-
有机气溶胶在灰霾天气中扮演着主要角色,其在污染重灾区的 PM2.5 中质量占比可高达约60%左右[1-2],不仅能够通过长距离传输对区域和全球气候变化产生重要影响[3],还对人体健康存在一定危害. 空气中大部分污染源都可能释放或形成有机气溶胶,主要涵盖污染源如生物质或化石燃料燃烧等过程释放到环境中的一次有机气溶胶(POA)和由气体前体物(主要是挥发性有机物)经过大气氧化等过程而形成的二次有机气溶胶(SOA)[4]. 有机气溶胶因不同来源,其理化性质存在一定差异,对空气质量和人体健康的危害水平也有所不同[5]. 只有弄清楚主要污染源的排放特征及相对贡献,才能制定有针对性的污染控制措施. Simoneit等[6]最先在有机气溶胶分析中提出有机示踪物的应用,而后因有机示踪物良好的源指向性,在有机气溶胶源解析过程中应用广泛,且在污染物传输和大气寿命预测中发挥着重要作用[7-8]. 然而近年来基于有机示踪物的源解析方法存在一些质疑,Rutter等[9]在应用示踪物产率法研究美国大气中不同来源的气体前体物对SOA贡献时指出,烟雾箱实验确定的有机示踪物是在有限的实验条件下生成的中间氧化产物,如果与实际大气中所经历的光化学过程不同,将导致实际大气中部分 SOA 的来源无法解析[10]. 冯加良等[11]基于元素碳(EC)法、水溶性有机碳(WSOC)法、示踪法和正矩阵分解(PMF)模型对上海市 SOA 的季节贡献进行评估时发现,示踪法与 WSOC 法解析的 SOA 贡献存在较大偏差,上海 PM2.5 中的部分 SOA 不能用基于示踪物的方法来解释.
一般来说,作为大气气溶胶的有机示踪物,需要具备以下条件:(1)该物质本身不存在于大气中,且不能由大气反应生成;(2)具有特异性,是所解析污染源的特征组分;(3)不易发生各种反应,释放含量保持较高稳定性. 表1中列举了常见的大气气溶胶有机示踪物,一些研究表明,将这些有机示踪物暴露于·OH、O3等大气氧化剂存在的环境中,会在液(固)、气两相中发生非均相氧化反应,影响其大气寿命,这就会给有机气溶胶源解析的准确性带来一定挑战. Weitkamp等[12]探究了机动车化石燃料燃烧产生的 POA 中藿烷等有机示踪物的·OH自由基非均相氧化,其动力学分析结果表明藿烷的非均相氧化会导致传统的化学质量平衡(CMB)模型低估汽车尾气对有机气溶胶的相对贡献,如果车辆排放物的大气寿命为4 d,那么传统的 CMB 模型将低估车辆排放物总浓度的50%. Lai等[13]的研究发现,·OH自由基对顺松油酸(天然源α-蒎烯SOA的二次示踪物)的非均相氧化是明显的,从而推测在外场观测中得到的顺松油酸浓度很可能低估了α-蒎烯对于 SOA 的相对贡献. 由此可见,如果有机示踪物能够发生非均相氧化反应,则会不同程度地影响有机气溶胶源解析和 相对贡献估算的准确性[14] ,因此有机示踪物化学稳定性的评估对于大气污染防控至关重要.
大气气溶胶有机示踪物的非均相氧化研究进展
Research progress on heterogeneous oxidation of organic tracers of atmospheric aerosols
-
摘要: 为确定大气中有机气溶胶的来源与贡献,制定有效的污染防控措施,有机示踪物广泛应用于识别和评价某一特定污染源对空气质量的危害效应. 然而有研究表明大气气溶胶的有机示踪物与大气氧化剂(·OH、O3、NO3 等)发生的非均相氧化反应将导致其在源解析时产生不确定性. 本文综述了现阶段关于大气气溶胶有机示踪物的非均相氧化研究进展,主要包括用于解析生物质燃烧、餐饮排放等来源气溶胶的一次有机示踪物和用于解析天然源或人为源气体前体物生成的气溶胶的二次有机示踪物. 国内外学者在不同地点采用不同方法的研究均表明一直以来广泛应用于大气气溶胶源解析的有机示踪物存在不稳定性,其大气寿命也因示踪物种类和大气环境的不同而有所差异. 旨在为未来修正示踪物解析准确性和相关污染防控措施的改进提供一定的参考价值.Abstract: In order to determine the source and contribution of organic aerosols in the atmosphere and take effective pollution prevention and control measures, organic tracers are widely used to identify and evaluate harmful effects of a specific pollution source on air quality. However, studies have found that the heterogeneous oxidation reactions of organic tracers of atmospheric aerosols with atmospheric oxidants (·OH, O3, NO3, etc.) could lead to uncertainties in the source apportionment. This paper reviews the current research progress on the heterogeneous oxidation of organic tracers of atmospheric aerosols, mainly including primary organic tracers used to analyze aerosols from biomass combustion and cooking emissions etc., as well as secondary organic tracers for the analysis of natural or anthropogenic aerosols from gas phase precursors. The studies by domestic and foreign scholars using different methods in different locations have shown that the organic tracers that have been widely used in the source analysis of atmospheric organic aerosols were unstable, and their atmospheric lifetimes also changed with the types of organic tracers and the atmospheric environment. This paper aims to provide valuable references for accuracy correction of the tracer-based analysis in future studies and improvement of related pollution prevention and control measures.
