-
微生物污染问题作为全球饮用水供给安全中的重大挑战,在缺乏强效饮用水消毒措施的不发达国家和地区尤为严重[1–3]。传统的饮用水消毒手段存在一些局限,主要是消毒不彻底,极易生成有毒害副产物等,例如臭氧消毒不仅成本高、难储存,易腐蚀管道,而且会产生多余的消毒副产物(disinfection byproducts,DBPs)[3–5];紫外消毒存在着光穿透率低、易受水质状况影响、紫外灯耗电量大,以及微生物易光复活和暗复活等问题;加氯消毒则无法灭活两虫等抗氯微生物,而且会生成较多的卤代消毒副产物 [6–8]。为了应对传统消毒方法的局限性,近年来一些先进的消毒技术作为替代方案应运而生[9–11]。
在各种先进的消毒技术中,基于硫酸根自由基(SO4−•,通过活化过一硫酸盐(peroxymonosulfate , PMS)和过二硫酸盐(peroxo-disulfate,PDS))的高级氧化工艺(advanced oxidation processes, AOPs)具有较好的应用前景,主要基于以下几方面原因:(1)SO4•−具有宽pH适应范围,在pH = 3—11均具有较高的氧化电位(E0(SO4−•/SO42−) = +2.60 — +3.10 VNHE),能够氧化灭活多种微生物,并且能降解胞内基因来抑制微生物假死复活[12];(2)SO4−•的活化方式多样,如可以通过光、热、碱、超声或投加催化剂活化过硫酸盐来获得SO4−•,且过硫酸盐能够溶于水来渗透进土壤来进行修复[12–14];(3)与加氯和臭氧工艺相比,SO4−•消毒后产生的副产物数量较少[15];(4)SO4−•具有较高的选择性,在含溶解有机物、阴离子、阳离子等不同水环境中受影响较小,并能保持较高的消毒效果[12–13]。虽然基于SO4−•的AOPs用于消毒已经有较好的文献报道[16–20],但到目前为止仍没有相关的文章综述总结和比较基于SO4−•的AOPs用于灭活不同微生物的效率及其适用性。
当采用基于SO4−•的AOPs处理工艺对废水进行消毒时,不同水质环境和操作条件对于评估和优化该工艺至关重要。以往的研究评估了pH值、共存的溶解性有机物 (dissolved organic matter, DOM)阴离子、催化剂用量、温度和光强对消毒效率的影响[21–23],因此需要进行全面的概述来总结基于SO4−•的最佳消毒工艺条件。此外,目前对基于SO4−•的AOPs消毒工艺灭活微生物的机理仍存在一些争论:从过程角度来看,灭菌主要活性物种究竟是SO4−•,还是OH•、O2•−、1O2、激发态电子等仍然存在争议;从微生物的角度来看,有报告指出活性物种最先氧化微生物的壁或膜, 导致其不可逆转的损伤,最终影响膜的通透性和生理功能[17, 24-25];或有文献也强调活性物种还会攻击细胞内成分,甚至影响到微生物的酶与基因组[26–28]。因此,总结分析基于SO4−•的消毒工艺将提高对该技术的基础理解,并为指导其工程应用提供帮助。本文总结了各种基于SO4−•工艺的灭菌反应体系及其灭菌机理,同时讨论了水质环境的影响以及副产物的生成,进一步对该方向的研究需求和未来发展方向作出展望。
基于硫酸根自由基的微生物灭活技术研究进展
Sulfate radical-based advanced oxidation processes for water disinfection
-
摘要: 基于硫酸根自由基(SO4−•)的高级氧化工艺(advanced oxidation processes , AOPs),因其具有强氧化性及广泛pH适应范围,对不同微生物如抗氯菌、真菌及病毒等均具有广谱灭菌性,且在反应过程中仅产生极少量卤代副产物,因此在再生水、地下水或是应急场所中病原微生物灭活应用方面具有十分广阔的发展前景。本文概述了基于SO4−•的不同AOPs(如金属辅助、光辅助、碱辅助及压电催化)对各类致病微生物和指示微生物的灭活动力学响应,并揭示了其对病原微生物的灭活机制,主要为先破坏细胞膜通透性,进而引发酶和基因组损伤,从而有效抑制并彻底灭活病原微生物。此外,本文还总结和讨论了水质参数(如pH、温度和各种水基质)对基于SO4−•的AOPs消毒效果的影响,并对该体系中副产物的生成进行了调研和讨论。最后在结论中总结了综述中的关键点,并对将该工艺应用于实际工程中的知识缺口、研究需求和设计需要做出展望。Abstract: Sulfate radical (SO4−•)-based advanced oxidation processes (AOPs) have emerged as promising technologies for inactivation of pathogenic microorganisms in water and wastewater, due to the high oxidation potential of SO4−• towards different microorganisms, such as chlorine-resistant bacteria, fungi and viruses; strong oxidation at wide range of pH adaptation, and the negligible formation of undesired halogenated byproducts, which is suitable to be applied in reclaimed water, underground water or emergency places. This work provides an overview on the kinetic responses of various pathogenic/indicator microorganisms in different SO4−•-based AOPs (e.g., metal-assisted, light-assisted, and piezo-catalytic ones) and the mechanisms responsible for the inactivation, mainly including membrane permeability is first destroyed, which leads to enzyme and genome damage, thus effectively inhibiting and inactivating pathogenic microorganisms. The effects of water matrix (e.g., pH, temperature, and various water matrix) on the disinfection efficacies have also been reviewed and discussed. The formation of undesired byproducts in the SO4−•-based AOPs was also reviewed and discussed. Key points from the review are summarized in the conclusive remarks. Knowledge gaps, research needs, and design requirements of engineering applications of these processes in real-world practice are proposed as future perspectives.
