-
稻田镉(Cd)污染导致的“镉米”问题亟待解决。据2014年原环境保护部和国土资源局联合发布的《全国土壤污染状况调查公报》可知,耕地土壤中Cd的点位超标率达7%,是耕地土壤首要无机污染物[1]。土壤中的Cd既可因作物吸收导致粮食减产,又能通过食物链在人体中累积,且在人体内半衰期长达20—30 a[2]。土壤中Cd极易转运至水稻茎叶与籽粒中,因而稻米中的Cd是人体摄入Cd最主要来源。基于此,国内外学者采用物理、化学、生物及联合修复法等治理污染土壤,原位钝化修复技术因成本低、易操作、效果好、能实现边生产边修复等优点被公认是最佳修复法之一[3-5]。该方法的关键在于重金属修复剂的选择[6]。生物炭具有复杂的结构功能和良好的特性,能将Cd2+固定于土壤中,减少Cd在水稻不同部位的富集,是目前热门的钝化材料。Bashir等[7]研究表明生物炭具有碱性、多含氧官能团、高矿物质含量、高阳离子交换能力以及高比表面积和孔隙体积等特性,对Cd的吸附量高达41.9 mg·g−1,能有效吸附Cd2+。陈思慧等[8]分别使用粉煤灰、磷矿粉和生物炭处理Cd污染水稻土,发现生物炭处理降低土壤有效态镉含量的效果最好,降幅达41.53%。
生物炭被定义为“在限氧条件下将生物质通过热化学转化而获得的固体材料”,一般由木材、秸秆、果壳等农林业废弃物或家畜粪料、污泥等工农业以及人类生活所产生的有机废弃物制得[9]。生物炭制备方法主要有热解法、水热炭化法、微波炭化法等。与热解法相比,水热碳化法不需要干燥,生物炭产率高,但其产物不够稳定[10],对土壤中养分的固持能力更弱[11]。微波炭化法节能高效,易于控制[12],但其制备成本过高且产物大多含高浓度多环芳烃[13]。因此,水热炭化法与微波炭化法不适于做Cd污染土壤修复材料。本文讨论的生物炭制备法为热解法。
不同类型(木质类、秸秆类、畜禽粪便类和污泥类等)生物炭对稻田中Cd固定机理存在差异性[14-17],据报道,生物炭既能通过物理吸附、静电吸附、离子交换、矿物沉淀、络合和Cd2+-π键作用直接吸附Cd2+,又能影响稻田关键物理、化学、生物性质间接固定Cd2+[16-20]。但不同原料制得的生物炭差异性体现在何处,对Cd2+的吸附机理有何不同;各种类型生物炭施入稻田后钝化Cd的机制有何区别,具体修复效果如何,是否长期有效?这些问题值得深入思考并总结。因此,本文在阐明不同原料及其制备条件对生物炭性质影响的基础上,综述生物炭对Cd的吸附钝化机制,总结不同类型生物炭在Cd污染稻田试验中的修复效果,为稻田Cd污染修复领域中生物炭的制备与选择提供参考,推动生物炭在Cd污染稻田中大面积应用。
不同类型生物炭对稻田镉污染修复的机制与应用
Mechanism and application of different types of biochar to remediation of Cd contaminated paddy soils:A review
-
摘要: 生物炭因其优异特性在镉(Cd)污染稻田中有良好的应用前景,其性质因原材料和热解条件的不同而不同,对土壤中Cd的钝化机制和修复效果也存在差异。本文归纳了4类主要原材料在多种热解条件下制备的生物炭特征。从生物炭直接固定Cd(吸附、共沉淀、阳离子交换、官能团络合和Cd2+-π键作用等)和间接固定Cd(影响土壤团聚体、pH、有机质、微生物菌群等)这两个方面综述了其对稻田Cd污染的修复机制,从生物炭的施用量、降Cd率及其负面影响等方面探讨了4类生物炭(木材类、秸秆类、畜禽粪便类、污泥类)在Cd污染稻田试验修复中效果,以期为生物炭在Cd污染稻田修复研究与应用中提供参考。Abstract: Biochar has a good application prospect in cadmium (Cd) contaminated paddy soils due to its excellent characteristics. The different types and properties of biochar are producted from different raw materials and pyrolysis conditions, resulting in the differences in passivated mechanism and remediation effect of Cd in soil. Therefore, the biochar characteristics of four main raw materials under various pyrolysis conditions were summarized. The remediation mechanism of biochar on Cd pollution in paddy fields was reviewed from two aspects of direct immobilization of Cd (including adsorption, co-precipitation, cation exchange, functional group complexation and Cd2+-π bond interaction, etc) and indirect immobilization of Cd through affecting (soil aggregate, pH, organic matter and microbial activity, etc). According to the aspects of biochar application rate, Cd removal rate and its negative effects, to explore the effect of four types of biochars (wood biochar, straw biochar, livestock manure biochar, sludge biochar) on the experimental remediation of Cd-contaminated in paddy fields. It is expected to provide a support for the research and application of biochar in the remediation of the Cd contaminated paddy soils.