-
表 1 不同来源的有机气溶胶成分及其主要有机示踪物
Table 1. Organic aerosols components from different sources and their main organic tracers
一次有机
气溶胶(POA)有机气溶胶来源
Organic aerosols source主要有机物
Main organic matter气溶胶的一次有机示踪物
Primary organic tracers of aerosols生物质燃烧 脂肪酸、单糖、酚类、多环芳烃等 左旋葡聚糖、甘露聚糖、半乳聚糖、β-谷甾醇、
萜类化合物、脱氢松香酸等餐饮排放 脂肪酸、多环芳烃、二元羧酸等 胆甾醇、油酸、棕榈烯酸等 化石燃料燃烧 烷烃、多环芳烃、脂肪酸、酚类等 17α(H)、21β(H) 藿烷类化合物、甾烷类化合物 二次有机
气溶胶(SOA)气体前体物来源
Source of gas precursors主要气体前体物
Main gas precursors气溶胶的二次有机示踪物
Secondary organic tracers of aerosols天然源(植物等排放) 异戊二烯 2-甲基四丁醇、2-甲基甘油酸、2-甲基赤藓糖醇
(2-ME)及其类似物赤藓糖醇(AME)人为源(机动车尾气、工业排放等) 苯、甲苯、烯烃等 2, 3-二羟基-4,氧代戊酸(DHOPA) -
[1] SAXENA P, HILDEMANN L M. Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds [J]. Journal of Atmospheric Chemistry, 1996, 24(1): 57-109. doi: 10.1007/BF00053823 [2] PUTAUD J P, RAES F, van DINGENEN R, et al. A European aerosol phenomenology—2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe [J]. Atmospheric Environment, 2004, 38(16): 2579-2595. doi: 10.1016/j.atmosenv.2004.01.041 [3] 谢绍东, 于淼, 姜明. 有机气溶胶的来源与形成研究现状 [J]. 环境科学学报, 2006, 26(12): 1933-1939. doi: 10.13671/j.hjkxxb.2006.12.001 XIE S D, YU M, JIANG M. Research progress in source and formation of organic aerosol [J]. Acta Scientiae Circumstantiae, 2006, 26(12): 1933-1939(in Chinese). doi: 10.13671/j.hjkxxb.2006.12.001
[4] FU P Q, KAWAMURA K, CHEN J, et al. Secondary production of organic aerosols from biogenic VOCs over Mt. Fuji, Japan [J]. Environmental Science & Technology, 2014, 48(15): 8491-8497. [5] 何凌燕, 胡敏, 黄晓锋, 张远航. 北京大气气溶胶PM2.5中的有机示踪化合物 [J]. 环境科学学报, 2005, 25(1): 23-29. HE L Y, HU M, HUANG X F, et al. Determination of organic molecular tracers in PM2.5 in the atmosphere of Beijing [J]. Acta Scientiae Circumstantiae, 2005, 25(1): 23-29(in Chinese).