-
Key words:
- sulfate radical /
- advanced oxidation processes /
- microorganisms /
- disinfection
-
表 1 铁基活化SO4−•致微生物失活
Table 1. Microorganism inactivation by SO4−•-based processes activated by iron species
体系
Process目标微生物
Target microorganisms实验条件
Experimental conditions消毒效率
Disinfection efficiency参考文献
ReferenceFe2+/PDS O157:H7大肠杆菌 3 mmol·L−1 PDS、3 mmol·L−1 FeSO4、3 mmol·L−1 NH2OH和pH7的饮用水 约130 min达到95%的灭活率 [16] Fe2+/PDS O157:H7大肠杆菌
和李斯特菌40 mmol·L−1 PDS 和
13.3 mmol·L−1 Fe2+120 s后(7.77 ± 0.57 )lg CFU·mL−1的大肠杆菌和(7.25 ± 0.36) lg CFU·mL−1的李斯特菌失活 [31] ZVI/PDS 大肠杆菌BL21
和粪肠球菌大肠杆菌测试中:3 mmol·L−1 PDS、 0.6 g·L−1 ZVI
粪肠球菌测试中:1 mmol·L−1 PDS、0.2 g·L−1 ZVI以及 pH 为5.580 min后90%的大肠杆菌失活;
12 min后75%的粪肠球菌失活[11] 天然黄铁矿/PDS 大肠杆菌K-12 0.5 mmol·L−1 PDS、1g·L−1 NP 以及 pH 为5.0 15 min内7 lg CFU·mL−1大肠杆菌失活 [33] Fe2+, Fe2O3, nZVI/
PDS和PMS大肠杆菌 0.5 mmol·L−1 PDS、 0.5 mmol·L−1 PMS、
1 mmol·L−1 Fe(Ⅱ)、1 mmol·L−1 Fe2O3以及50 mg·L−1 ZVI5 min内PMS与Fe2+、Fe2O3和ZVI的
偶联反应使大肠杆菌完全失活[34] 表 2 光介导活化SO4−•致微生物失活
Table 2. Microorganism inactivation by SO4−•-based processes activated by light
体系
Process目标微生物
Target microorganisms实验条件
Experimental conditions消毒效率
Disinfection disinfection参考文献
ReferenceUV/PDS 大肠杆菌、MS2噬菌体、枯草芽孢杆菌孢子 0.3 mmol·L−1 PDS,大肠杆菌、
噬菌体MS2、枯草芽孢杆菌孢子
紫外光剂量分别为8.8、30、30 mL·cm−23种微生物在30 min内均达到
4 lg CFU·mL−1失活[36] UV/PDS T. harzianum孢子 0.1 mmol·L−1 PMS, 紫外光剂量为
35 mL·cm−2达到2 lg CFU·mL−1失活 [37] 可见光/PDS 大肠杆菌 2 mmol·L−1 PDS, 30 °C, pH 6.0, λ ≥ 420 nm 40 min内6 lg CFU·mL−1大肠杆菌失活 [17] 可见光/ hydrochar /PS 大肠杆菌 200 mg·L−1 MHC; 2 mmol·L−1 PS; 25 °C, pH 6.0, λ ≥ 420 nm 40 min后8 lg CFU·mL−1大肠杆菌失活 [24] 太阳光/PMS;太阳光/Fe2+/PMS 大肠杆菌 装有蒸馏水的塑料瓶中加入
18 μmol·L−1 Fe2+, 290 μmol·L−1 H2O2,
和 36 μmol·L−1 PMS650 Wh·m−2太阳光/PMS体系和450 Wh·m−2太阳光/Fe2+/PMS体系达到5 lg CFU·mL−1失活 [38] -
[1] MUSTAFA A, SCHOLZ M, KHAN S, et al. Application of solar disinfection for treatment of contaminated public water supply in a developing country: Field observations [J]. Journal of Water and Health, 2013, 11(1): 135-145. doi: 10.2166/wh.2012.119 [2] MARA D. Sanitation: what's the real problem? [J]. IDS Bulletin, 2012, 43(2): 86-92. doi: 10.1111/j.1759-5436.2012.00311.x [3] HUTTON G, HALLER L, BARTRAM J. Global cost-benefit analysis of water supply and sanitation interventions [J]. Journal of Water and Health, 2007, 5(4): 481-502. doi: 10.2166/wh.2007.009 [4] NIEUWENHUIJSEN M J, TOLEDANO M B, EATON N E, et al. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: A review [J]. Occupational and Environmental Medicine, 2000, 57(2): 73-85. doi: 10.1136/oem.57.2.73 [5] ZHANG C, LI Y, SHUAI D M, et al. Progress and challenges in photocatalytic disinfection of waterborne Viruses: A review to fill current knowledge gaps [J]. Chemical Engineering Journal, 2019, 355: 399-415. doi: 10.1016/j.cej.2018.08.158 [6] PICHEL N, VIVAR M, FUENTES M. The problem of drinking water access: A review of disinfection technologies with an emphasis on solar treatment methods [J]. Chemosphere, 2019, 218: 1014-1030. doi: 10.1016/j.chemosphere.2018.11.205 [7] ELLIS K V. Water disinfection: A review with some consideration of the requirements of the third world [J]. Critical Reviews in Environmental Control, 1991, 20(5/6): 