-
硝基多环芳烃(nitrated polycyclic aromatic hydrocarbons,NPAHs)由多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的硝基取代而形成,是大气中的一类重要有机污染物. 毒理学研究表明NPAHs比母体PAHs具有更直接的致癌和致突变作用[1-2]. 另外,大气颗粒物中的NPAHs是棕碳的重要组分,可通过吸收太阳辐射改变地球热平衡,从而影响天气和气候[3].
颗粒物中的多环芳烃类化合物由于其致癌和致突变性受到广泛关注[4]. 大气中已检测到的多环芳烃及其衍生物约500余种. 目前关于大气环境中母体PAHs的浓度水平、迁移转化和健康效应已有较多研究,并且有很多国家和国际组织对环境中的PAHs实施监控[5-7]. 然而,具有更高潜在毒性的NPAHs尚未被纳入监管范围[8-10]. NPAHs和PAHs均可来自化石燃料的不完全燃烧过程,NPAHs还能产生自有NOX参与的光化学反应[11]. 表1给出了环境空气中常见的NPAHs及其理化性质,由美国环保局(U.S. EPA)化学品毒性(toxicity estimation software tool,TEST)和理化性质评估软件(estimation program interface,EPI)计算获得[12-13]. 如表1所示,常见NPAHs的饱和蒸气压值(poL)普遍高于10-14 atm,可同时以气态和颗粒态形式存在,正辛醇-空气分配系数(KOA)、正辛醇-水分配系数(KOW)和沸点随分子量(MW)增大而增大,而它们的水溶性则随分子量增大而降低.
目前关于大气NPAHs的研究主要集中在基于受体点位采样的化学表征,而有关NPAHs环境行为的研究仍非常有限. 本文根据国内已有研究探讨大气中NPAHs的化学组成和时空分布特征,并同国外部分国家地区的结果进行对比. 针对NPAHs在大气中的环境行为,我们基于有限的研究对NPAHs在粒径分布、气固分配、来源和毒性方面具有代表性的特点进行论述,为研究大气环境中NPAHs的环境行为和健康风险提供参考.
大气中硝基多环芳烃的污染特征和环境行为研究综述
Review on pollution characteristics and environmental behaviors of nitrated polycyclic aromatic hydrocarbons in ambient air
-
摘要: 环境空气中的硝基多环芳烃(nitrated polycyclic aromatic hydrocarbons,NPAHs)因致癌和致突变属性受到人们的广泛关注. 本文总结了国内外关于环境空气中NPAHs的组成特征、时空分布、粒径分布、气固分配、来源和毒性效应的研究. 我国城市地区大气环境中的NPAHs浓度常高于农村地区;受生物质燃烧和机动车排放的影响,9-硝基蒽对城市地区NPAHs浓度的贡献占比最高. 尽管NPAHs在夏季存在二次源,不利的气象条件和升高的一次排放导致我国大气中NAPHs的峰值常出现在秋、冬季节. NPAHs因蒸气压较低主要分布在颗粒物中,而颗粒态NPAHs主要分布在亚微米级颗粒物中(Dp<1 μm). 低分子量NPAHs(例如,1N-NAP和2N-NAP)可随着温度变化经蒸发、冷凝过程迁移至粗颗粒物(Dp>2.5 μm). 根据考虑不同气固分配机制模型的气固分配系数模拟结果,吸附作用在NAPHs的气固分配过程中不应被忽略.NPAHs的来源包括化石和生物质燃料的不完全燃烧,以及母体PAHs在大气中的二次反应过程. 相关性分析和特征比值常用于推断NPAHs的主要来源,但无法量化NPAHs的源贡献分布. 根据环境空气中NPAHs的毒性风险评估结果,颗粒物中NPAHs对所有PAHs衍生物致突变性和致癌性的贡献比其质量占比高数倍,并且因毒性累积效应对成年人具有更高的致癌风险. 为进一步了解NPAHs的环境行为,合理评估其健康效应,有必要在将来的研究中完善NPAHs的排放信息,厘清NPAHs在环境中的迁移转化过程.Abstract: Ambient nitrated polycyclic aromatic hydrocarbons (NPAHs) have been investigated intensively due to their carcinogenic and mutagenic properties.In this work, studies in chemical composition, spatial and temporal distributions, particle size distributions, gas-particle partitioning, sources, and toxic effects of NPAHs were summarized. The concentrations of ambient NPAHs in urban areas were usually higher than those in rural areas.Due to the influences of biomass burning and motor vehicle emissions, 9-nitroanthracene had the highest contributions to ambient NPAHs in urban areas. Although NPAHs have secondary sources in summer, their peak concentrations often appear in fall and winter because of adverse meteorological conditions and elevated primary emissions. NPAHs mainly exist in the particle phase owing to their low vapor pressures, and particulate NPAHs were primarily enriched in submicron particles (Dp<1 μm). Low molecular weight NPAHs (such as 1N-NAP and 2N-NAP) can shift toward coarse particles (Dp>2.5 μm) through evaporation and condensation processes with varied temperatures.According to the modeling results of gas-particle partitioning coefficients considering different mechanisms, the adsorption of NPAHs on PM surfaces should not be neglected in the gas-particle partitioning process.Incomplete combustion of fossil and biomass fuels and secondary reactions of parent PAHs are the main sources of NPAHs in the atmosphere.Correlation analysis and diagnostic ratios were typical methods used to indicate the main sources of NPAHs, but they were unable to determine the contribution distributions of NPAH sources. According to the toxicity risk assessment of ambient NPAHs, the contributions of NPAHs in particulate matter to the mutagenicity and carcinogenicity of all PAH derivatives were several times higher than their mass fractions. Due to the cumulative effect of toxicity, NPAHs had a higher carcinogenic risk in adults. To further understand the environmental behaviors and health effects of NPAHs, it is necessary to improve their source inventories and clarify the migration and transformation processes of NPAHs in the environment.