-
Key words:
- biochar /
- paddy fields /
- Cd contamination /
- mechanism of action /
- restoration
-
表 1 不同原料及制备条件下的生物炭特性
Table 1. Biochar properties of different raw materials and preparation conditions
原料
Raw material制备条件
Preparation condition产率/%
Yield灰分/%
AshpH CEC/
(cmol·kg−1)Zeta
电位/
mV
Zeta
potential比表
面积/
(m2·g−1)
Specific
surface
area元素组成/%
ElementsO/C H/C 参考文献
ReferenceC H O N 木
材
类
柳木550 ℃、85—
100 °C·min−1
热解2 h— — 9.20 — — — 66.61 2.64 7.72 0.63 0.12 0.04 [18] 木
材
类橡木 300 ℃热解 5.60 9.10 129.00 73.3 2.60 22.90 0.30 0.31 0.43 [22] 木槿 500 ℃持续热解3 h — — 7.50 117.61 — — 75.1 2.90 0.39 — — [23] 竹子 400—600 ℃,
热解4 h43.07 2.98 7.25 — — 63.52 82.48 3.82 13.50 0.20 0.25 0.06 [24] 30.57 4.12 9.58 — — 225.33 85.56 2.71 10.90 0.25 0.14 0.04 27.00 4.65 10.07 — — 307.10 88.43 2.29 8.58 0.28 0.15 0.03 秸
秆
类稻草秸秆 300—700 ℃、20°C·min−1、热解20 min 57.04 29.92 7.85 — −40.33 4.54 35.96 4.64 20.26 1.08 0.42 0.83 [25] 44.36 37.94 9.18 −40.73 9.52 37.07 3.13 15.49 0.96 0.31 0.42 40.92 40.83 9.65 −38.87 15.27 37.23 2.21 14.53 0.86 0.29 0.31 39.88 43.97 9.59 −35.5 11.16 40.91 1.08 12.70 0.87 0.23 0.29 37.70 44.09 9.81 −34.17 60.12 38.43 0.62 12.97 0.80 0.25 0.23 木豆秸秆 400—600 ℃,
热解4 h48.90 3.08 7.90 — — 16.90 76.17 4.50 19.18 0.15 0.25 0.06 [24] 35.10 4.23 9.64 — — 186.08 84.60 3.45 11.66 0.29 0.14 0.04 21.70 4.80 10.14 — — 261.78 84.87 2.29 12.47 0.37 0.15 0.03 苜蓿秸秆 400 ℃热解4 h — — 9.81 49.24 — — — — — — — — [25] 小麦秸秆 400 ℃热解4 h — — 9.75 34.91 — — — — — — — — 棉花秸秆 360 ℃热解4 h — — 9.55 49.56 — — — — — — — — 玉米秸秆 300 ℃热解4 h — 6.60 8.60 143.00 — — 67.7 4.10 23.30 1.60 0.34 0.73 [23] 畜
禽
粪
便
类猪粪 300—700 ℃(每100 ℃温度梯度)下热解 50.91 25.69 8.65 — — 0.52 51.34 3.74 8.65 3.68 — — [26] 41.76 32.21 8.85 — — 3.96 53.14 3.53 8.85 3.48 — — 38.91 33.87 9.00 — — 9.95 53.81 3.01 9.00 3.23 — — 36.63 36.52 9.65 — — 21.00 54.12 1.70 9.65 2.95 — — 35.93 37.17 12.02 — — 20.91 55.08 1.67 12.02 2.62 — — 鸡粪 300—700 ℃(每100 ℃的温度梯度)下热解 52.85 37.29 10.25 — — 8.11 45.56 3.74 10.25 2.71 — — 43.65 44.13 11.47 — — 9.23 43.31 3.12 11.47 2.35 — — 39.73 48.90 12.44 — — 10.99 42.08 2.04 12.44 2.16 — — 37.69 50.57 12.90 — — 13.63 43.50 1.73 12.90 2.16 — — 36.07 51.88 13.08 — — 14.10 43.62 1.40 0.84 2.15 — — 鸡粪 500 ℃持续热解3 h — — 9.10 — — 6.75 7 0.50 — 0.71 — — [27] 牛粪 550 ℃,85—
100 °C·min−1热解2 h— — 9.71 — — — 13.39 0.51 4.01 0.78 0.30 0.04 [18] 污
泥
类污泥 600 ℃热解4 h — — 6.76 33.25 — — — — — — — — [25] 脱水污泥 300—800 ℃(每100 ℃温度梯度)下,10 °C·min−1 热解2 h 73.00 60.70 7.80 — — 4.46 26.72 2.20 6.32 3.90 0.010 0.082 [28] 62.50 69.60 8.20 — — 33.57 23.04 1.11 2.91 3.21 0.007 0.052 59.90 72.40 9.80 — — 31.37 22.52 0.72 1.41 2.83 0.006 0.032 58.90 73.40 10.20 — — 13.11 22.01 0.34 2.03 2.10 0.006 0.017 56.00 75.20 10.30 — — 20.44 21.43 0.35 1.52 1.54 0.005 0.014 52.80 76.60 10.60 — — 36.37 20.13 0.21 1.84 1.20 0.005 0.011 污泥 500 ℃持续热解3 h — — 7.10 — — 14.10 19.30 1.30 — 2.75 — — [23] 注: —为无明确数据. Notes: — refers to no clear data. 表 2 生物炭在稻田中的应用实例
Table 2. Applied cases of different types of biochar in paddy soils
生物炭类型
Type of biochar污染状况
Pollution condition施用量
Application rate修复效果
Effectivity of remediation参考文献
Reference铁基棕榈枝类 pH 5.35
Cd 0.35 (mg·kg−1)0、1.5、3.0 t·ha−1
稻田中有效态Cd降低了32%—48%;水稻增产约4%
[88] 核桃木质类、玉米秸秆类 pH 4.87/5.02
Cd 0.70/2.04 (mg·kg−1)0、15、30 t·ha−1
稻田中DTPA-Cd降低了20%—34.5%;水稻秸秆、籽粒Cd浓度分别下降28.4%—26.5%、18.1—21.3%;对水稻产量影响不显著