341-407. [8] DENG L Z, MUJUMDAR A S, PAN Z L, et al. Emerging chemical and physical disinfection technologies of fruits and vegetables: A comprehensive review [J]. Critical Reviews in Food Science and Nutrition, 2020, 60(15): 2481-2508. doi: 10.1080/10408398.2019.1649633 [9] LAZAROVA V, SAVOYE P, JANEX M L, et al. Advanced wastewater disinfection technologies: State of the art and perspectives [J]. Water Science and Technology, 1999, 40(4/5): 203-213. [10] LOEB S, HOFMANN R, KIM J H. Beyond the pipeline: Assessing the efficiency limits of advanced technologies for solar water disinfection [J]. Environmental Science & Technology Letters, 2016, 3(3): 73-80. [11] XIAO R Y, LIU K, BAI L, et al. Inactivation of pathogenic microorganisms by sulfate radical: Present and future [J]. Chemical Engineering Journal, 2019, 371: 222-232. doi: 10.1016/j.cej.2019.03.296 [12] LEE J, von GUNTEN U, KIM J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks [J]. Environmental Science & Technology, 2020, 54(6): 3064-3081. [13] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: A review [J]. Chemosphere, 2016, 151: 178-188. doi: 10.1016/j.chemosphere.2016.02.055 [14] ZHOU Z, LIU X T, SUN K, et al. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review [J]. Chemical Engineering Journal, 2019, 372: 836-851. doi: 10.1016/j.cej.2019.04.213 [15] TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review [J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1): 55-91. doi: 10.1080/10643380802039303 [16] WORDOFA D N, WALKER S L, LIU H Z. Sulfate radical-induced disinfection of pathogenic Escherichia coli O157: H7 via iron-activated persulfate [J]. Environmental Science & Technology Letters, 2017, 4(4): 154-160. [17] WANG W J, WANG H N, LI G Y, et al. Catalyst-free activation of persulfate by visible light for water disinfection: Efficiency and mechanisms [J]. Water Research, 2019, 157: 106-118. doi: 10.1016/j.watres.2019.03.071 [18] MORENO-ANDRÉS J, FARINANGO G, ROMERO-MARTÍNEZ L, et al. Application of persulfate salts for enhancing UV disinfection in marine waters [J]. Water Research, 2019, 163: 114866. doi: 10.1016/j.watres.2019.114866 [19] AHN S, PETERSON T D, RIGHTER J, et al. Disinfection of ballast water with iron activated persulfate [J]. Environmental Science & Technology, 2013, 47(20): 11717-11725. [20] 徐梓淞, 宋雄伟, 黄闻宇, 等. 不同活化过硫酸盐体系的机理分析及不同无机阴离子的作用: 以两种有机染料为例 [J]. 环境化学, 2022, 41(4): 1412-1424. doi: 10.7524/j.issn.0254-6108.2020122103 XU Z S, SONG X W, HUANG W Y, et al. Mechanism analysis of different activated persulfate systems and effects of different inorganic anions: a case study of two organic dyes [J]. Environmental Chemistry, 2022, 41(4): 1412-1424(in Chinese). doi: 10.7524/j.issn.0254-6108.2020122103