-
表 1 环境空气中常见NPAHs的物理化学性质(25 ℃)
Table 1. Physicochemical properties (25℃) of typical NPAHs in ambient air
化合物
Compounds简写
AbbreviationCAS 分子质量/
(g·mol−1)
Molecular weight蒸气压/Pa
Vapour pressurelg KOA lg KOW 水溶性/(mg·L−1)
Water solubility沸点/℃
Boiling point1-硝基萘
(1-Nitronaphthalene)1N-NAP 86-57-7 173 4.49 × 10−2 7.33 2.99 38.1 294 2-硝基萘
(2-Nitronaphthalene)2N-NAP 581-89-5 173 3.96 × 10−2 7.31 3.24 44.5 303 2-硝基联苯
(2-Nitrobiphenyl)2N-BIP 86-00-0 199 9.35 × 10−3 7.75 3.57 13.2 321 3-硝基联苯
(3-Nitrobiphenyl)3N-BIP 2113-58-8 199 3.49 × 10−3 8.05 3.87 8.06 318 5-硝基苊
(5-Nitroacenaphthene)5N-ACE 602-87-9 199 5.81 × 10−3 8.19 3.85 12.9 321 2-硝基芴
(2-Nitrofluorene)2N-FLU 607-57-8 211 1.37 × 10−4 7.94 3.37 1.51 325 3-硝基芴
(3-Nitrofluorene)3N-FLU 5397-37-5 211 7.77 × 10−5 NA NA 0.62 321 3-硝基菲
(3-Nitrophenanthrene)3N-PHE 17024-19-0 223 6.75 × 10−5 9.24 4.16 1.03 375 9-硝基菲
(9-Nitrophenanthrene)9N-PHE 954-46-1 223 2.25 × 10−4 9.24 4.16 1.78 371 9-硝基蒽
(9-Nitroanthracene)9N-ANT 602-60-8 223 4.88 × 10−4 9.86 4.78 1.31 384 2-硝基荧蒽
(2-Nitrofluoranthene)2N-FLT 13177-29-2 247 1.32 × 10−6 8.52 4.29 0.057 428 3-硝基荧蒽
(3-Nitrofluoranthene)3N-FLT 892-21-7 247 7.64 × 10−7 10.6 4.75 0.11 422 1-硝基芘
(1-Nitropyrene)1N-PYR 5522-43-0 247 6.32 × 10−7 10.9 5.06 0.028 455 2-硝基芘
(2-Nitropyrene)2N-PYR 789-07-1 247 2.60 × 10−7 10.6 4.75 0.022 454 2,7-二硝基芴
(2,7-Dinitrofluorene)2,7N-FLU 5405-53-8 256 1.37 × 10−6 10.3 3.35 1.01 346 6-硝基䓛
(6-Nitrochrysene)6N-CHR 7496-02-8 273 1.01 × 10−6 11.4 5.34 0.015 455 7-硝基苯并[a]蒽
(7-Nitrobenz[a]anthracene)7N-BaA 20268-51-3 273 2.89 × 10−7 11.4 5.34 0.11 488 1,3-二硝基芘
(1,3-Dinitropyrene)1,3-DNP 75321-20-9 292 2.41 × 10−8 12.8 4.57 0.017 465 1,6-二硝基芘
(1,6-Dinitropyrene)1,6-DNP 42397-64-8 292 2.97 × 10−8 12.8 4.57 0.020 467 1,8-二硝基芘
(1,8-Dinitropyrene)1,8-DNP 42397-65-9 292. 4.20 × 10−8 12.8 4.57 0.010 459 6-硝基苯并[a]芘
(6-Nitrobenzo[a]pyrene)6N-BaP 63041-90-7 297 5.88 × 10−9 12.8 5.93 0.00092 517 表 2 国内外不同地区NPAHs浓度比较
Table 2. Comparisons of NPAHs concentrations in different cities of China and foreign counties
地点
Location采样时间
Sampling period采样点特征
Site description类型
Sample type种类
Species No.平均浓度/(pg·m−3)
Average concentration主要组分/%(占比)
Major compounds中国北方 哈尔滨[22] 2017.6—2018.5 城区 PM2.5 16 5480 9N-ANT、3N-PHE、9N-PHE 大连[17] 2010.4—2011.3 城区 气相+PM10 12 468 9N-ANT (27.1)、2+3N-FLT (21.4)、1N-NAP (16.0)、2N-NAP (15.4) 2010.4—2011.3 农田 气相+PM10 12 314 6N-BaP (26.1)、2N-NAP (23.9)、1N-NAP (17.8)、2+3N-FLT (14.3) 北京[17] 2010.4—2011.3 城区 气相+PM10 12 1397 9N-ANT (36.9)、2+3N-FLT (20.7)、2N-NAP (15.1)、1N-NAP (12.7) 北京[15] 2012.3—2013.3 城区 PM2.5 15 1730 9N-ANT (51.6)、2N-FLT (23.9) 北京[14] 2013.10—2014.8 城区 PM2.5 12 1400 9N-ANT (59.2)、2N-NAP (16.6)、1N-NAP (7.43) 兰州[14] 2013.10—2014.8 城区 PM2.5 12 1100 9N-ANT (41.1)、2N-NAP (22.2)、1N-NAP (11.2) 武威[17] 2010.4—2011.3 城区 气相+PM10 12 828 9N-ANT (44.1)、6N-BaP (12.0)、2+3N-FLT (11.8) 2010.4—2011.3 乡村 气相+PM10 12 614 9N-ANT (45.4)、6N-BaP (13.7)、2+3N-FLT (10.3) 2010.4—2011.3 农田 气相+PM10 12 555 9N-ANT (47.9)、2+3N-FLT (13.0)、6N-BaP (8.65) 银川[17] 2010.4—2011.3 城区 气相+PM10 12 968 9N-ANT (46.3)、2+3N-FLT (14.7)、2N-NAP (11.9)、1N-NAP (11.2) 2010.4—2011.3 乡村 气相+PM10 12 956 9N-ANT (44.4)、2+3N-FLT (17.9)、2N-NAP (11.3)、1N-NAP (10.9) 2010.4—2011.3 农田 气相+PM10 12 1015 9N-ANT (44.9)、2+3N-FLT (19.0)、2N-NAP (10.5)、1N-NAP (10.0) 济南[20] 2014.12—2015.1 城区 气相+TSP 16 2800 1N-NAP + 2N-NAP + 3N-BIP + 9N-ANT + 2+3N-FLT (> 90%) 济南[23] 2016.3—2016.12 城区 PM2.5 16 1880 2+3N-FLT (24.5)、9N-ANT (18.5)、2N-PYR (11.6)、6N-BaP (8.40) 2016.3—2016.12 郊区 PM2.5 16 1570 2+3N-FLT (17.4)、2N-PYR (10.1)、9N-ANT (9.55)、6N-BaP (9.24) 砣矶岛[20] 2014.12 岛屿 气相+TSP 16 770 1N-NAP + 2N-NAP + 3N-BIP + 9N-ANT + 2+3N-FLT (> 90%) 泰山[20] 2014.11 山地 气相+TSP 16 270 1N-NAP + 2N-NAP + 3N-BIP + 9N-ANT + 2+3N-FLT (> 90%) 德州[17] 2010.4—2011.3 城区 气相+PM10 12 1768 9N-ANT (47.9)、2+3N-FLT (24.3)、2N-NAP (11.3)、1N-NAP (10.6) 2010.4—2011.3 乡村 气相+PM10 12 1447 9N-ANT (46.4)、2+3N-FLT (18.8)、7N-BaA (9.33)、1N-NAP (8.57) 2010.4—2011.3 农田 气相+PM10 12 1516 9N-ANT (45.8)、2+3N-FLT (21.2)、7N-BaA (8.84)、2N-NAP (8.05) 烟台[17] 2010.4—2011.3 城区 气相+PM10 12 760 9N-ANT (33.7)、2+3N-FLT (16.2)、2N-NAP (14.9)、1N-NAP (14.1) 2010.4—2011.3 乡村 气相+PM10 12 926 9N-ANT (43.3)、2+3N-FLT (15.1)、2N-NAP (11.3)、1N-NAP (9.29) 2010.4—2011.3 农田 气相+PM10 12 641 9N-ANT (25.0)、2N-NAP (19.2)、2+3N-FLT (18.9)、1N-NAP (16.1) 太原[17] 2010.4—2011.3 城区 气相+PM10 12 2056 9N-ANT (35.0)、2+3N-FLT (18.6)、2N-NAP (14.2)、1N-NAP (13.8) 2010.4—2011.3 乡村 气相+PM10 12 1239 9N-ANT (29.0)、2+3N-FLT (16.9)、2N-NAP (13.7)、6N-BaP (13.7) 2010.4—2011.3 农田 气相+PM10 12 1429 9N-ANT (32.2)、2+3N-FLT (20.2)、1N-NAP (14.5)、2N-NAP (14.4) 太原[24] 2013.1 城区 PM2.5 3 446 1N-PYR (69.3)、9N-ANT (26.5) 、2N-FLU (4.26) 太原[14] 2013.10—2014.8 城区 PM2.5 12 1700 9N-ANT (64.1)、2N-NAP (14.5)、1N-NAP (6.59) 新乡[14] 2013.10—2014.8 城区 PM2.5 12 1200 9N-ANT (58.8)、2N-NAP (18.6)、1N-NAP (8.25) 中国南方 广州[14] 2013.10—2014.8 城区 PM2.5 12 1600 9N-ANT (58.9)、2N-NAP (18.6)、1N-NAP (7.81) 成都[14] 2013.10—2014.8 城区 PM2.5 12 730 9N-ANT (33.8)、2N-NAP (30.5)、1N-NAP (13.6) 重庆[19] 2016.4—2017.1 城区 气相+TSP 27 1650 2N-NAP (13.9)、2N-FLT (13.3)、5N-ACE (12.7) 上海[14] 2013.10—2014.8 城区 PM2.5 12 680 2N-NAP (31.5)、9N-ANT (29.4)、1N-NAP (14.0) 南京[14] 2013.10—2014.8 城区 PM2.5 12 680 9N-ANT (36.3)、2N-NAP (30.1)、1N-NAP (13.4) 武汉[14] 2013.10—2014.8 城区 PM2.5 12 570 9N-ANT (49.6)、2N-NAP (21.6)、1N-NAP (9.65) 昆明[21] 2014.3—2015.2 城区 气相+PM10 7 344 9N-ANT (44.8)、2N-NAP (23.5)、1N-NAP (20.1) 绵阳[21] 2014.3—2015.2 城区 气相+PM10 7 164 9N-ANT (46.3)、2N-NAP (18.3)、1N-NAP (17.7) 珠三角[16] 2010.11—2010. 12 乡村 气相+TSP 29 4143 2N-FLT (38.5)、9N-ANT (19.8)、7N-BaA (12.7) 国外地区 墨西哥合众国墨西哥城[25] 2006.3—2007.2 城区 PM2.5 8 152 9N-ANT (30.1)、2N-FLT (27.6) 巴西贝洛奥里宗特[18] 2017.5—2018.4 城区 气相+PM2.5 4 1830 9N-ANT、3N-FLT、1N-PYR 法国马赛[26] 2004.6 城区 气相+PM10 17 710 1N-NAP (29.3)、2N-NAP (16.9)、9N-ANT (15.1)、2+3N-FLT (12.7) 2004.6 郊区 气相+PM10 17 350 1N-NAP (50.3)、2N-NAP (23.7)、9N-ANT (8.00)、2+3N-FLT (6.86) 2004.6 乡村 气相+PM10 17 30 1N-NAP (33.3)、2N-NAP (30.0)、2+3N-FLT (10.0)、9N-ANT (6.67) 法国巴黎[29] 2009.7 郊区 PM10 18 30 2+3N-FLT (53.3)、9N-ANT (23.3) 2010.9 道路 PM10 18 171 1N-PYR (42.7)、9N-ANT (17.0)、2+3N-FLT (9.36) 卢旺达[27] 2017.5 城区 PM2.5 7 190 9N-ANT (48.9)、2N-PYR+2N-FLT (44.2)、1,8-DNP (11.6) 2017.6 城区 PM2.5 7 428 9N-ANT (56.8)、2N-PYR+2N-FLT (36.2)、7N-BaA (14.0) 2017.5 道路 PM2.5 7 661 2N-PYR+2N-FLT (41.9)、9N-ANT (32.4)、1,8-DNP (24.1) 2017.6 道路 PM2.5 7 1129 9N-ANT (46.3)、2N-PYR+2N-FLT (33.2)、1,8-DNP (12.5) 2017.5 乡村 PM2.5 7 155 2N-PYR+2N-FLT (54.8)、9N-ANT (38.1) 日本金泽[28] 1989—1996 城区 TSP 4 699 1N-PYR (98.7) 1989—1996 城区 TSP 4 222 1N-PYR (99.1) 1989—1996 郊区 TSP 4 22 1N-PYR (100) 越南胡志明[30] 2005.1—2006.3 城区 TSP 2 173 2N-FLT (95.4)、1N-PYR (4.62) 2005.1—2006.3 城区 TSP 2 199 2N-FLT (95.5)、1N-PYR (4.52) 2005.1—2006.3 道路 TSP 2 264 2N-FLT (72.3)、1N-PYR (27.7) 丹麦哥本哈根[31] 1996春冬 道路 TSP 5 340 1N-PYR (37.4)、2N-FLT (26.8)、9N-ANT (18.5)、3N-FLT (11.5) 1998.2—1999.2 乡村 TSP 5 160 2N-FLT (37.5)、3N-FLT (20.0)、9N-ANT (18.8)、1N-PYR (18.8) 表 3 来自机动车、燃煤和生物质燃烧NPAHs的排放因子及组分特征
