-
PFASs是分子中与碳原子连接的氢原子全部被氟原子取代的一类持久性有机污染物,被广泛应用于织物、地毯、纸张、泡沫灭火剂、不粘锅、包装材料等生产制造领域,被大量地排放到环境中[1]. 同时由于其难降解,可远距离传输,并通过食物链在动物和人体中累积等特点,造成该类化合物在全球范围内广泛存在[2-3]. 研究表明,该类物质具有致畸、致癌、神经毒性和内分泌干扰等特性,其对人体健康存在潜在危害[4-5]. 此外,由于大部分PFASs具有较低的饱和蒸气压、较高的水溶性和很强的表面活性,使其在各种表层水体中累积,因此水环境是PFASs重要的汇和污染传输途径,了解PFASs在水环境中的分布特征极为重要[6-7].
随着发达国家逐步加强对PFASs的管控[8],氟化工产业逐渐由欧美等发达国家向发展中国家转移[9],我国氟化工产业主要集中在中部和东部地区,其中长三角地区是主要生产地[10-11],而氟化工产业的大规模发展会带来潜在的污染风险. 因此长三角地区的PFASs污染一直是学术界研究热点,但大部分长三角地区PFASs研究都集中在上海地区或少数城市,且部分研究主要集中在全氟辛烷磺酸(PFOS)和PFOA的研究,对长三角地区PFASs的整体污染研究不全面. 如Sun等[12]对上海水体中的PFASs的污染水平研究和Chen等[13]对常熟、淮安、盐城等城市的PFASs污染特征研究等.
本研究利用快速液相色谱-三重四极杆串联质谱联用检测技术,以长三角地区11个城市作为研究区域,选取了29个采样点,对该地区11种PFASs在水环境中的污染水平、污染特征、污染来源开展研究,并对该地区PFASs生态环境潜在风险进行评估,以期为该类化合物的全面、深入研究以及该区域水环境综合管理提供科学依据.
长三角地区水体中全氟化合物的污染特征及风险评价
Pollution characteristics and risk assessment of perfluoroalkyl substances in surface water from Yangtze River Delta
-
摘要: 为探究长三角地区水环境中全氟化合物(PFASs)的污染分布特征及风险水平,对长三角地区水环境中11种PFASs进行了研究. 通过固相萃取结合液相色谱-三重四极杆串联质谱的方法对该地区水环境中PFASs污染水平进行分析,并运用环境风险熵值法对该地区水环境中PFASs污染进行了风险评估. 结果表明PFASs在长三角地区广泛存在,Σ8PFASs浓度为8.64—736.74 ng·L−1,其中主要污染物为全氟辛酸(PFOA)、全氟己酸(PFHxA)和全氟己烷磺酸盐(PFHxS),其浓度范围分别为4.49—517 ng·L−1、0.92—688 ng·L−1和0.51—260 ng·L−1. 源解析结果表明长三角大部分地区水环境中PFASs污染来源于前体化合物降解所形成的面污染源,少部分地区水环境PFASs污染来源于部分行业直接排放形成的点污染源. 风险评估结果显示该地区水环境中PFASs的生态风险值和健康风险熵值均低于参考值,对生态环境和人体健康的风险水平较低.Abstract: In order to investigate the pollution characteristics of the perfluoroalkyl substances (PFASs) in Yangtze River Delta region, 11 PFASs were systematically investigated in the water of Yangtze River Delta region. The concentrations of PFASs in study region were analyzed by high performance liquid chromatography-triple quadrupole tandem mass spectrometry and the risk level in water of PFASs in study region was evaluated by risk quotient method. The results suggested that PFASs are widespread in the Yangtze River Delta region and total concentration of PFASs ranged from 8.64 ng·L−1 to 736.74 ng·L−1. Pentadecafluorooctanoic acid (PFOA), Perfluorohexanoic acid (PFHxA) and sodium perfluorohexanesulfonate (PFHxS)were dominant pollutants, with their concentrations of 4.49—517 ng·L−1, 0.92—688 ng·L−1 and 0.51—260 ng·L−1, respectively. In most areas of the Yangtze River Delta, PFASs pollution comes from no-point pollution sources formed by degradation of precursor compounds, while in a few areas of the Yangtze River Delta, PFASs pollution comes from point pollution sources formed by direct discharge of some industries. The preliminary risk assessment suggested that PFASs have lower environmental risk to local aquatic ecosystem and no health risk to human health.