[6] SIMONEIT B R T. Organic matter of the troposphere—III. Characterization and sources of petroleum and pyrogenic residues in aerosols over the western United States [J]. Atmospheric Environment, 1984, 18(1): 51-67. doi: 10.1016/0004-6981(84)90228-2 [7] FRASER M P, LAKSHMANAN K. Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols [J]. Environmental Science & Technology, 2000, 34(21): 4560-4564. [8] SIMONEIT B R T, ELIAS V O, KOBAYASHI M, et al. Sugars: Dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter [J]. Environmental Science & Technology, 2004, 38(22): 5939-5949. [9] RUTTER A P, SNYDER D C, STONE E A, et al. Preliminary assessment of the anthropogenic and biogenic contributions to secondary organic aerosols at two industrial cities in the upper Midwest [J]. Atmospheric Environment, 2014, 84: 307-313. doi: 10.1016/j.atmosenv.2013.11.014 [10] STONE E A, ZHOU J B, SNYDER D C, et al. A comparison of summertime secondary organic aerosol source contributions at contrasting urban locations [J]. Environmental Science & Technology, 2009, 43(10): 3448-3454. [11] FENG J L, LI M, ZHANG P, et al. Investigation of the sources and seasonal variations of secondary organic aerosols in PM2.5 in Shanghai with organic tracers [J]. Atmospheric Environment, 2013, 79: 614-622. doi: 10.1016/j.atmosenv.2013.07.022 [12] WEITKAMP E A, LAMBE A T, DONAHUE N M, et al. Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular makers for motor vehicle exhaust [J]. Environmental Science & Technology, 2008, 42(21): 7950-7956. [13] LAI C Y, LIU Y C, MA J Z, et al. Heterogeneous kinetics of cis-pinonic acid with hydroxyl radical under different environmental conditions [J]. The Journal of Physical Chemistry A, 2015, 119(25): 6583-6593. doi: 10.1021/acs.jpca.5b01321 [14] LAMBE A T, MIRACOLO M A, HENNIGAN C J, et al. Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-alkanes, hopanes, and steranes) in motor oil and diesel primary organic aerosols with hydroxyl radicals [J]. Environmental Science & Technology, 2009, 43(23): 8794-8800. [15] SANG X, GENSCH I, KAMMER B, et al. Chemical stability of levoglucosan: An isotopic perspective [J]. Geophysical Research Letters, 2016, 43(10): 5419-5424. doi: 10.1002/2016GL069179 [16] SIMONEIT B R T. Biomass burning—a review of organic tracers for smoke from incomplete combustion [J]. Applied Geochemistry, 2002, 17(3): 129-162. doi: 10.1016/S0883-2927(01)00061-0 [17] 王鑫彤, 鞠法帅, 韩德文, 等. 大气颗粒物中生物质燃烧示踪化合物的研究进展 [J]. 环境化学, 2015, 34(10): 1885-1894. doi: 10.7524/j.issn.0254-6108.2015.10.2015040704 WANG X T, JU F S, HAN D W, et al. Research progress on the organic tracers of biomass burning in atmospheric aerosols [J]. Environmental Chemistry, 2015, 34(10): 1885-1894(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.10.2015040704
[18] SANG X F, GENSCH I, LAUMER W, et al. Stable carbon isotope ratio analysis of anhydrosugars in biomass burning aerosol particles from source samples [J]. Environmental Science & Technology, 2012, 46(6): 3312-3318. [19] HENNIGAN C J, SULLIVAN A P, COLLETT J L J, et al. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals [J]. Geophysical Research Letters, 2010, 37(9): L09806. [20] SLADE J H, KNOPF D A. Heterogeneous OH oxidation of biomass burning organic aerosol surrogate compounds: Assessment of volatilisation products and the role of OH concentration on the reactive uptake kinetics [J]. Physical Chemistry Chemical Physics, 2013, 15(16): 5898-5915. doi: 10.1039/c3cp44695f [21] HOFFMANN D, TILGNER A, IINUMA Y, et al. Atmospheric stability of levoglucosan: A detailed laboratory and modeling study [J]. Environmental Science & Technology, 2010, 44(2): 694-699. [22] 柏静. 典型生物质燃烧标识物及生物质排放的VOCs在大气中的降解机理及动力学研究[D]. 济南: 山东大学, 2013. BAI J. Degradation mechanism and kinetics study of typical biomass combustion molecular marker and biomass emissions of VOCs in the atmosphere[D]. Jinan: Shandong University, 2013(in Chinese).
[23] LAI C Y, LIU Y C, MA J Z, et al. Degradation kinetics of levoglucosan initiated by hydroxyl radical under different environmental conditions [J]. Atmospheric Environment, 2014, 91: 32-39. doi: 10.1016/j.atmosenv.2014.03.054 [24] 王宁. 大气中典型VOCs降解过程均相反应机理和异相成核机理的研究[D]. 济南: 山东大学, 2017. WANG N. The mechanism of homogeneous reaction and heterogeneous nucleation in VOCs degradation process in the atmosphere[D]. Jinan: Shandong University, 2017(in Chinese).