[83] 水稻秸秆类 pH 5.39
Cd 0.62 (mg·kg−1)0、质量分数1%(20 cm表层土计算)
土壤有效Cd含量下降了41.53%;水稻根系、稻秆和籽粒Cd含量分别下降了22.59%、68.18%和44.21%
[8] 水稻秸秆类 pH 5.39
Cd 1.07 (mg·kg−1)0、质量分数0.5%、质量分数1%(20 cm表层土计算)
土壤有效Cd含量下降了49.71%—55.97%;水稻根部、秸秆和籽粒的降Cd率分别为47.39%—55.40%、57.69%—78.85%、64.12%—84.17%
[4] 小麦秸秆类 pH 4.70
Cd 0.36 (mg·kg−1)0、10、20、30、40 t·ha−1
40 t·ha−1生物炭处理使稻田中DTPA-Cd降低了24.3%,根、茎、叶、籽粒Cd含量分别下降32%、26%、24%,29%
[90] 小麦秸秆类 pH 6.07
Cd 22.65 (mg·kg−1)0、10、20、40 t·ha−1
5年里,稻田总Cd降低了7.5%—23.3%;可交换态Cd降低了8.0%—44.6%,残渣态Cd增加了4.0%—32.4%
[96] 稻壳类 pH 5.28—5.66
Cd 0.53—1.66 (mg·kg−1)0、15、30 t·ha−1
对稻田中CaCl2-Cd固定效率为14.86—21.89%;能有效降低水稻对Cd的吸收;分别增产16.35%、9.42%
[93] 污水污泥类 pH 4.50
Cd 0.82 (mg·kg−1)1.5、3.0 t·ha−1
镉的有害商指数(HQ)降低了40%;水稻籽粒Cd含量从对照的1.35 mg·kg−1显著降至0.80—0.82 mg·kg−1 ,产量由对照的1.90 g·株−1提高到2.17—3.40 g·株−1
[91] 碱渣/棕榈木质类 pH 4.73
Cd 2.69 (mg·kg−1)0、10 t·ha−1生物炭 +
3 t·ha−1碱渣
生物炭和碱渣联用DTPA-Cd降低了52.4%—68.6%,且修复效果可持续2.5 a以上
[94] 石灰/小麦秸秆炭 pH 5.33
Cd 0.36 (mg·kg−1)0、4.5(石灰)、9.0(石灰+生物炭1:1混施) t·ha−1
石灰处理和混施处理稻田DTPA-Cd分别降低16.7%、26.3%;水稻籽粒降Cd率分别为70.1%、88.3%;石灰处理产量无显著差异(减产0.5%)、混施处理增产6.5%
[95] -
[1] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析 [J]. 农业环境科学学报, 2017, 36(9): 1689-1692. doi: 10.11654/jaes.2017-1220 CHEN N C, ZHENG Y J, HE X F, et al. Analysis of the Report on the national general survey of soil contamination [J]. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692(in Chinese). doi: 10.11654/jaes.2017-1220
[2] LI Z M, LIANG Y, HU H W, et al. Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety [J]. Environment International, 2021, 156: 106749. doi: 10.1016/j.envint.2021.106749 [3] ZHAO H H, HUANG X R, LIU F H, et al. Potential of using a new aluminosilicate amendment for the remediation of paddy soil co-contaminated with Cd and Pb [J]. Environmental Pollution, 2021, 269: 116198. doi: 10.1016/j.envpol.2020.116198 [4] 郭华, 陈振焱, 胡超, 等. 铁基生物炭对镉污染农田土壤的修复作用研究 [J]. 环境科学与技术, 2020, 43(5): 195-202. doi: 10.19672/j.cnki.1003-6504.2020.05.027 GUO H, CHEN Z Y, HU C, et al. Remediation effect of Fe-based biochar on cadmium contaminated farmland soil [J]. Environmental Science & Technology, 2020, 43(5): 195-202(in Chinese). doi: 10.19672/j.cnki.1003-6504.2020.05.027
[5] ZHAO M M, MA D G, WANG Q J, et al. Electrokinetic remediation of Cd-contaminated soil using low voltage gradients coupled with array adsorption zone and polarity exchange [J]. Process Safety and Environmental Protection, 2022, 157: 81-91. doi: 10.1016/j.psep.2021.11.001 [6] 李昂, 侯红, 苏本营, 等. 基于CNKI文献分析的镉污染土壤钝化技术概况及效果评估研究 [J]. 农业环境科学学报, 2019, 38(8): 1677-1684. doi: 10.11654/jaes.2018-1534 LI A, HOU H, SU B Y, et al. Assessment of heavy metal passivation technology and evaluation of cadmium-contaminated soil based on CNKI literature analysis [J]. Journal of Agro-Environment Science, 2019, 38(8): 1677-1684(in Chinese). doi: 10.11654/jaes.2018-1534
[7] BASHIR S, ZHU J, FU Q L, et al. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar [J]. Environmental Science and Pollution Research International, 2018, 25(12): 11875-11883. doi: 10.1007/s11356-018-1292-z [8] 陈思慧, 张亚平, 李飞, 等. 钝化剂联合农艺措施修复镉污染水稻土 [J]. 农业环境科学学报, 2019, 38(3): 563-572. CHEN S H, ZHANG Y P, LI F, et al. Remediation of Cd-polluted paddy soils using amendments combined with agronomic measures [J]. Journal of Agro-Environment Science, 2019, 38(3): 563-572(in Chinese).