[21] MORENO-ANDRÉS J, PEPERZAK L. Operational and environmental factors affecting disinfection byproducts formation in ballast water treatment systems [J]. Chemosphere, 2019, 232: 496-505. doi: 10.1016/j.chemosphere.2019.05.152 [22] COWIE B E, PORLEY V, ROBERTSON N. Solar disinfection (SODIS) provides a much underexploited opportunity for researchers in photocatalytic water treatment (PWT) [J]. ACS Catalysis, 2020, 10(20): 11779-11782. doi: 10.1021/acscatal.0c03325 [23] MEIERHOFER R, LANDOLT G. Factors supporting the sustained use of solar water disinfection—Experiences from a global promotion and dissemination programme [J]. Desalination, 2009, 248(1/2/3): 144-151. [24] WANG W J, WANG H N, LI G Y, et al. Visible light activation of persulfate by magnetic hydrochar for bacterial inactivation: Efficiency, recyclability and mechanisms [J]. Water Research, 2020, 176: 115746. doi: 10.1016/j.watres.2020.115746 [25] XIA D H, YIN R, SUN J L, et al. Natural magnetic pyrrhotite as a high-Efficient persulfate activator for micropollutants degradation: Radicals identification and toxicity evaluation [J]. Journal of Hazardous Materials, 2017, 340: 435-444. doi: 10.1016/j.jhazmat.2017.07.029 [26] MA H K, ZHANG L L, HUANG X M, et al. A novel three-dimensional galvanic cell enhanced Fe2+/persulfate system: High efficiency, mechanism and damaging effect of antibiotic resistant E. coli and genes [J]. Chemical Engineering Journal, 2019, 362: 667-678. doi: 10.1016/j.cej.2019.01.042 [27] 韩仪, 黄明杰, 周涛, 等. 氧化铜活化过硫酸盐的界面反应机理 [J]. 环境化学, 2020, 39(3): 735-744. doi: 10.7524/j.issn.0254-6108.2019110101 HAN Y, HUANG M J, ZHOU T, et al. Interfacial reaction mechanism of copper oxide activating persulfate [J]. Environmental Chemistry, 2020, 39(3): 735-744(in Chinese). doi: 10.7524/j.issn.0254-6108.2019110101
[28] SERNA-GALVIS E A, VÉLEZ-PEÑA E, OSORIO-VARGAS P, et al. Inactivation of carbapenem-resistant Klebsiella pneumoniae by photo-Fenton: Residual effect, gene evolution and modifications with citric acid and persulfate [J]. Water Research, 2019, 161: 354-363. doi: 10.1016/j.watres.2019.06.024 [29] XIAO S, CHENG M, ZHONG H, et al. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review [J]. Chemical Engineering Journal, 2020, 384: 123265. doi: 10.1016/j.cej.2019.123265 [30] HOU K J, PI Z J, YAO F B, et al. A critical review on the mechanisms of persulfate activation by iron-based materials: Clarifying some ambiguity and controversies [J]. Chemical Engineering Journal, 2021, 407: 127078. doi: 10.1016/j.cej.2020.127078 [31] QI H, HUANG Q G, HUNG Y C. Efficacy of activated persulfate in inactivating Escherichia coli O157: H7 and Listeria monocytogenes [J]. International Journal of Food Microbiology, 2018, 284: 40-47. doi: 10.1016/j.ijfoodmicro.2018.06.021 [32] XIAO R Y, BAI L, LIU K, et al. Elucidating sulfate radical-mediated disinfection profiles and mechanisms of Escherichia coli and Enterococcus faecalis in municipal wastewater [J]. Water Research, 2020, 173: 115552. doi: 10.1016/j.watres.2020.115552 [33] XIA D H, LI Y, HUANG G C, et al. Activation of persulfates by natural magnetic pyrrhotite for water disinfection: Efficiency, mechanisms, and stability [J]. Water Research, 2017, 112: 236-247. doi: 10.1016/j.watres.2017.01.052 [34] 陈妍希, 严登明, 朱明山. 外场效应强化过硫酸盐氧化技术去除有机污染物的研究进展 [J]. 环境科学研究, 2022, 35(1): 131-140. CHEN Y X, YAN D M, ZHU M S. Recent progress in removal of organic pollutants by external-field effect enhanced persulfate oxidation processes [J]. Research of Environmental Sciences, 2022, 35(1): 131-140(in Chinese).