[25] LI Y M, FU T M, YU J Z, et al. Impacts of chemical degradation on the global budget of atmospheric levoglucosan and its use As a biomass burning tracer [J]. Environmental Science & Technology, 2021, 55(8): 5525-5536. [26] SIMONEIT B R T, ROGGE W F, MAZUREK M A, et al. Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion [J]. Environmental Science & Technology, 1993, 27(12): 2533-2541. [27] STANDLEY L J, SIMONEIT B R T. Resin diterpenoids as tracers for biomass combustion aerosols [J]. Journal of Atmospheric Chemistry, 1994, 18(1): 1-15. doi: 10.1007/BF00694371 [28] SCHMIDL C, MARR I L, CASEIRO A, et al. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions [J]. Atmospheric Environment, 2008, 42(1): 126-141. doi: 10.1016/j.atmosenv.2007.09.028 [29] KNOPF D A, FORRESTER S M, SLADE J H. Heterogeneous oxidation kinetics of organic biomass burning aerosol surrogates by O3, NO2, N2O5, and NO3 [J]. Physical Chemistry Chemical Physics, 2011, 13(47): 21050-21062. doi: 10.1039/c1cp22478f [30] BAI J, SUN X M, ZHANG C X, et al. The atmospheric degradation reaction of dehydroabietic acid (DHAA) initiated by OH radicals and O3 [J]. Chemosphere, 2013, 92(8): 933-940. doi: 10.1016/j.chemosphere.2013.03.004 [31] LAI C Y, LIU Y C, MA J Z, et al. Laboratory study on OH-initiated degradation kinetics of dehydroabietic acid [J]. Physical Chemistry Chemical Physics, 2015, 17(16): 10953-10962. doi: 10.1039/C5CP00268K [32] LIU C G, ZENG C H. Heterogeneous kinetics of methoxyphenols in the OH-initiated reactions under different experimental conditions [J]. Chemosphere, 2018, 209: 560-567. doi: 10.1016/j.chemosphere.2018.06.131 [33] LAURAGUAIS A, COEUR-TOURNEUR C, CASSEZ A, et al. Rate constant and secondary organic aerosol yields for the gas-phase reaction of hydroxyl radicals with syringol (2, 6-dimethoxyphenol) [J]. Atmospheric Environment, 2012, 55: 43-48. doi: 10.1016/j.atmosenv.2012.02.027 [34] LIU C G, HE Y C, CHEN X E. Kinetic study on the heterogeneous degradation of coniferyl alcohol by OH radicals [J]. Chemosphere, 2020, 241: 125088. doi: 10.1016/j.chemosphere.2019.125088 [35] COEUR-TOURNEUR C, CASSEZ A, WENGER J C. Rate coefficients for the gas-phase reaction of hydroxyl radicals with 2-methoxyphenol (guaiacol) and related compounds [J]. The Journal of Physical Chemistry A, 2010, 114(43): 11645-11650. doi: 10.1021/jp1071023 [36] ZHANG H X, YANG B, WANG Y F, et al. Gas-phase reactions of methoxyphenols with NO3 radicals: Kinetics, products, and mechanisms [J]. The Journal of Physical Chemistry. A, 2016, 120(8): 1213-1221. doi: 10.1021/acs.jpca.5b10406 [37] LAURAGUAIS A, EL ZEIN A, COEUR C, et al. Kinetic study of the gas-phase reactions of nitrate radicals with methoxyphenol compounds: Experimental and theoretical approaches [J]. The Journal of Physical Chemistry A, 2016, 120(17): 2691-2699. doi: 10.1021/acs.jpca.6b02729 [38] YANG B, ZHANG H X, WANG Y F, et al. Experimental and theoretical studies on gas-phase reactions of NO3 radicals with three methoxyphenols: Guaiacol, creosol, and syringol [J]. Atmospheric Environment, 2016, 125: 243-251. doi: 10.1016/j.atmosenv.2015.11.028 [39] NET S, ALVAREZ E G, GLIGOROVSKI S, et al. Heterogeneous reactions of ozone with methoxyphenols, in presence and absence of light [J]. Atmospheric Environment, 2011, 45(18): 3007-3014. doi: 10.1016/j.atmosenv.2011.03.026 [40] NET S, GOMEZ ALVAREZ E, BALZER N, et al. Photolysis and heterogeneous reaction of coniferyl aldehyde adsorbed on silica particles with ozone [J]. Chemphyschem, 2010, 11(18): 4019-4027. doi: 10.1002/cphc.201000446 [41] O'NEILL E M, KAWAM A Z, van RY D