[9] HU Y M, ZHANG P, YANG M, et al. Biochar is an effective amendment to remediate Cd-contaminated soils—a meta-analysis [J]. Journal of Soils and Sediments, 2020, 20(11): 3884-3895. doi: 10.1007/s11368-020-02726-9 [10] NIZAMUDDIN S, BALOCH H A, GRIFFIN G J, et al. An overview of effect of process parameters on hydrothermal carbonization of biomass [J]. Renewable and Sustainable Energy Reviews, 2017, 73: 1289-1299. doi: 10.1016/j.rser.2016.12.122 [11] GRONWALD M, DON A, TIEMEYER B, et al. Effects of fresh and aged chars from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils [J]. Soil, 2015, 1(1): 475-489. doi: 10.5194/soil-1-475-2015 [12] LI X D, PENG B, LIU Q Y, et al. Microwave pyrolysis coupled with conventional pre-pyrolysis of the stalk for syngas and biochar [J]. Bioresource Technology, 2022, 348: 126745. doi: 10.1016/j.biortech.2022.126745 [13] CHEN L, YU Z S, XU H, et al. Microwave-assisted co-pyrolysis of Chlorella vulgaris and wood sawdust using different additives [J]. Bioresource Technology, 2019, 273: 34-39. doi: 10.1016/j.biortech.2018.10.086 [14] BANDARA T, CHATHURIKA J B A J, FRANKS A, et al. Interactive effects of biochar type and pH on the bioavailability of As and Cd and microbial activities in co-contaminated soils [J]. Environmental Technology & Innovation, 2021, 23: 101767. [15] MORADI N, KARIMI A. Fe-modified common reed biochar reduced cadmium (Cd) mobility and enhanced microbial activity in a contaminated calcareous soil [J]. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 329-340. doi: 10.1007/s42729-020-00363-2 [16] BANDARA T, FRANKS A, XU J M, et al. Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils [J]. Critical Reviews in Environmental Science and Technology, 2020, 50(9): 903-978. doi: 10.1080/10643389.2019.1642832 [17] TAHERVAND S, JALALI M, BUSS W. Pyrolysis treatment enables safe application of sewage sludge in horticulture: Tracking potentially toxic elements through the biochar-soil-plant system in tomato [J]. Waste and Biomass Valorization, 2022, 13(2): 1277-1292. doi: 10.1007/s12649-021-01558-z [18] WANG S Y, KWAK J H, ISLAM M S, et al. Biochar surface complexation and Ni(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) adsorption in aqueous solutions depend on feedstock type [J]. Science of the Total Environment, 2020, 712: 136538. doi: 10.1016/j.scitotenv.2020.136538 [19] TAN Z X, YUAN S N, HONG M F, et al. Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd [J]. Journal of Hazardous Materials, 2020, 384: 121370. doi: 10.1016/j.jhazmat.2019.121370 [20] 刘洁, 孙可, 韩兰芳. 生物炭对土壤重金属形态及生物有效性影响的研究进展 [J]. 环境化学, 2021, 40(6): 1643-1658. doi: 10.7524/j.issn.0254-6108.2021011402 LIU J, SUN K, HAN L F. Effect of biochar on soil heavy metal speciation and bioavailability: A review [J]. Environmental Chemistry, 2021, 40(6): 1643-1658(in Chinese). doi: 10.7524/j.issn.0254-6108.2021011402
[21] BANIK C, LAWRINENKO M, BAKSHI S, et al. Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars [J]. Journal of Environmental Quality, 2018, 47(3): 452-461. doi: 10.2134/jeq2017.11.0432 [22] SAHOO S S, VIJAY V K, CHANDRA R, et al. Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo [J]. Cleaner Engineering and Technology, 2021, 3: 100101. doi: 10.1016/j.clet.2021.100101 [23] LI H Y, YE X X, GENG Z G, et al. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils [J]. Journal of Hazardous Materials, 2016, 304: 40-48. doi: 10.1016/j.jhazmat.2015.10.048 [24] GHYSELS S, RONSSE F, DICKINSON D, et al. Production and characterization of slow pyrolysis biochar from lignin-rich digested stillage from lignocellulosic ethanol production [J]. Biomass and Bioenergy, 2019, 122: 349-360. doi: 10.1016/j.biombioe.2019.01.040 [25] 孙涛, 朱新萍, 李典鹏, 等. 不同原料生物炭理化性质的对比分析 [J]. 农业资源与环境学报, 2017, 34(6): 543-549. doi: 10.13254/j.jare.2017.0158 SUN T, ZHU X P, LI D P, et al. Comparison of biochars characteristics from different raw materials [J]. Journal of Agricultural Resources and Environment, 2017, 34(6): 543-549(in Chinese). doi: 10.13254/j.jare.2017.0158
