fouling: Identification by adsorption pretreatment coupled with parallel factor analysis of excitation-emission matrices [J]. Journal of Membrane Science, 2014, 464: 33-42. doi: 10.1016/j.memsci.2014.03.071 [23] TIAN J Y, WU C W, YU H R, et al. Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water [J]. Water Research, 2018, 132: 190-199. doi: 10.1016/j.watres.2018.01.005 [24] 朱爱菊, 孙东耀, 谭季, 等. 亚热带河口陆基养虾塘水体CDOM三维荧光光谱平行因子分析 [J]. 环境科学, 2019, 40(1): 164-171. ZHU A J, SUN D Y, TAN J, et al. Parallel factor analysis of fluorescence excitation emission matrix spectroscopy of CDOM from the mid-culture period of shrimp ponds in a subtropical estuary [J]. Environmental Science, 2019, 40(1): 164-171(in Chinese).
[25] 靳百川, 蒋梦云, 白文荣, 等. 三维荧光光谱-平行因子法解析再生水补给人工湿地DOM的光谱特征 [J]. 光谱学与光谱分析, 2021, 41(4): 1240-1245. JIN B C, JIANG M Y, BAI W R, et al. Fluorescence spectra characteristics of reclaimed water to replenish constructed wetlands using EEM-PARAFAC [J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1240-1245(in Chinese).
[26] 祝鹏, 华祖林, 李惠民. PARAFAC法解析太湖水体DOM三维荧光光谱 [J]. 光谱学与光谱分析, 2013, 33(6): 1619-1625. doi: 10.3964/j.issn.1000-0593(2013)06-1619-07 ZHU P, HUA Z L, LI H M. PARAFAC method used for analysis of three-dimensional fluorescence spectra of DOM in Taihu Lake [J]. Spectroscopy and Spectral Analysis, 2013, 33(6): 1619-1625(in Chinese). doi: 10.3964/j.issn.1000-0593(2013)06-1619-07
[27] 陈继芬, 贺子欣, 党丽慧, 等. 利用光谱分析法表征银川市湿地水体中溶解性有机质的特征 [J]. 环境化学, 2021, 40(8): 2524-2534. doi: 10.7524/j.issn.0254-6108.2020040702 CHEN J F, HE Z X, DANG L H, et al. Characterization of dissolved organic matter in the surface water of the Yinchuan Wetlands using spectroscopic analysis [J]. Environmental Chemistry, 2021, 40(8): 2524-2534(in Chinese). doi: 10.7524/j.issn.0254-6108.2020040702
[28] 何小松, 席北斗, 张鹏, 等. 地下水中溶解性有机物的季节变化特征及成因 [J]. 中国环境科学, 2015, 35(3): 862-870. HE X S, XI B D, ZHANG P, et al. The seasonal distribution characteristics and its reasons of dissolved organic matter in groundwater [J]. China Environmental Science, 2015, 35(3): 862-870(in Chinese).
[29] 何洪威, 周达诚, 王保强, 等. 珠江水体中有机物分布、组成及与消毒副产物生成的关系 [J]. 环境科学, 2012, 33(9): 3076-3082. HE H W, ZHOU D C, WANG B Q, et al. Relationship between dissolved organic carbon and DBP in the Pearl River water [J]. Environmental Science, 2012, 33(9): 3076-3082(in Chinese).
[30] ZHOU X L, ZHENG L L, CHEN S Y, et al. Factors influencing DBPs occurrence in tap water of Jinhua Region in Zhejiang Province, China [J]. Ecotoxicology and Environmental Safety, 2019, 171: 813-822. doi: 10.1016/j.ecoenv.2018.12.106 [31] LOU J C, HUANG C E, HAN J Y, et al. Generation of disinfection by-products (DBPs) at two advanced water treatment plants [J]. Environmental Monitoring and Assessment, 2010, 162(1/2/3/4): 365-375. [32] WATSON K, FARRÉ M J, LEUSCH F D L, et al. Using fluorescence-parallel factor analysis for assessing disinfection by-product formation and natural organic matter removal efficiency in secondary treated synthetic drinking waters [J]. Science of the Total Environment, 2018, 640/641: 31-40. doi: 10.1016/j.scitotenv.2018.05.280 [33] JUTAPORN P, ARMSTRONG M D, CORONELL O. Assessment of C-DBP and N-DBP formation potential and its reduction by MIEX® DOC and MIEX® GOLD resins using fluorescence spectroscopy and parallel factor analysis [J]. Water Research, 2020, 172: 115460. doi: 10.1016/j.watres.2019.115460 [34] 杨盼, 卢路, 王继保, 等. 基于主成分分析的spearman秩相关系数法在长江干流水质分析中的应用 [J]. 环境工程, 2019, 37(8): 76-80. YANG P, LU L, WANG J B, et al. Analysis of water quality trend in the main stream of the Yangtze River based on principal component analysis [J]. Environmental Engineering, 2019, 37(8): 76-80(in Chinese).
[35] 张莹莹, 卢毅敏. 采用主成分分析和水质标识指数评价敖江流域水质 [J]. 华侨大学学报(自然科学版), 2019, 40(1): 93-100. ZHANG Y Y, LU Y M. Water quality evaluation of aojiang river basin using principal component analysis and water quality index [J]. Journal of Huaqiao University (Natural Science), 2019, 40(1): 93-100(in Chinese).
[36] 蔡文良, 许晓毅, 罗固源, 等. 长江重庆段溶解性有机物的荧光特性分析 [J]. 环境化学, 2012, 31(7): 1003-1008. CAI W L, XU X Y, LUO G Y, et al. Fluorescence characteristics of dissolved organic matter in the Chongqing section of Yangtze River [J]. Environmental Chemistry, 2012, 31(7): 1003-1008(in Chinese).