-
表 1 PFASs检测的质谱条件
Table 1. MS conditions for the detection of PFASs
化合物
Compounds母离子
Precursor ions定性离子
Qualitative ion定量离子
Quantitative ion去簇电压/V
Declustering potential碰撞能/V
Collision energyPFHxA 312.9 269.0 118.9 −40.00 −13.00/−30.00 PFHpA 362.8 318.8 168.9 −49.00 −15.00/−26.00 PFOA 412.8 369.0 168.8 −45.00 −15.00/−26.00 PFNA 462.9 418.8 218.7 −38.00 −16.00/−25.00 PFDA 513.0 469.0 269.0 −50.00 −17.00/−26.00 PFUnA 563.0 519.1 269.1 −45.00 −17.00/−28.00 PFDoA 613.1 569.0 268.8 −50.00 −19.00/−29.00 PFHxS 398.8 79.9 98.8 −80.00 −75.00/−60.00 PFOS 498.9 79.9 98.9 −70.00 −85.00/75.00 PFTeDA 713.0 669.1 319.0 −55.00 −23.00/−35.00 PFTrDA 663.0 619.0 269.0 −55.00 −20.00/−35.00 表 2 长三角地区地表水中PFASs的污染浓度(ng·L−1)
Table 2. Concentration of PFASs in the waters from Yangtze River Delta(ng·L−1)
PFHxS PFHxA PFHpA PFOA PFOS PFNA PFDA PFUnA Σ8PFASs 检出率 100% 100% 100% 100% 100% 100% 89.7% 48.3% 11.60 S1 0.85 3.40 0.59 5.85 0.82 0.09 ND ND 14.73 S2 0.79 5.67 0.83 6.88 0.38 0.18 ND ND 185.21 S3 19.2 35.8 4.23 108 14.5 1.64 1.22 0.62 22.99 S4 1.27 4.48 1.33 11.8 3.58 0.26 0.27 ND 14.57 S5 1.49 0.92 0.93 10.6 0.58 0.06 ND ND 37.93 S6 1.67 3.60 1.76 23.7 4.99 0.77 0.89 0.55 22.44 S7 1.49 2.37 0.93 16.0 1.15 0.22 0.28 ND 26.65 S8 2.36 2.59 0.61 16.0 4.80 0.10 0.19 ND 128.30 S9 57.3 3.96 1.17 58.5 7.13 0.16 0.08 ND 26.38 S10 2.70 3.05 1.33 17.3 1.63 0.31 0.07 ND 33.60 S11 7.74 2.57 1.02 19.3 2.43 0.39 0.16 ND 598.02 S12 1.25 58.0 19.60 517 1.07 0.77 0.33 ND 14.56 S13 1.28 1.36 0.79 10.4 0.64 0.04 0.05 ND 20.23 S14 2.68 3.44 1.31 11.1 1.55 0.11 0.04 ND 22.45 S15 1.46 5.59 1.63 12.3 0.68 0.67 0.12 ND 194.88 S16 66.7 25.4 6.03 81.3 9.97 3.22 1.73 0.53 299.40 S17 260 4.66 1.84 20.4 10.5 0.74 0.80 0.45 99.36 S18 71.1 4.70 1.45 16.1 5.15 0.40 0.29 0.17 166.44 S19 105 9.45 3.53 34.3 11.4 1.44 0.82 0.50 62.39 S20 7.69 6.47 2.52 34.8 8.30 1.45 0.79 0.37 217.67 S21 154 14.7 2.81 36.6 7.07 1.51 0.71 0.27 25.71 S22 3.13 2.59 1.64 14.2 2.43 0.61 0.56 0.55 8.94 S23 1.53 1.09 1.19 4.49 0.57 0.05 0.02 ND 56.07 S24 4.80 7.06 2.78 35.4 2.93 1.41 1.05 0.64 381.38 S25 192 36.8 8.29 132 8.88 2.33 0.79 0.29 150.77 S26 35.0 28.4 5.50 58.3 20.1 2.11 0.99 0.38 736.74 S27 3.00 688 2.70 38.8 2.12 0.78 0.73 0.61 22.35 S28 0.51 3.94 1.54 14.6 0.46 1.09 0.21 ND 56.32 S29 0.98 9.33 3.48 35.8 1.80 3.50 0.92 0.52 8.94 注:“ND”表示低于检出限,统计时浓度以0计.