[26] 杨艳琴, 崔敏华, 任屹罡, 等. 热解温度诱导下污泥生物炭特性和吸附能力相关性 [J]. 深圳大学学报(理工版), 2020, 37(2): 194-201. doi: 10.3724/SP.J.1249.2020.02194 YANG Y Q, CUI M H, REN Y G, et al. Correlations between the physicochemical characteristics and adsorption capacity of sludge-based biochar induced at pyrolysis temperature [J]. Journal of Shenzhen University (Science and Engineering), 2020, 37(2): 194-201(in Chinese). doi: 10.3724/SP.J.1249.2020.02194
[27] HUANG L G, LI Y Y, ZHAO M, et al. Potential of Cassia alata L. coupled with biochar for heavy metal stabilization in multi-metal mine tailings [J]. International Journal of Environmental Research and Public Health, 2018, 15(3): 494. doi: 10.3390/ijerph15030494 [28] KHOSHNEVISAN B, DUAN N, TSAPEKOS P, et al. A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives [J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110033. doi: 10.1016/j.rser.2020.110033 [29] LIMAYEM A, RICKE S C. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects [J]. Progress in Energy and Combustion Science, 2012, 38(4): 449-467. doi: 10.1016/j.pecs.2012.03.002 [30] NIU W J, HAN L J, LIU X, et al. Twenty-two compositional characterizations and theoretical energy potentials of extensively diversified China's crop residues [J]. Energy, 2016, 100: 238-250. doi: 10.1016/j.energy.2016.01.093 [31] NAIK S, GOUD V V, ROUT P K, et al. Characterization of Canadian biomass for alternative renewable biofuel [J]. Renewable Energy, 2010, 35(8): 1624-1631. doi: 10.1016/j.renene.2009.08.033 [32] 陈莉, 温康鑫, 杜智, 等. 热解条件对秸秆热解特性及生物炭产率的影响 [J]. 哈尔滨工业大学学报, 2020, 52(11): 26-32. doi: 10.11918/201901100 CHEN L, WEN K X, DU Z, et al. Effects of pyrolysis conditions on pyrolysis characteristics and biochar yield of straw [J]. Journal of Harbin Institute of Technology, 2020, 52(11): 26-32(in Chinese). doi: 10.11918/201901100
[33] ZHANG J, LIU J, LIU R L. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate [J]. Bioresource Technology, 2015, 176: 288-291. doi: 10.1016/j.biortech.2014.11.011 [34] PENG X, YE L L, WANG C H, et al. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in Southern China [J]. Soil and Tillage Research, 2011, 112(2): 159-166. doi: 10.1016/j.still.2011.01.002 [35] 李飞跃, 吴旋, 李俊锁, 等. 畜禽粪便生物炭固碳量、养分量的估算及田间施用潜在风险预测 [J]. 农业环境科学学报, 2019, 38(9): 2202-2209. doi: 10.11654/jaes.2019-0025 LI F Y, WU X, LI J S, et al. Assessment of carbon sequestration and nutrient resources by turning animal manure into biochar and its potential environmental risk for field application [J]. Journal of Agro-Environment Science, 2019, 38(9): 2202-2209(in Chinese). doi: 10.11654/jaes.2019-0025
[36] HOSSAIN M Z, BAHAR M M, SARKAR B, et al. Assessment of the fertilizer potential of biochars produced from slow pyrolysis of biosolid and animal manures [J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105043. doi: 10.1016/j.jaap.2021.105043 [37] TIAN R Q, LI C X, XIE S Y, et al. Preparation of biochar via pyrolysis at laboratory and pilot scales to remove antibiotics and immobilize heavy metals in livestock feces [J]. Journal of Soils and Sediments, 2019, 19(7): 2891-2902. doi: 10.1007/s11368-019-02350-2 [38] GUI X Y, LIU C, LI F Y, et al. Effect of pyrolysis temperature on the composition of DOM in manure-derived biochar [J]. Ecotoxicology and Environmental Safety, 2020, 197: 110597. doi: 10.1016/j.ecoenv.2020.110597 [39] 王飞, 邱凌, 沈玉君, 等. 华北地区饲料和畜禽粪便中重金属质量分数调查分析 [J]. 农业工程学报, 2015, 31(5): 261-267. doi: 10.3969/j.issn.1002-6819.2015.05.036 WANG F, QIU L, SHEN Y J, et al. Investigation and analysis of heavy metal contents from livestock feed and manure in North China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 261-267(in Chinese). doi: 10.3969/j.issn.1002-6819.2015.05.036
[40] 张亦菲, 张浩然, 徐汀, 等. 上海地区畜禽粪便中的重金属含量分析 [J]. 畜牧与兽医, 2021, 53(6): 27-32. ZHANG Y F, ZHANG H R, XU T, et al. An analysis of heavy metal contents in livestock and poultry manure in the Shanghai area [J]. Animal Husbandry & Veterinary Medicine, 2021, 53(6): 27-32(in Chinese).