A, et al. Ozonolysis of surface-adsorbed methoxyphenols: Kinetics of aromatic ring cleavage vs. alkene side-chain oxidation [J]. Atmospheric Chemistry and Physics, 2014, 14(1): 47-60. doi: 10.5194/acp-14-47-2014 [42] LAURAGUAIS A, BEJAN I, BARNES I, et al. Rate coefficients for the gas-phase reaction of chlorine atoms with a series of methoxylated aromatic compounds [J]. The Journal of Physical Chemistry A, 2014, 118(10): 1777-1784. doi: 10.1021/jp4114877 [43] SCHAUER J J, ROGGE W F, HILDEMANN L M, et al. Source apportionment of airborne particulate matter using organic compounds as tracers [J]. Atmospheric Environment, 1996, 30(22): 3837-3855. doi: 10.1016/1352-2310(96)00085-4 [44] SCHAUER J J, CASS G R. Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers [J]. Environmental Science & Technology, 2000, 34(9): 1821-1832. [45] ROGGE W F, HILDEMANN L M, MAZUREK M A, et al. Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations [J]. Environmental Science & Technology, 1991, 25(6): 1112-1125. [46] DOCHERTY K S, ZIEMANN P J. Reaction of oleic acid particles with NO3 radicals: Products, mechanism, and implications for radical-initiated organic aerosol oxidation [J]. The Journal of Physical Chemistry. A, 2006, 110(10): 3567-3577. doi: 10.1021/jp0582383 [47] HEARN J D, LOVETT A J, SMITH G D. Ozonolysis of oleic acid particles: Evidence for a surface reaction and secondary reactions involving Criegee intermediates [J]. Physical Chemistry Chemical Physics, 2005, 7(3): 501-511. doi: 10.1039/b414472d [48] HEARN J D, SMITH G D. Kinetics and product studies for ozonolysis reactions of organic particles using aerosol CIMS [J]. The Journal of Physical Chemistry A, 2004, 108(45): 10019-10029. doi: 10.1021/jp0404145 [49] HE X, LENG C B, PANG S F, et al. Kinetics study of heterogeneous reactions of ozone with unsaturated fatty acid single droplets using micro-FTIR spectroscopy [J]. RSC Advances, 2017, 7(6): 3204-3213. doi: 10.1039/C6RA25255A [50] MORRIS J W, DAVIDOVITS P, JAYNE J T, et al. Kinetics of submicron oleic acid aerosols with ozone: A novel aerosol mass spectrometric technique [J]. Geophysical Research Letters, 2002, 29(9): 71-1. [51] GALLIMORE P J, GRIFFITHS P T, POPE F D, et al. Comprehensive modeling study of ozonolysis of oleic acid aerosol based on real-time, online measurements of aerosol composition [J]. Journal of Geophysical Research:Atmospheres, 2017, 122(8): 4364-4377. doi: 10.1002/2016JD026221 [52] SMITH G D, WOODS E, DEFOREST C L, et al. Reactive uptake of ozone by oleic acid aerosol particles: Application of single-particle mass spectrometry to heterogeneous reaction kinetics [J]. The Journal of Physical Chemistry A, 2002, 106(35): 8085-8095. doi: 10.1021/jp020527t [53] ROBINSON A L, DONAHUE N M, ROGGE W F. Photochemical oxidation and changes in molecular composition of organic aerosol in the regional context [J]. Journal of Geophysical Research, 2006, 111(D3): D03302. [54] HUNG H M, ARIYA P. Oxidation of oleic acid and oleic acid/sodium chloride(aq) mixture droplets with ozone: Changes of hygroscopicity and role of secondary reactions [J]. The Journal of Physical Chemistry. A, 2007, 111(4): 620-632. doi: 10.1021/jp0654563 [55] KATRIB Y, BISKOS G, BUSECK P R, et al. Ozonolysis of mixed oleic-acid/stearic-acid particles: Reaction kinetics and chemical morphology [J]. The Journal of Physical Chemistry. A, 2005, 109(48): 10910-10919. doi: 10.1021/jp054714d [56] ZIEMANN P J. Aerosol products, mechanisms, and kinetics of heterogeneous reactions of ozone with oleic acid in pure and mixed particles [J]. Faraday Discussions, 2005, 130(0): 469-490. [57] HUFF HARTZ K E, WEITKAMP E A, SAGE A M, et al. Laboratory measurements of the oxidation kinetics of organic aerosol mixtures using a relative rate constants approach [J]. Journal of Geophysical Research, 2007, 112(D4): D04204. [58] DREYFUS M A, TOLOCKA M P, DODDS S M, et al. Cholesterol ozonolysis: Kinetics, mechanism, and oligomer products [J]. The Journal of Physical Chemistry. A, 2005, 109(28): 6242-6248. doi: 10.1021/jp050606f [59] 赵红帅, 常淼, 赵起越, 等. 