Note: “ND” means lower than the detection limit, and the concentration is counted as 0 during statistics.表 3 国内外其它地区水体中PFOA和PFOS浓度
Table 3. PFOA and PFOS concentrations in surface water from China and other countries.
地区
Location点位数
Sites number时间
Year全氟辛酸/(ng·L−1)
PFOA全氟辛烷磺酸盐/ (ng·L−1)
PFOS参考文献
References中国阜新 7 2009 27.2—668 0.28—0.54 [16] 中国聊城 3 2014—2015 3.9—5.4 0.5—1.3 [13] 中国东北地区 32 2014 1.52—18.0 ND—13.0 [17] 中国北京 34 2015 4.21—98.52 2.24—121.62 [18] 中国杭州 32 2013—2014 34.66—197.8 ND [19] 中国武汉 23 2010 ND—256 ND—88.9 [20] 日本 79 2003 0.10—456.41 0.24—37.32 [21] 越南 47 2013—2015 ND—53.5 ND—40.2 [22] 法国 315 2012 0.08—36 0.01—197 [23] 荷兰 21 2007 6.5—43 4.7—32 [24] 北欧 40 2013 0.21—4.2 0.040—6.9 [25] 意大利 19 2007 1—1270 0—25 [26] 中国长三角地区 29 2019 4.49—517 0.38—20.10 本研究 表 4 长三角地区地表水中PFASs的相关性
Table 4. Correlation of PFASs in the waters from Yangtze River Delta
PFHxS PFHxA PFHpA PFOA PFOS PFNA PFDA PFUnA PFHxS 1.00 −0.07 0.14 0.04 0.50** 0.29 0.35 0.27 PFHxA 1.00 0.09 0.07 0.06 0.03 0.15 0.32 PFHpA 1.00 0.96** 0.20 0.38 0.31 0.13 PFOA 1.00 0.07 0.18 0.15 −0.01 PFOS 1.00 0.52** 0.67** 0.52** PFNA 1.00 0.83** 0.65** PFDA 1.00 0.88** PFUnA 1.00 注:**,P≤0.01 -
[1] ZHANG M, WANG P, LU Y L, et al. Bioaccumulation and human exposure of perfluoroalkyl acids (PFAAs) in vegetables from the largest vegetable production base of China [J]. Environment International, 2020, 135: 105347. doi: 10.1016/j.envint.2019.105347 [2] RYU H, LI B K, de GUISE S, et al. Recent progress in the detection of emerging contaminants PFASs [J]. Journal of Hazardous Materials, 2021, 408: 124437. doi: 10.1016/j.jhazmat.2020.124437 [3] YANG L, WANG T Y, ZHOU Y Q, et al. Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China [J]. Science of the Total Environment, 2021, 760: 144080. doi: 10.1016/j.scitotenv.2020.144080 [4] LI Y, ZHANG L Y, DING J, et al. Prioritization of pharmaceuticals in water environment in China based on environmental criteria and risk analysis of top-priority pharmaceuticals [J]. Journal of Environmental Management, 2020, 253: 109732. doi: 10.1016/j.jenvman.2019.109732 [5] ZHOU J, LI Z, GUO X T, et al. Evidences for replacing legacy per- and polyfluoroalkyl substances with emerging ones in Fen and Wei River Basins in central and Western China [J]. Journal of Hazardous Materials, 2019, 377: 78-87. doi: 10.1016/j.jhazmat.2019.05.050 [6] 陈静, 王琳玲, 朱湖地, 等. 东湖表层水体中全氟辛酸和全氟辛磺酸空间分布特征 [J]. 环境科学, 2012, 33(8): 2586-2591. doi: 10.13227/j.hjkx.2012.08.035 CHEN J, WANG L L, ZHU H D, et al. Spatial distribution of perfluorooctanoic acids and perfluorinate sulphonates in surface water of east lake [J]. Environmental Science, 2012, 33(8): 2586-2591(in Chinese). doi: 10.13227/j.hjkx.2012.08.035
[7] 张大文, 王冬根, 张莉, 等. 太湖梅梁湾全氟化合物污染现状研究 [J]. 环境科学学报, 2012, 32(12): 2978-2985. doi: 10.13671/j.hjkxxb.2012.12.016 ZHANG D W, WANG D G, ZHANG L, et al. A study on the perfluorinated compounds pollution in Meiliang Bay, Taihu Lake [J]. Acta Scientiae Circumstantiae, 2012, 32(12): 2978-2985(in Chinese). doi: 10.13671/j.hjkxxb.2012.12.016
