实时在线质谱在室内化学中的应用
Application of real-time on-line mass spectrometry in indoor chemistry
-
摘要: 室内空气化学组分复杂,包括各类氧化剂、挥发性有机物(volatile organic compounds,VOCs)等污染物. 这些污染物会在空气中或室内表面发生均相和非均相反应生成危害性更大的二次有机污染物. 检测室内空气中未被发现的新有机污染物并揭示其室内形成机制,不仅有助于更准确地评估室内空气质量,也有利于室内空气污染物的精准控制. 本文总结了室内空气化学近十年的重要进展,并重点介绍了室内化学研究中3种代表性的实时在线质谱分析技术,这些实时在线质谱分析技术的应用极大促进了对室内污染物及其化学过程的理解,对评估室内空气暴露风险、精准防控室内空气污染、改善我国室内空气质量,具有重大意义.Abstract: The chemical components of indoor air are very complex, including various oxidants such as hydroxyl radical (·OH) and ozone (O3), volatile organic compounds (VOCs), and other pollutants. These pollutants undergo homogeneous and non-homogeneous reactions in the air or on indoor surfaces to generate more hazardous secondary organic pollutants. Comprehensively detecting and characterizing organic pollutants in indoor air and revealing their formation mechanisms will not only help to more accurately assess indoor air quality, but also facilitate the precise control of indoor air pollutants. Here we summarize the important advances in indoor air chemistry in the past decade and highlight three mostly used real-time on-line mass spectrometry techniques in indoor chemistry research. The application of these real-time on-line mass spectrometry techniques has greatly promoted our understanding of indoor pollutants and their chemical processes, and is of great significance for assessing indoor air exposure risks, accurately preventing and controlling indoor air pollution, and improving indoor air quality in China.
-
-
[1] KULMALA M. Atmospheric chemistry: China's choking cocktail [J]. Nature, 2015, 526(7574): 497-499. doi: 10.1038/526497a [2] Singh A. WHO housing and health guidelines [M]. 2018: 6-9. [3] ABBATT J P D, WANG C. The atmospheric chemistry of indoor environments [J]. Environmental Science:Processes & Impacts, 2020, 22(1): 25-48. [4] GLIGOROVSKI S, STREKOWSKI R, BARBATI S, et al. Environmental implications of hydroxyl radicals (•OH) [J]. Chemical Reviews, 2015, 115(24): 13051-13092. doi: 10.1021/cr500310b [5] ALVAREZ E G, AMEDRO D, AFIF C, et al. Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(33): 13294-13299. doi: 10.1073/pnas.1308310110 [6] WESCHLER C J. Ozone in indoor environments: Concentration and chemistry [J]. Indoor Air, 2000, 10(4): 269-288. doi: 10.1034/j.1600-0668.2000.010004269.x [7] WISTHALER A, WESCHLER C J. Reactions of ozone with human skin lipids: Sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6568-6575. doi: 10.1073/pnas.0904498106 [8] NAZAROFF W W, WESCHLER C J. Indoor ozone: Concentrations and influencing factors [J]. Indoor Air, 2022, 32(1): e12942. [9] ZHOU S, YOUNG C J, VANDENBOER T C, et al. Role of location, season, occupant activity, and chemistry in indoor ozone and nitrogen oxide mixing ratios [J]. Environmental Science:Processes & Impacts, 2019, 21(8): 1374-1383. [10] COLLINS D B, HEMS R F, ZHOU S M, et al. Evidence for gas-surface equilibrium control of indoor nitrous acid [J]. Environmental Science & Technology, 2018, 52(21): 12419-12427. [11] WISTHALER A, TAMÁS G, WYON D P, et al. Products of ozone-initiated chemistry in a simulated aircraft environment [J]. Environmental Science & Technology, 2005, 39(13): 4823-4832. [12] YAO M Y, ZHAO B. Surface removal rate of ozone in residences in China [J]. Building and Environment, 2018, 142: 101-106. doi: 10.1016/j.buildenv.2018.06.010 [13] LEE K, VALLARINO J, DUMYAHN T, et al. Ozone decay rates in residences [J]. Journal of the Air & Waste Management Association, 1999, 49(10): 1238-1244. [14] WESCHLER C J, WISTHALER A, COWLIN S, et al. Ozone-initiated chemistry in an occupied simulated aircraft cabin [J]. Environmental Science & Technology, 2007, 41(17): 6177-6184. [15] DEMING B