[35] YIN R, SUN J L, XIANG Y Y, et al. Recycling and reuse of rusted iron particles containing core-shell Fe-FeOOH for ibuprofen removal: Adsorption and persulfate-based advanced oxidation [J]. Journal of Cleaner Production, 2018, 178: 441-448. doi: 10.1016/j.jclepro.2018.01.005 [36] SUN P Z, TYREE C, HUANG C H. Inactivation of Escherichia coli, bacteriophage MS2, and Bacillus spores under UV/H2O2 and UV/peroxydisulfate advanced disinfection conditions [J]. Environmental Science & Technology, 2016, 50(8): 4448-4458. [37] WEN G, DENG X L, WAN Q Q, et al. Photoreactivation of fungal spores in water following UV disinfection and their control using UV-based advanced oxidation processes [J]. Water Research, 2019, 148: 1-9. doi: 10.1016/j.watres.2018.10.028 [38] OZORES DIEZ P, GIANNAKIS S, RODRÍGUEZ-CHUECA J, et al. Enhancing solar disinfection (SODIS) with the photo-Fenton or the Fe2+/peroxymonosulfate-activation process in large-scale plastic bottles leads to toxicologically safe drinking water [J]. Water Research, 2020, 186: 116387. doi: 10.1016/j.watres.2020.116387 [39] XIA D H, TANG Z Y, WANG Y C, et al. Piezo-catalytic persulfate activation system for water advanced disinfection: Process efficiency and inactivation mechanisms [J]. Chemical Engineering Journal, 2020, 400: 125894. doi: 10.1016/j.cej.2020.125894 [40] WANG Z, JIANG J, PANG S Y, et al. Is sulfate radical really generated from peroxydisulfate activated by iron(II) for environmental decontamination? [J]. Environmental Science & Technology, 2018, 52(19): 11276-11284. [41] 谷得明, 郭昌胜, 冯启言, 等. 基于硫酸根自由基的高级氧化技术及其在环境治理中的应用 [J]. 环境化学, 2018, 37(11): 2489-2508. doi: 10.7524/j.issn.0254-6108.2018012102 GU D M, GUO C S, FENG Q Y, et al. Sulfate radical-based advanced oxidation processes and its application in environmental remediation [J]. Environmental Chemistry, 2018, 37(11): 2489-2508(in Chinese). doi: 10.7524/j.issn.0254-6108.2018012102
[42] WANG Z, QIU W, PANG S Y, et al. Further understanding the involvement of Fe(IV) in peroxydisulfate and peroxymonosulfate activation by Fe(II) for oxidative water treatment [J]. Chemical Engineering Journal, 2019, 371: 842-847. doi: 10.1016/j.cej.2019.04.101 [43] LEE C H. Use of high-valent metal species produced by the Fenton (-like) reactions in water treatment[M]//Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability. Cham: Springer International Publishing, 2019: 89. [44] MERIDE Y, AYENEW B. Drinking water quality assessment and its effects on residents health in Wondo genet campus, Ethiopia [J]. Environmental Systems Research, 2016, 5: 1. doi: 10.1186/s40068-016-0053-6 [45] SONG W, LI J, WANG Z Y, et al. A mini review of activated methods to persulfate-based advanced oxidation process [J]. Water Science and Technology, 2019, 79(3): 573-579. doi: 10.2166/wcc.2018.168 [46] HOU S D, LING L, DIONYSIOU D D, et al. Chlorate formation mechanism in the presence of sulfate radical, chloride, bromide and natural organic matter [J]. Environmental Science & Technology, 2018, 52(11): 6317-6325. [47] BOLYARD M, FAIR P S, HAUTMAN D P. Occurrence of chlorate in hypochlorite solutions used for drinking water disinfection [J]. Environmental Science & Technology, 1992, 26(8): 1663-1665. [48] MARRON E L, van BUREN J, CUTHBERTSON A A, et al. Reactions of α, β-unsaturated carbonyls with free chlorine, free bromine, and combined chlorine [J]. Environmental Science & Technology, 2021, 55(5): 3305-3312. [49] YIN R, LING L, SHANG C. Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources [J]. Water Research, 2018, 142: 452-458. doi: 10.1016/j.watres.2018.06.018