[41] 王煌平, 张青, 栗方亮, 等. 热解温度对畜禽粪便生物炭重金属特征变化的影响 [J]. 环境科学学报, 2018, 38(4): 1598-1605. doi: 10.13671/j.hjkxxb.2017.0426 WANG H P, ZHANG Q, LI F L, et al. Effect of pyrolysis temperature on the characteristics change of heavy metals in biochar derived from animal manure [J]. Acta Scientiae Circumstantiae, 2018, 38(4): 1598-1605(in Chinese). doi: 10.13671/j.hjkxxb.2017.0426
[42] ZHENG G D, WANG X K, CHEN T B, et al. Passivation of lead and cadmium and increase of the nutrient content during sewage sludge composting by phosphate amendments [J]. Environmental Research, 2020, 185: 109431. doi: 10.1016/j.envres.2020.109431 [43] WANG X D, LI C X, LI Z W, et al. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge [J]. Ecotoxicology and Environmental Safety, 2019, 168: 45-52. doi: 10.1016/j.ecoenv.2018.10.022 [44] PENG H B, GAO P, CHU G, et al. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars [J]. Environmental Pollution, 2017, 229: 846-853. doi: 10.1016/j.envpol.2017.07.004 [45] 杨兰, 李冰, 王昌全, 等. 改性生物炭材料对稻田原状和外源镉污染土钝化效应 [J]. 环境科学, 2016, 37(9): 3562-3574. doi: 10.13227/j.hjkx.2016.09.039 YANG L, LI B, WANG C Q, et al. Effect of modified biochars on soil cadmium stabilization in paddy soil suffered from original or exogenous contamination [J]. Environmental Science, 2016, 37(9): 3562-3574(in Chinese). doi: 10.13227/j.hjkx.2016.09.039
[46] FAN J J, CAI C, CHI H F, et al. Remediation of cadmium and lead polluted soil using thiol-modified biochar [J]. Journal of Hazardous Materials, 2020, 388: 122037. doi: 10.1016/j.jhazmat.2020.122037 [47] JIANG B N, LIN Y Q, MBOG J C. Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics [J]. Bioresource Technology, 2018, 270: 603-611. doi: 10.1016/j.biortech.2018.08.022 [48] WAN D J, WU L R, LIU Y D, et al. Adsorption of low concentration perchlorate from aqueous solution onto modified cow dung biochar: Effective utilization of cow dung, an agricultural waste [J]. Science of the Total Environment, 2018, 636: 1396-1407. doi: 10.1016/j.scitotenv.2018.04.431 [49] ZHAO N, LI B, HUANG H M, et al. Modification of kelp and sludge biochar by TMT-102 and NaOH for cadmium adsorption [J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116: 101-111. doi: 10.1016/j.jtice.2020.10.036 [50] ZHANG T, ZHENG L C, YU H J, et al. Multiple adsorption systems and electron-scale insights into the high efficiency coadsorption of a novel assembled cellulose via experiments and DFT calculations [J]. Journal of Hazardous Materials, 2021, 416: 125748. doi: 10.1016/j.jhazmat.2021.125748 [51] YAN S W, YU W, YANG T, et al. The adsorption of corn stalk biochar for Pb and Cd: Preparation, characterization, and batch adsorption study [J]. Separations, 2022, 9(2): 22. doi: 10.3390/separations9020022 [52] SHI Y, ZHAO Z Z, ZHONG Y, et al. Synergistic effect of floatable hydroxyapatite-modified biochar adsorption and low-level CaCl2 leaching on Cd removal from paddy soil [J]. Science of the Total Environment, 2022, 807: 150872. doi: 10.1016/j.scitotenv.2021.150872 [53] CHEN Q, ZHENG J W, ZHENG L C, et al. Classical theory and electron-scale view of exceptional Cd(II) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations [J]. Chemical Engineering Journal, 2018, 350: 1000-1009. doi: 10.1016/j.cej.2018.06.054 [54] ZONG Y T, XIAO Q, LU S G. Biochar derived from cadmium-contaminated rice straw at various pyrolysis temperatures: Cadmium immobilization mechanisms and environmental implication [J]. Bioresource Technology, 2021, 321: 124459. doi: 10.1016/j.biortech.2020.124459 [55] HUANG F, ZHANG S M, WU R R, et al. Magnetic biochars have lower adsorption but higher separation effectiveness for Cd2+ from aqueous solution compared to nonmagnetic biochars [J]. Environmental Pollution, 2021, 275: 116485. doi: 10.1016/j.envpol.2021.116485 [56] ZUO W Q, CHEN C, CUI H J, et al. Enhanced removal of Cd(II) from aqueous solution using CaCO3 nanoparticle modified sewage sludge biochar [J]. RSC Advances, 2017, 7(26): 16238-16243. doi: 10.1039/C7RA00324B [57] XU X Y, ZHAO Y H, SIMA J K, et al. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review [J]. Bioresource Technology, 2017, 241: 887-899. doi: 10.1016/j.biortech.2017.06.023 [58] 刘剑楠, 封吉猛, 李丹, 等. 牛粪和核桃壳生物炭对水溶液中Cd2+和Zn2+的吸附研究 [J]. 农业环境科学学报, 2019, 38(5): 1142-1150. doi: 10.11654/jaes.2018-0718 LIU J N, FENG J M, LI D, et al. The adsorption of Cd2+ and Zn2+ in aqueous solutions by dairy manure and walnut shell biochar [J]. Journal of Agro-Environment Science, 2019, 38(5): 1142-1150(in Chinese). doi: 10.11654/jaes.2018-0718
[59] 王敏, 解秋, 卞荣军, 等. 水洗处理对不同原料生物质炭吸附解吸Cd2+行为的影响 [J]. 土壤通报, 2018, 49(4): 973-979. WANG M, XIE Q, BIAN R J, et al. Effect of water washing biochar derived from different materials on adsorption/desorption behavior of Cd2+ [J]. Chinese Journal of Soil Science, 2018, 49(4): 973-979(in Chinese).