L, ZIEMANN P J. Quantification of alkenes on indoor surfaces and implications for chemical sources and sinks [J]. Indoor Air, 2020, 30(5): 914-924. doi: 10.1111/ina.12662 [16] SHEN J L, GAO Z. Ozone removal on building material surface: A literature review [J]. Building and Environment, 2018, 134(15): 205-217. doi: 10.1016/j.buildenv.2018.02.046 [17] ZENG J F, MEKIC M, XU X, et al. A novel insight into the ozone-skin lipid oxidation products observed by secondary electrospray ionization high-resolution mass spectrometry [J]. Environmental Science & Technology, 2020, 54(21): 13478-13487. [18] WESCHLER C J. Roles of the human occupant in indoor chemistry [J]. Indoor Air, 2016, 26(1): 6-24. doi: 10.1111/ina.12185 [19] BELL M L, MCDERMOTT A, ZEGER S L, et al. Ozone and short-term mortality in 95 US urban communities, 1987-2000 [J]. JAMA, 2004, 292(19): 2372-2378. doi: 10.1001/jama.292.19.2372 [20] BELL M L, DOMINICI F, SAMET J M. A meta-analysis of time-series studies of ozone and mortality with comparison to the national morbidity, mortality, and air pollution study [J]. Epidemiology , 2005, 16(4): 436-445. doi: 10.1097/01.ede.0000165817.40152.85 [21] DI Q, ROWLAND S, KOUTRAKIS P, et al. A hybrid model for spatially and temporally resolved ozone exposures in the continental United States [J]. Journal of the Air & Waste Management Association, 2017, 67(1): 39-52. [22] SUN H F, LIU H, HAN J R, et al. Chemical cleaning-associated generation of dissolved organic matter and halogenated byproducts in ceramic MBR: Ozone versus hypochlorite [J]. Water Research, 2018, 140(1): 243-250. doi: 10.1016/j.watres.2018.04.050 [23] YIN P, CHEN R J, WANG L J, et al. Ambient ozone pollution and daily mortality: A nationwide study in 272 Chinese Cities [J]. Environmental Health Perspectives, 2017, 125(11): 117006. doi: 10.1289/EHP1849 [24] FINLAYSON-PITTS B J, PITTS J N Jr. Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles [J]. Science, 1997, 276(5315): 1045-1052. doi: 10.1126/science.276.5315.1045 [25] CARSLAW N. A new detailed chemical model for indoor air pollution [J]. Atmospheric Environment, 2007, 41(6): 1164-1179. doi: 10.1016/j.atmosenv.2006.09.038 [26] WHITE I R, MARTIN D, MUÑOZ M P, et al. Use of reactive tracers to determine ambient OH radical concentrations: Application within the indoor environment [J]. Environmental Science & Technology, 2010, 44(16): 6269-6274. [27] GANDOLFO A, BARTOLOMEI V, GOMEZ ALVAREZ E, et al. The effectiveness of indoor photocatalytic paints on NOx and HONO levels [J]. Applied Catalysis B:Environmental, 2015, 166/167: 84-90. doi: 10.1016/j.apcatb.2014.11.011 [28] GANDOLFO A, ROUYER L, WORTHAM H, et al. The influence of wall temperature on NO2 removal and HONO levels released by indoor photocatalytic paints [J]. Applied Catalysis B:Environmental, 2017, 209(15): 429-436. doi: 10.1016/j.apcatb.2017.03.021 [29] LIU J, DWNG H F, LI S, et al. Light-enhanced heterogeneous conversion of NO2 to HONO on solid films consisting of fluorene and fluorene/Na2SO4: an impact on urban and indoor atmosphere [J]. Environmental Science & Technology, 2020, 54(18): 11079-11086. [30] GLIGOROVSKI S, WESCHLER C J. The oxidative capacity of indoor atmospheres [J]. Environmental Science & Technology, 2013, 47(24): 13905-13906. [31] WESCHLER C J, SHIELDS H C. Production of the hydroxyl radical in indoor air [J]. Environmental Science & Technology, 1996, 30(11): 3250-3258. [32] BLAKE R S, MONKS P S, ELLIS A M. Proton-transfer reaction mass spectrometry [J]. Chemical Reviews, 2009, 109(3): 861-896. doi: 10.1021/cr800364q [33] WARNEKE C, VERES P, MURPHY S M, et al. PTR-QMS versus PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013 [J]. Atmospheric Measurement Techniques, 