有机气溶胶中甾醇类化合物的研究进展 [J]. 分析试验室, 2016, 35(1): 121-124. doi: 10.13595/j.cnki.issn1000-0720.2016.0028 ZHAO H S, CHANG M, ZHAO Q Y, et al. Research progress of sterols compounds in organic aerosol [J]. Chinese Journal of Analysis Laboratory, 2016, 35(1): 121-124(in Chinese). doi: 10.13595/j.cnki.issn1000-0720.2016.0028
[60] 袁杨森, 刘大锰, 车瑞俊, 等. 北京夏季大气颗粒物中有机污染源的生物标志物示踪 [J]. 中国科学院研究生院学报, 2007, 24(5): 601-611. YUAN Y S, LIU D M, CHE R J, et al. Source tracing of biomarkers in the organic pollutants from atmospheric particulates in Beijing City during summer [J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2007, 24(5): 601-611(in Chinese).
[61] CLAEYS M, GRAHAM B, VAS G, et al. Formation of secondary organic aerosols through photooxidation of isoprene [J]. Science, 2004, 303(5661): 1173-1176. doi: 10.1126/science.1092805 [62] CHEN Y Z, ZHANG Y, LAMBE A T, et al. Heterogeneous hydroxyl radical oxidation of isoprene epoxydiol-derived methyltetrol sulfates: Plausible formation mechanisms of previously unexplained organosulfates in ambient fine aerosols [J]. Environmental Science & Technology Letters, 2020, 7(7): 460-468. [63] HU W W, PALM B, DAY D, et al. Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA) [J]. Atmospheric Chemistry and Physics, 2016, 16(18): 11563-11580. doi: 10.5194/acp-16-11563-2016 [64] XU R S, LAM H K, WILSON K R, et al. Effect of inorganic-to-organic mass ratio on the heterogeneous OH reaction rates of erythritol: Implications for atmospheric chemical stability of 2-methyltetrols [J]. Atmospheric Chemistry and Physics, 2020, 20(6): 3879-3893. doi: 10.5194/acp-20-3879-2020 [65] KESSLER S H, SMITH J D, CHE D L, et al. Chemical sinks of organic aerosol: Kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan [J]. Environmental Science & Technology, 2010, 44(18): 7005-7010. [66] 黄亚娟. PM2.5中二次有机示踪物的臭氧非均相氧化研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. HUANG Y J. Heterogeneous oxidation of secondary organic tracers in PM2.5 by ozone[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
[67] 黄亚娟, 曹罡, 朱荣淑, 等. 异戊二烯和甲苯二次有机示踪物的臭氧非均相氧化 [J]. 环境科学, 2019, 40(3): 1163-1171. doi: 10.13227/j.hjkx.201803064 HUANG Y J, CAO G, ZHU R S, et al. Heterogeneous oxidation of secondary organic tracers of isoprene and toluene by ozone [J]. Environmental Science, 2019, 40(3): 1163-1171(in Chinese). doi: 10.13227/j.hjkx.201803064
[68] WANG R H, HUANG Y J, CAO G. Heterogeneous oxidation of isoprene SOA and toluene SOA tracers by ozone [J]. Chemosphere, 2020, 249: 126258. doi: 10.1016/j.chemosphere.2020.126258 [69] WANG R, HUANG Y, HU Q, et al. In-situ FTIR study of heterogeneous oxidation of SOA tracers by ozone [J]. Frontiers in Environmental Chemistry, 2021, 2: 732219. doi: 10.3389/fenvc.2021.732219 [70] 胡倩. 异戊二烯SOA示踪物的非均相氧化研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. HU Q. Heterogeneous oxidation of isoprene SOA tracers[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).
[71] 王润华. 甲苯SOA示踪物的羟基自由基非均相氧化研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. WANG R H. Heterogeneous oxidation of toluene SOA tracers by hydroxyl radical[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).