[8] GAO J, DONG S H, YU H F, et al. Source apportionment for online dataset at a megacity in China using a new PTT-PMF model [J]. Atmospheric Environment, 2020, 229: 117457. doi: 10.1016/j.atmosenv.2020.117457 [9] ZHAO Y G, WONG C K C, WONG M H. Environmental contamination, human exposure and body loadings of perfluorooctane sulfonate (PFOS), focusing on Asian countries [J]. Chemosphere, 2012, 89(4): 355-368. doi: 10.1016/j.chemosphere.2012.05.043 [10] PAN C G, YING G G, ZHAO J L, et al. Spatial distribution of perfluoroalkyl substances in surface sediments of five major rivers in China [J]. Archives of Environmental Contamination and Toxicology, 2015, 68(3): 566-576. doi: 10.1007/s00244-014-0113-8 [11] SUN R, WU M H, TANG L, et al. Perfluorinated compounds in surface waters of Shanghai, China: Source analysis and risk assessment [J]. Ecotoxicology and Environmental Safety, 2018, 149: 88-95. doi: 10.1016/j.ecoenv.2017.11.012 [12] SUN Z Y, ZHANG C J, YAN H, et al. Spatiotemporal distribution and potential sources of perfluoroalkyl acids in Huangpu River, Shanghai, China [J]. Chemosphere, 2017, 174: 127-135. doi: 10.1016/j.chemosphere.2017.01.122 [13] CHEN S, JIAO X C, GAI N, et al. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in Eastern China [J]. Environmental Pollution, 2016, 211: 124-131. doi: 10.1016/j.envpol.2015.12.024 [14] YAN C X, YANG Y, ZHOU J L, et al. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment [J]. Environmental Pollution, 2013, 175: 22-29. doi: 10.1016/j.envpol.2012.12.008 [15] CHEN C L, LU Y L, ZHANG X, et al. A review of spatial and temporal assessment of PFOS and PFOA contamination in China [J]. Chemistry and Ecology, 2009, 25(3): 163-177. doi: 10.1080/02757540902918321 [16] BAO J, LIU W, LIU L, et al. Perfluorinated compounds in the environment and the blood of residents living near fluorochemical plants in Fuxin, China [J]. Environmental Science & Technology, 2011, 45(19): 8075-8080. [17] GONG X X, LIU R X, LI B, et al. Perfluoroalkyl acids in Daliao River system of northeast China: Determination, distribution and ecological risk [J]. Environmental Earth Sciences, 2016, 75(6): 469. doi: 10.1007/s12665-016-5345-7 [18] ZHANG Y Z, WANG B, WANG W, et al. Occurrence and source apportionment of Per- and poly-fluorinated compounds (PFCs) in North Canal Basin, Beijing [J]. Scientific Reports, 2016, 6: 36683. doi: 10.1038/srep36683 [19] XU H Y, ZHU J Q, LEI C, et al. The investigation of perfluorinated compounds in surface waters of the Xixi wetland, Hangzhou, China [J]. Bulletin of Environmental Contamination and Toxicology, 2016, 97(6): 770-775. doi: 10.1007/s00128-016-1954-9 [20] TONG L, LIAO X, CHEN J S, et al. Pollution characteristics of ambient volatile organic compounds (VOCs) in the southeast coastal cities of China [J]. Environmental Science and Pollution Research, 2013, 20(4): 2603-2615. doi: 10.1007/s11356-012-1187-3 [21] SAITO N, HARADA K, INOUE K, et al. Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan [J]. Journal of Occupational Health, 2004, 46(1): 49-59. doi: 10.1539/joh.46.49 [22] LAM N H, CHO C R, KANNAN K, et al. A nationwide survey of perfluorinated alkyl substances in waters, sediment and biota collected from aquatic environment in Vietnam: Distributions and bioconcentration profiles [J]. Journal of Hazardous Materials, 2017, 323: 116-127. doi: 10.1016/j.jhazmat.2016.04.010 [23] MUNOZ G, GIRAUDEL J L, BOTTA F, et al. Spatial distribution and partitioning behavior of selected poly- and perfluoroalkyl substances in freshwater ecosystems: A French nationwide survey [J]. Science of the Total Environment, 2015, 517: 48-56. doi: 10.1016/j.scitotenv.2015.02.043 [24] KWADIJK C J A F, KORYTÁR P, KOELMANS A A. Distribution of perfluorinated compounds in aquatic systems in the Netherlands [J]. Environmental Science & Technology, 2010, 44(10): 3746-3751. [25] NGUYEN M A, WIBERG K, RIBELI E, et al. Spatial distribution and source tracing of per- and polyfluoroalkyl substances (PFASs) in surface water in Northern Europe [J]. Environmental Pollution, 2017, 220: 1438-1446. doi: 10.1016/j.envpol.2016.10.089 [26] LOOS R, LOCORO G, HUBER T, et al. Analysis of perfluorooctanoate (PFOA) and other perfluorinated compounds (PFCs) in the River Po watershed in N-Italy [J]. Chemosphere, 2008, 71(2): 306-313. doi: 10.1016/j.chemosphere.2007.09.022 [27] GUO C S, ZHANG Y, ZHAO X, et al. Distribution, source characterization and inventory of perfluoroalkyl substances in Taihu Lake, China [J]. Chemosphere, 2015, 127: 201-207. doi: 10.1016/j.chemosphere.2015.01.053 [28] PAN C G, YING G G, LIU Y S, et al. Contamination profiles of perfluoroalkyl substances in five typical rivers of the Pearl River Delta region, South China [J]. Chemosphere, 2014, 114: 16-25. doi: 10.1016/j.chemosphere.2014.04.005 [29] YOUNG C J, FURDUI V I, FRANKLIN J, et al. Perfluorinated acids in Arctic snow: New evidence for atmospheric formation [J]. Environmental Science & Technology, 2007, 41(10): 3455-3461. [30] FASANO W J, CARPENTER S C, GANNON S A, et al. Absorption, distribution, metabolism, and elimination of 8-2 fluorotelomer alcohol in the rat [J]. Toxicological Sciences, 2006, 91(2): 341-355. doi: 10.1093/toxsci/kfj160 [31] 齐彦杰. 中国湖泊沉积物中全氟化合物的空间分布、历史沉积行为及源解析[D]. 杨凌: 西北农林科技大学, 2016. QI Y J. Spatial distribution, historical deposition behaviors and source apportionment of perfluoroalkyl substances in sediments from the lakes of China[D]. Yangling: Northwest A & F University, 2016(in Chinese).
[32] TOMY G T, TITTLEMIER S A, PALACE V P, et al. Biotransformation of N-ethyl perfluorooctanesulfonamide by rainbow trout (Onchorhynchus mykiss) liver microsomes [J]. Environmental Science & Technology, 2004, 38(3): 758-762. [33] HOKE R A, BOUCHELLE L D, FERRELL B D, et al. Comparative acute freshwater hazard assessment and preliminary PNEC development for eight fluorinated acids [J]. Chemosphere, 2012, 87(7): 725-733. doi: 10.1016/j.chemosphere.2011.12.066 [34] XIAO F, HALBACH T R, SIMCIK M F, et al. Input characterization of perfluoroalkyl substances in wastewater treatment plants: Source discrimination by exploratory data analysis [J]. Water Research, 2012, 46(9): 3101-3109. doi: 10.1016/j.watres.2012.03.027