[60] CAO X D, MA L N, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine [J]. Environmental Science & Technology, 2009, 43(9): 3285-3291. [61] ZHOU C L, SONG X, WANG Y W, et al. The sorption and short-term immobilization of lead and cadmium by nano-hydroxyapatite/biochar in aqueous solution and soil [J]. Chemosphere, 2022, 286: 131810. doi: 10.1016/j.chemosphere.2021.131810 [62] TENG D Y, ZHANG B B, XU G M, et al. Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms [J]. Environmental Pollution, 2020, 265: 115001. doi: 10.1016/j.envpol.2020.115001 [63] SUI F F, KANG Y X, WU H, et al. Effects of iron-modified biochar with S-rich and Si-rich feedstocks on Cd immobilization in the soil-rice system [J]. Ecotoxicology and Environmental Safety, 2021, 225: 112764. doi: 10.1016/j.ecoenv.2021.112764 [64] WANG R Z, HUANG D L, LIU Y G, et al. Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock [J]. Bioresource Technology, 2018, 261: 265-271. doi: 10.1016/j.biortech.2018.04.032 [65] 牛晓丛, 何益, 金晓丹, 等. 酵素渣和秸秆生物炭钝化修复重金属污染土壤 [J]. 环境工程, 2018, 36(10): 118-123. doi: 10.13205/j.hjgc.201810023 NIU X C, HE Y, JIN X D, et al. Remediation effect of garbage enzyme and rice straw biochar on heavy metals contaminated soil [J]. Environmental Engineering, 2018, 36(10): 118-123(in Chinese). doi: 10.13205/j.hjgc.201810023
[66] LIU C J, LIN H, LI B, et al. Endophyte inoculation redistributed bioavailable Cd and nutrient in soil aggregates and enhanced Cd accumulation in Phytolacca acinosa [J]. Journal of Hazardous Materials, 2021, 416: 125952. doi: 10.1016/j.jhazmat.2021.125952 [67] WANG N Y, WU X, LIAO P, et al. Morphological transformation of heavy metals and their distribution in soil aggregates during biotransformation of livestock manure [J]. Biocatalysis and Agricultural Biotechnology, 2021, 32: 101963. doi: 10.1016/j.bcab.2021.101963 [68] JING F, CHEN C, CHEN X M, et al. Effects of wheat straw derived biochar on cadmium availability in a paddy soil and its accumulation in rice [J]. Environmental Pollution, 2020, 257: 113592. doi: 10.1016/j.envpol.2019.113592 [69] LI S S, WANG M, ZHAO Z Q, et al. Use of soil amendments to reduce cadmium accumulation in rice by changing Cd distribution in soil aggregates [J]. Environmental Science and Pollution Research, 2019, 26(20): 20929-20938. doi: 10.1007/s11356-019-05431-4 [70] ISLAM M S, MAGID A S I A, CHEN Y L, et al. Arsenic and cadmium load in rice tissues cultivated in calcium enriched biochar amended paddy soil [J]. Chemosphere, 2021, 283: 131102. doi: 10.1016/j.chemosphere.2021.131102 [71] LEI S C, SHI Y, XUE C, et al. Hybrid ash/biochar biocomposites as soil amendments for the alleviation of cadmium accumulation by Oryza sativa L. in a contaminated paddy field [J]. Chemosphere, 2020, 239: 124805. doi: 10.1016/j.chemosphere.2019.124805 [72] ZHOU W J, REN L W, ZHU L Z. Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure [J]. Environmental Pollution, 2017, 223: 247-254. doi: 10.1016/j.envpol.2017.01.019 [73] XU C, CHEN H X, XIANG Q, et al. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L. ) system [J]. Environmental Science and Pollution Research International, 2018, 25(2): 1147-1156. doi: 10.1007/s11356-017-0495-z [74] WU C, SHI L Z, XUE S G, et al. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils [J]. Science of the Total Environment, 2019, 647: 1158-1168. doi: 10.1016/j.scitotenv.2018.08.087 [75] 汤家庆, 张绪, 黄国勇, 等. 水分条件对生物炭钝化水稻土铅镉复合污染的影响 [J]. 环境科学, 2021, 42(3): 1185-1190. doi: 10.13227/j.hjkx.202010127 TANG J Q, ZHANG X, HUANG G Y, et al. Effect of water regimes on Pb and Cd immobilization by biochar in contaminated paddy soil [J]. Environmental Science, 2021, 42(3): 1185-1190(in Chinese). doi: 10.13227/j.hjkx.202010127
[76] 李明远, 张小婷, 刘汉燚, 等. 水分管理对稻田土壤铁氧化物形态转化的影响及其与镉活性变化的耦合关系[J]. 环境科学, 2022.43(8): 43011-4312. LI M Y, ZHANG X T, LIU H Y, et al. Effects of water management on the transformation of iron oxide forms in paddy soils and its coupling with changes in cadmium activity[J]. Environment Science. 2022.43(8): 43011-4312(in Chinese).