Table 3. Emission factors and chemical compositions of NPAHs from motor vehicles, coal combustions, and biomass burning
燃烧源
Combustion sources种类
Species No.类型
Sample Type排放因子
Emission factors主要组分/ (占比,%)
Major compounds机动车排放 (排放因子,μg·km-1) 汽油机动车[62] 8 PM2.5 7.57—14.3 6-硝基苯并[a]芘 (32.0)、6-硝基䓛 (20.0) 汽油客运车[63] 9 TSP 7.90 6-硝基苯并[a]芘 (38.4)、3-硝基荧蒽 (15.2)、1,3-二硝基芘(14.7) 9 气相 316 1,3-二硝基芘 (44.0)、5-硝基苊 (33.9) 轻型柴油卡车[64] 9 气相+TSP 1124 3-硝基菲 (64.1)、1-硝基芘 (12.1) 中型柴油卡车[64] 9 气相+TSP 842 3-硝基菲 (61.3)、1-硝基芘 (10.1) 重型柴油卡车[64] 9 气相+TSP 1466 3-硝基菲 (58.8)、1-硝基芘 (12.6) 燃煤 (排放因子,μg·kg-1) 宁夏银川烟煤[65] 23 TSP 4.36 2-硝基芘+2-硝基荧蒽 (66.5)、1-硝基荧蒽 (12.6) 内蒙古东胜烟煤[65] 23 TSP 5.32 6-硝基苯并[a]芘 (77.0)、2-硝基蒽 (9.80) 山西大同烟煤[65] 23 TSP 4.14 2-硝基芘+ 2-硝基荧蒽 (50.7)、1-硝基荧蒽 (22.7)、2-硝基蒽 (15.7) 山西大同蜂窝煤[65] 23 TSP 0.32 2-硝基蒽 (72.3) 贵州织金无烟煤[65] 23 TSP 3.07 1-硝基荧蒽 (69.4)、6-硝基苯并[a]芘 (15.3) 山西沁源烟煤[66] 26 气相+TSP 1200 2-硝基联苯 (62.9)、5-硝基苊 (10.8) 山西临汾烟煤[66] 26 气相+TSP 440 2-硝基联苯 (22.0)、2-硝基双苯并噻吩 (18.8) 云南宣威烟煤[66] 26 气相+TSP 500 2-硝基双苯并噻吩 (14.6)、2-硝基蒽 (9.80) 河南平顶山烟煤[66] 26 气相+TSP 1880 2-硝基联苯 (32.1)、4-硝基联苯 (15.4) 山西晋城无烟煤[66] 26 气相+TSP 140 1-硝基萘 (27.4)、2-硝基萘 (21.6)、2-硝基联苯 (19.3) 山西和顺煤球[67] 9 气相+TSP 640—830 9-硝基蒽 (71.1—75.0)、9-硝基菲 (25.0—28.9) 山西和顺煤砖[67] 9 气相+TSP 160—2400 9-硝基蒽 (81.3—87.5)、9-硝基菲 (10.0—14.6) 生物质燃烧 (排放因子,μg·kg-1) 花生壳[65] 23 TSP 100 2-硝基芘+2-硝基荧蒽 (27.0 )、1-硝基荧蒽 (25.0) 木头[67] 9 气相+TSP 140—550 9-硝基蒽 (33.6—60.0)、9-硝基菲 (30.0—32.7) 灌木[51] 9 气相+TSP 32.2 2-硝基萘 (31.6)、1-硝基萘 (28.4) 木材[67] 9 气相+TSP 8.27 2-硝基萘 (34.5)、1-硝基萘 (31.2) 玉米秸秆[54] 6 气相+TSP 6.50 2-硝基萘 (32.0)、1-硝基萘 (30.0)、9-硝基蒽 (22.0) 表 4 用于NPAHs来源分析的特征比值
Table 4. Characteristic ratios for NPAHs source analysis
特征比值
Diagnostic ratios临界点
Critical point指示源
Sources理论依据
Rationale参考文献
Reference2-硝基荧蒽/1-硝基芘
(2N-FLT/1N-PYR)< 5 一次排放 2-硝基荧蒽主要通过荧蒽和NO2的气相反应生成,白天与夜间分别由OH·和NO3·引发,而1-硝基芘仅来自一次排放 [8,19,26,81-82,84-87] > 5 二次形成 9-硝基蒽/1-硝基芘
(9N-ANT/1N-PYR)> 10 生物质燃烧 9-硝基蒽主要来自生物质燃烧,而1-硝基芘主要来自于机动车排放 [14,22,84] < 10 机动车排放 2-硝基荧蒽/2-硝基芘
(2N-FLT/2N-PYR)~10 白天由OH·引起的气相反应 2-硝基芘仅由OH·引起的气相反应生成,而2-硝基荧蒽可由OH·和NO3·引起的气相反应生成 [8,14,26,68,84] ~100 夜间由NO3·引起的气相反应 ΣNPAHs/ΣPAHs ~10−4 燃煤 高温燃烧产生的PAHs在NOX存在时部分被硝化,NPAHs的产量随着温度的升高而增大. 柴油机动车燃烧的温度(2700℃)远高于燃煤温度(900℃),会产生更多的NPAHs [22,83] ≈ 0.13 柴油机动车排放 -
[1] NASSAR H F, TANG N, KAMEDA T, et al. Atmospheric concentrations of polycyclic aromatic hydrocarbons and selected nitrated derivatives in Greater Cairo, Egypt [J]. Atmospheric Environment, 2011, 45(39): 7352-7359. doi: 10.1016/j.atmosenv.2011.07.043 [2] TOKIWA H, OHNISHI Y, ROSENKRANZ H S. Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment [J]. CRC Critical Reviews in Toxicology, 1986, 17(1): 23-58. doi: 10.3109/10408448609037070 [3] 关东杰, 沈振兴, 陈庆彩. 棕碳气溶胶的生消机制研究进展 [J]. 环境化学, 2020, 39(10): 2812-2822. doi: http://dx.chinadoi.cn/10.7524/j.issn.0254-6108.2019070902 GUAN D J, SHEN Z X, CHEN Q C. Formation and elimination of brown carbon aerosol: A review [J]. Environmental Chemistry, 2020, 39(10): 2812-2822(in Chinese). doi: http://dx.chinadoi.cn/10.7524/j.issn.0254-6108.2019070902