2015, 8(1): 411-420. doi: 10.5194/amt-8-411-2015 [34] BIASIOLI F, GASPERI F, YERETZIAN C, et al. PTR-MS monitoring of VOCs and BVOCs in food science and technology [J]. TrAC Trends in Analytical Chemistry, 2011, 30(7): 968-977. doi: 10.1016/j.trac.2011.03.009 [35] QIU J, XIE D, LI Y T, et al. Dibasic esters observed as potential emerging indoor air pollutants in new apartments in Beijing, China [J]. Environmental Science & Technology Letters, 2021, 8(6): 445-450. [36] LIU Y J, MISZTAL P K, ARATA C, et al. Observing ozone chemistry in an occupied residence [J]. PNAS, 2021, 118(6): e2018140118. doi: 10.1073/pnas.2018140118 [37] YU Z J, LIU C, NIU H Z, et al. Real time analysis of trace volatile organic compounds in ambient air: A comparison between membrane inlet single photon ionization mass spectrometry and proton transfer reaction mass spectrometry [J]. Analytical Methods:Advancing Methods and Applications, 2020, 12(35): 4343-4350. [38] POTERYA V, TKÁČ O, FEDOR J, et al. Mass spectrometry of hydrogen bonded clusters of heterocyclic molecules: Electron ionization vs. photoionization [J]. International Journal of Mass Spectrometry, 2010, 290(2/3): 85-93. [39] SHU J N, GAO S K, LI Y. A VUV photoionization aerosol time-of-flight mass spectrometer with a RF-powered VUV lamp for laboratory-based organic aerosol measurements [J]. Aerosol Science and Technology, 2008, 42(2): 110-113. doi: 10.1080/02786820701787977 [40] YANG Z, ZHANG T C, PAN Y, et al. Electrospray/VUV single-photon ionization mass spectrometry for the analysis of organic compounds [J]. Journal of the American Society for Mass Spectrometry, 2009, 20(3): 430-434. doi: 10.1016/j.jasms.2008.10.026 [41] VERARDO V, GÓMEZ-CARAVACA A M, MESSIA M C, et al. Development of functional spaghetti enriched in bioactive compounds using barley coarse fraction obtained by air classification [J]. Journal of Agricultural and Food Chemistry, 2011, 59(17): 9127-9134. doi: 10.1021/jf202804v [42] TAN G B, GAO W, HUANG Z X, et al. Vacuum ultraviolet single-photon ionization time-of-flight mass spectrometer [J]. Chinese Journal of Analytical Chemistry, 2011, 39(10): 1470-1475. doi: 10.1016/S1872-2040(10)60473-2 [43] 周振, 喻佳俊, 黄正旭, 等. 便携式飞行时间质谱仪用于室内甲苯、二甲苯污染快速溯源分析 [J]. 分析化学, 2015, 43(5): 783-787. doi: 10.11895/j.issn.0253-3820.150101 ZHOU Z, YU J J, HUANG Z X, et al. Source determination for indoor toluene and xylene pollution by portable time-of-light mass spectrometer [J]. Chinese Journal of Analytical Chemistry, 2015, 43(5): 783-787(in Chinese). doi: 10.11895/j.issn.0253-3820.150101
[44] MARSHALL A G, HENDRICKSON C L. High-resolution mass spectrometers [J]. Annual Review of Analytical Chemistry , 2008, 1: 579-599. doi: 10.1146/annurev.anchem.1.031207.112945 [45] HERNÁNDEZ F, SANCHO J V, IBÁÑEZ M, et al. Current use of high-resolution mass spectrometry in the environmental sciences [J]. Analytical and Bioanalytical Chemistry, 2012, 403(5): 1251-1264. doi: 10.1007/s00216-012-5844-7 [46] LI X, HUANG L, ZHU H, et al. Direct human breath analysis by secondary nano-electrospray ionization ultrahigh-resolution mass spectrometry: Importance of high mass resolution and mass accuracy [J]. Rapid Communications in Mass Spectrometry:RCM, 2017, 31(3): 301-308. doi: 10.1002/rcm.7794 [47] ZENG J F, YU Z J, MEKIC M, et al. Evolution of indoor cooking emissions captured by using secondary electrospray ionization high-resolution mass spectrometry [J]. Environmental Science & Technology Letters, 2020, 7(2): 76-81. [48] LIU C, ZENG J F, SINUES P, et al. Quantification of volatile organic compounds by secondary electrospray ionization-high resolution mass spectrometry [J]. Analytica Chimica Acta, 2021, 1180(2): 338876. doi: 10.1016/j.aca.2021.338876