[77] KHAN M A, KHAN S, DING X D, et al. The effects of biochar and rice husk on adsorption and desorption of cadmium on to soils with different water conditions (upland and saturated) [J]. Chemosphere, 2018, 193: 1120-1126. doi: 10.1016/j.chemosphere.2017.11.110 [78] ISLAM M S, CHEN Y L, WENG L P, et al. Watering techniques and zero-valent iron biochar pH effects on As and Cd concentrations in rice rhizosphere soils, tissues and yield [J]. Journal of Environmental Sciences, 2021, 100: 144-157. doi: 10.1016/j.jes.2020.07.002 [79] CANG L, XING J F, LIU C, et al. Effects of different water management strategies on the stability of cadmium and copper immobilization by biochar in rice-wheat rotation system [J]. Ecotoxicology and Environmental Safety, 2020, 202: 110887. doi: 10.1016/j.ecoenv.2020.110887 [80] LIU Y L, TIE B Q, PENG O, et al. Inoculation of Cd-contaminated paddy soil with biochar-supported microbial cell composite: A novel approach to reducing cadmium accumulation in rice grains [J]. Chemosphere, 2020, 247: 125850. doi: 10.1016/j.chemosphere.2020.125850 [81] WANG L, CHEN H R, WU J Z, et al. Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil [J]. Journal of Hazardous Materials, 2021, 414: 125494. doi: 10.1016/j.jhazmat.2021.125494 [82] LIANG X Q, CHEN L L, LIU Z W, et al. Composition of microbial community in pig manure biochar-amended soils and the linkage to the heavy metals accumulation in rice at harvest [J]. Land Degradation & Development, 2018, 29(7): 2189-2198. [83] WANG R Z, WEI S, JIA P H, et al. Biochar significantly alters rhizobacterial communities and reduces Cd concentration in rice grains grown on Cd-contaminated soils [J]. Science of the Total Environment, 2019, 676: 627-638. doi: 10.1016/j.scitotenv.2019.04.133 [84] IRSHAD M K, NOMAN A, ALHAITHLOUL H A S, et al. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L. ) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil [J]. Science of the Total Environment, 2020, 717: 137086. doi: 10.1016/j.scitotenv.2020.137086 [85] QU J H, YUAN Y H, ZHANG X M, et al. Stabilization of lead and cadmium in soil by sulfur-iron functionalized biochar: Performance, mechanisms and microbial community evolution [J]. Journal of Hazardous Materials, 2022, 425: 127876. doi: 10.1016/j.jhazmat.2021.127876 [86] QIAO J T, LIU T X, WANG X Q, et al. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils [J]. Chemosphere, 2018, 195: 260-271. doi: 10.1016/j.chemosphere.2017.12.081 [87] ZHANG M, SHAN S D, CHEN Y G, et al. Biochar reduces cadmium accumulation in rice grains in a tungsten mining area-field experiment: Effects of biochar type and dosage, rice variety, and pollution level [J]. Environmental Geochemistry and Health, 2019, 41(1): 43-52. doi: 10.1007/s10653-018-0120-1 [88] TANG X J, SHEN H R, CHEN M, et al. Achieving the safe use of Cd- and As-contaminated agricultural land with an Fe-based biochar: A field study [J]. Science of the Total Environment, 2020, 706: 135898. doi: 10.1016/j.scitotenv.2019.135898 [89] de la ROSA J M, PANEQUE M, HILBER I, et al. Assessment of polycyclic aromatic hydrocarbons in biochar and biochar-amended agricultural soil from Southern Spain [J]. Journal of Soils and Sediments, 2016, 16(2): 557-565. doi: 10.1007/s11368-015-1250-z [90] HU S M, CHEN C, CHEN X M, et al. A field study of biochar application impact on adsorption and accumulation of Cd in paddy soil and rice [J]. Archives of Agronomy and Soil Science, 2021,29: 1-12. [91] ZHANG Y C, CHEN T T, LIAO Y K, et al. Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice(Oryza sativa L. ): A field study [J]. Environmental Pollution, 2016, 216: 819-825. doi: 10.1016/j.envpol.2016.06.053 [92] WANG X D, CHANG V W C, LI Z W, et al. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals [J]. Journal of Hazardous Materials, 2021, 412: 125200. doi: 10.1016/j.jhazmat.2021.125200 [93] MENG L, HUANG T H, SHI J C, et al. Decreasing cadmium uptake of rice (Oryza sativa L. ) in the cadmium-contaminated paddy field through different cultivars coupling with appropriate soil amendments [J]. Journal of Soils and Sediments, 2019, 19(4): 1788-1798. doi: 10.1007/s11368-018-2186-x [94] WEI L, HUANG Y F, HUANG L X, et al. Combined biochar and soda residues increases maize yields and decreases grain Cd/Pb in a highly Cd/Pb-polluted acid Udults soil [J]. Agriculture, Ecosystems & Environment, 2021, 306: 107198. [95] 赵首萍, 陈德, 叶雪珠, 等. 石灰、生物炭配施硅/多元素叶面肥对水稻Cd积累的影响 [J]. 水土保持学报, 2021, 35(6): 361-368. doi: 10.13870/j.cnki.stbcxb.2021.06.048 ZHAO S P, CHEN D, YE X Z, et al. Effects of lime and biochar combined with silicon/multi-element foliar fertilizer on Cd accumulation in rice [J]. Journal of Soil and Water Conservation, 2021, 35(6): 361-368(in Chinese). doi: 10.13870/j.cnki.stbcxb.2021.06.048
[96] CUI L Q, PAN G X, LI L Q, et al. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment [J]. Ecological Engineering, 2016, 93: 1-8. doi: 10.1016/j.ecoleng.2016.05.007 [97] KIM H B, KIM J G, KIM T, et al. Interaction of biochar stability and abiotic aging: Influences of pyrolysis reaction medium and temperature [J]. Chemical Engineering Journal, 2021, 411: 128441. doi: 10.1016/j.cej.2021.128441 [98] 何玉垒, 宋宁宁, 林大松, 等. 氧化老化过程对生物炭吸附镉的影响及机制 [J]. 农业环境科学学报, 2021, 40(9): 1877-1887. doi: 10.11654/jaes.2021-0310 HE Y L, SONG N N, LIN D S, et al. Oxidative aging process of biochar and its adsorption mechanism for cadmium [J]. Journal of Agro-Environment Science, 2021, 40(9): 1877-1887(in Chinese). doi: 10.11654/jaes.2021-0310
[99] XU Z B, XU X Y, TSANG D C W, et al. Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils [J]. Environmental Pollution, 2018, 242: 1362-1370. doi: 10.1016/j.envpol.2018.08.012