[4] GUO L Q, LIU Z Q, LI P H, et al. Association between mitochondrial DNA methylation and internal exposure to polycyclic aromatic hydrocarbons (PAHs), nitrated-PAHs (NPAHs) and oxygenated-PAHs (OPAHs) in young adults from Tianjin, China [J]. Ecotoxicology and Environmental Safety, 2022, 241: 113799. doi: 10.1016/j.ecoenv.2022.113799 [5] BOSTRÖM C E, GERDE P, HANBERG A, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air [J]. Environmental Health Perspectives, 2002, 110(Suppl 3): 451-488. doi: 10.1289/ehp.110-1241197 [6] CHEN Y, HO K F, HO S S H, et al. Gaseous and particulatepolycyclicaromatichydrocarbons (PAHs) emissions from commercial restaurants in Hong kong [J]. Journal of Environmental Monitoring, 2007, 9(12): 1402-1409. doi: 10.1039/b710259c [7] RAVINDRA K, SOKHI R, van GRIEKEN R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation [J]. Atmospheric Environment, 2008, 42(13): 2895-2921. doi: 10.1016/j.atmosenv.2007.12.010 [8] ALBINET A, LEOZ-GARZIANDIA E, BUDZINSKI H, et al. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys [J]. Atmospheric Environment, 2008, 42(1): 43-54. doi: 10.1016/j.atmosenv.2007.10.009 [9] BOLTON J L, TRUSH M A, PENNING T M, et al. Role of quinones in toxicology [J]. Chemical Research in Toxicology, 2000, 13(3): 135-160. doi: 10.1021/tx9902082 [10] LUNDSTEDT S, WHITE P A, LEMIEUX C L, et al. Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites [J]. Ambio, 2007, 36(6): 475-485. doi: 10.1579/0044-7447(2007)36[475:SFATHO]2.0.CO;2 [11] WILSON N K, MCCURDY T R, CHUANG J C. Concentrations and phase distributions of nitrated and oxygenated polycyclic aromatic hydrocarbons in ambient air [J]. Atmospheric Environment, 1995, 29(19): 2575-2584. doi: 10.1016/1352-2310(95)00189-6 [12] TEBES-STEVENS C, PATEL J M, KOOPMANS M, et al. Demonstration of a consensus approach for the calculation of physicochemical properties required for environmental fate assessments [J]. Chemosphere, 2018, 194: 94-106. [13] CARD M L, GOMEZ-ALVAREZ V, LEE W, et al. History of EPI Suite™ and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments [J]. Environmental Science-Processes & Impacts, 2017, 19: 203-212. [14] LIU D, LIN T, SYED J H, et al. Concentration, source identification, and exposure risk assessment of PM2.5-bound parent PAHs and nitro-PAHs in atmosphere from typical Chinese Cities [J]. Scientific Reports, 2017, 7: 10398. doi: 10.1038/s41598-017-10623-4 [15] LIN Y, MA Y Q, QIU X H, et al. Sources, transformation, and health implications of polycyclic aromatic hydrocarbons (PAHs) and their nitrated, hydroxylated, and oxygenated derivatives in fine particulate matter (PM2.5) in Beijing [J]. Journal of Geophysical Research Atmospheres, 2015, 120(14): 7219-7228. doi: 10.1002/2015JD023628 [16] HUANG B, LIU M, BI X H, et al. Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta region, China [J]. Atmospheric Pollution Research, 2014, 5(2): 210-218. doi: 10.5094/APR.2014.026 [17] LI W, WANG C, SHEN H Z, et al. Concentrations and origins of nitro-polycyclic aromatic hydrocarbons and oxy-polycyclic aromatic hydrocarbons in ambient air in urban and rural areas in Northern China [J]. Environmental Pollution, 2015, 197: 156-164. doi: 10.1016/j.envpol.2014.12.019 [18] dos SANTOS R R, CARDEAL Z D L, MENEZES H C. Phase distribution of polycyclic aromatic hydrocarbons and their oxygenated and nitrated derivatives in the ambient air of a Brazilian urban area [J]. Chemosphere, 2020, 250: 126223. doi: 10.1016/j.chemosphere.2020.126223 [19] HU H L, TIAN M, ZHANG L M, et al. Sources and gas-particle partitioning of atmospheric parent, oxygenated, and nitrated polycyclic aromatic hydrocarbons in a humid city in southwest China [J]. Atmospheric Environment, 2019, 206: 1-10. doi: 10.1016/j.atmosenv.2019.02.041 [20] ZHANG J M, YANG L X, MELLOUKI A, et al. Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine sites in Northern China: Molecular composition, sources, and ageing [J]. Atmospheric Environment, 2018, 173: 256-264. doi: 10.1016/j.atmosenv.2017.11.002 [21] ZHUO S J, DU W, SHEN G F, et al. Urban air pollution and health risks of parent and nitrated polycyclic aromatic hydrocarbons in two megacities, southwest China [J]. Atmospheric Environment, 2017, 166: 441-453. doi: 10.1016/j.atmosenv.2017.07.051 [22] MA L X, LI B, LIU Y P, et al. Characterization, sources and risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in Harbin, a cold city in Northern China [J]. Journal of Cleaner Production, 2020, 264: 121673. doi: 10.1016/j.jclepro.2020.121673 [23] LI J S, YANG L X, GAO Y, et al. Seasonal variations of NPAHs and OPAHs in PM2.5 at heavily polluted urban and suburban sites in North China: Concentrations, molecular compositions, cancer risk assessments and sources [J]. Ecotoxicology and Environmental Safety, 2019, 178: 58-65. doi: 10.1016/j.ecoenv.2019.04.009 [24] LI R J, KOU X J, GENG H, et al. Pollution characteristics of ambient PM2.5-bound PAHs and NPAHs in a typical winter time period in Taiyuan [J]. Chinese Chemical Letters, 2014, 25(5): 663-666. doi: 10.1016/j.cclet.2014.03.032 [25] VALLE-HERNÁNDEZ B L, MUGICA-ÁLVAREZ V, SALINAS-TALAVERA E, et al. Temporal variation of nitro-polycyclic aromatic hydrocarbons in PM10 and PM2.5 collected in Northern Mexico City [J]. Science of the Total Environment, 2010, 408(22): 5429-5438. doi: 10.1016/j.scitotenv.2010.07.065 [26] ALBINET A, LEOZ-GARZIANDIA E, BUDZINSKI H, et al. Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): Concentrations and sources [J]. Science of the Total Environment, 2007, 384(1/2/3): 280-292. [27] KALISA E, NAGATO E G, BIZURU E, et al. Characterization and risk assessment of atmospheric PM 2.5 and PM 10 particulate-bound PAHs and NPAHs in Rwanda, central-east Africa [J]. Environmental Science & Technology, 2018, 52(21): 12179-12187. [28] HAYAKAWA K, TANG N, AKUTSU K, et al. Comparison of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in airborne particulates collected in downtown and suburban Kanazawa, Japan [J]. Atmospheric Environment, 2002, 36(35): 5535-5541. doi: 10.1016/S1352-2310(02)00252-2 [29] RINGUET J, ALBINET A, LEOZ-GARZIANDIA E, et al. Diurnal/nocturnal concentrations and sources of particulate-bound PAHs, OPAHs and NPAHs at traffic and suburban sites in the region of Paris (France) [J]. Science of the Total Environment, 2012, 437: 297-305. doi: 10.1016/j.scitotenv.2012.07.072 [30] HIEN T T, THANH L T, KAMEDA T, et al. Nitro-polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in particulate matter in an urban area of a tropical region: Ho Chi Minh City, Vietnam [J]. Atmospheric Environment, 2007, 41(36): 7715-7725. doi: 10.1016/j.atmosenv.2007.06.020 [31] FEILBERG A, B POULSEN M W, NIELSEN T, et al. Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark [J]. Atmospheric Environment, 2001, 35(2): 353-366. doi: 10.1016/S1352-2310(00)00142-4 [32] WEI S L, HUANG B, LIU M, et al. Characterization of PM2.5-bound nitrated and oxygenated PAHs in two industrial sites of South China [J]. Atmospheric Research, 2012, 109/110: 76-83. doi: 10.1016/j.atmosres.2012.01.009 [33] DEGRENDELE C, KANDUČ T, KOCMAN D, et al. NPAHs and OPAHs in the atmosphere of two central European Cities: Seasonality, urban-to-background gradients, cancer risks and gas-to-particle partitioning [J]. Science of the Total Environment, 2021, 793: 148528. doi: 10.1016/j.scitotenv.2021.148528 [34] GAO Y, YANG L X, CHEN J M, et al. Nitro and oxy-PAHs bounded in PM2.5 and PM1.0 under different weather conditions at Mount Tai in Eastern China: Sources, long-distance transport, and cancer risk assessment [J]. Science of the Total Environment, 2018, 622/623: 1400-1407. doi: 10.1016/j.scitotenv.2017.11.200 [35] KAWANAKA Y, MATSUMOTO E, WANG N, et al. Contribution of nitrated polycyclic aromatic hydrocarbons to the mutagenicity of ultrafine particles in the roadside atmosphere [J]. Atmospheric Environment, 2008, 42(32): 7423-7428. doi: 10.1016/j.atmosenv.2008.06.032 [36] KITANOVSKI Z, SHAHPOURY P, SAMARA C, et al. Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe - implications for the origin [J]. Atmospheric Chemistry and Physics, 2020, 20(4): 2471-2487. doi: 10.5194/acp-20-2471-2020 [37] RINGUET J, LEOZ-GARZIANDIA E, BUDZINSKI H, et al. Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) on traffic and suburban sites of a European megacity: Paris (France) [J]. Atmospheric Chemistry and Physics, 2012, 12(18): 8877-8887. doi: 10.5194/acp-12-8877-2012 [38] ALBINET A, LEOZ-GARZIANDIA E, BUDZINSKI H, et al. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys Part 2: Particle size distribution [J]. Atmospheric Environment, 2008, 42(1): 55-64. doi: 10.1016/j.atmosenv.2007.10.008 [39] LAMMEL G, KITANOVSKI Z, KUKUČKA P, et al. Oxygenated and nitrated polycyclic aromatic hydrocarbons in ambient air-levels, phase partitioning, mass size distributions, and inhalation bioaccessibility [J]. Environmental Science & Technology, 2020, 54(5): 2615-2625. [40] DU W, CHEN Y C, SHEN G F, et al. Winter air pollution by and inhalation exposure to nitrated and oxygenated PAHs in rural Shanxi, North China [J]. Atmospheric Environment, 2018, 187: 210-217. doi: 10.1016/j.atmosenv.2018.06.004 [41] ALLEN J O, DOOKERAN N M, SMITH K A, et al. Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts [J]. Environmental Science & Technology, 1996, 30(3): 1023-1031. [42] VENKATARAMAN C, THOMAS S, KULKARNI P. Size distributions of polycyclic aromatic hydrocarbons—Gas/particle partitioning to urban aerosols [J]. Journal of Aerosol Science, 1999, 30(6): 759-770. doi: 10.1016/S0021-8502(98)00761-7 [43] TIAN M, LIANG B, ZHANG L M, et al. Measurement of size-segregated airborne particulate bound polycyclic aromatic compounds and assessment of their human health impacts - A case study in a megacity of southwest China [J]. Chemosphere, 2021, 284: 131339. doi: 10.1016/j.chemosphere.2021.131339 [44] SHEN G F, CHEN Y C, DU W, et al. Exposure and size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons among the population using different household fuels [J]. Environmental Pollution, 2016, 216: 935-942. doi: 10.1016/j.envpol.2016.07.002 [45] TOMAZ S, SHAHPOURY P, JAFFREZO J L, et al. One-year study of polycyclic aromatic compounds at an urban site in Grenoble (France): Seasonal variations, gas/particle partitioning and cancer risk estimation [J]. Science of the Total Environment, 2016, 565: 1071-1083. doi: 10.1016/j.scitotenv.2016.05.137 [46] WU S P, YANG B Y, WANG X H, et al. Diurnal variation of nitrated polycyclic aromatic hydrocarbons in PM10 at a roadside site in Xiamen, China [J]. Journal of Environmental Sciences, 2012, 24(10): 1767-1776. doi: 10.1016/S1001-0742(11)61018-8 [47] PANKOW J F. Common y-intercept and single compound regressions of gas-particle partitioning data vs 1/T [J]. Atmospheric Environment. Part A. General Topics, 1991, 25(10): 2229-2239. doi: 10.1016/0960-1686(91)90098-R [48] YAMASAKI H, KUWATA K, MIYAMOTO H. Effects of ambient temperature on aspects of airborne polycyclic aromatic hydrocarbons [J]. Environmental Science & Technology, 1982, 16(4): 189-194. [49] LI W, SHEN G F, YUAN C Y, et al. The gas/particle partitioning of nitro- and oxy-polycyclic aromatic hydrocarbons in the atmosphere of Northern China [J]. Atmospheric Research, 2016, 172/173: 66-73. doi: 10.1016/j.atmosres.2015.12.008 [50] GOSS K U, SCHWARZENBACH R P. Gas/solid and gas/liquid partitioning of organic compounds: Critical evaluation of the interpretation of equilibrium constants [J]. Environmental Science & Technology, 1998, 32(14): 2025-2032. [51] SHEN G F, TAO S, WEI S Y, et al. Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in rural China [J]. Environmental Science & Technology, 2012, 46(15): 8123-8130. [52] LOHMANN R, LAMMEL G. Adsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: State of knowledge and recommended parametrization for modeling [J]. Environmental Science & Technology, 2004, 38(14): 3793-3803. [53] SHEN G F, WANG W, YANG Y F, et al. Emissions of PAHs from indoor crop residue burning in a typical rural stove: Emission factors, size distributions, and gas-particle partitioning [J]. Environmental Science & Technology, 2011, 45(4): 1206-1212. [54] SHEN G F, XUE M, WEI S Y, et al. Emissions of parent, nitrated, and oxygenated polycyclic aromatic hydrocarbons from indoor corn straw burning in normal and controlled combustion conditions [J]. Journal of Environmental Sciences, 2013, 25(10): 2072-2080. doi: 10.1016/S1001-0742(12)60249-6 [55] WEI C, HAN Y M, BANDOWE B A M, et al. Occurrence, gas/particle partitioning and carcinogenic risk of polycyclic aromatic hydrocarbons and their oxygen and nitrogen containing derivatives in Xi'an, central China [J]. Science of the Total Environment, 2015, 505: 814-822. doi: 10.1016/j.scitotenv.2014.10.054 [56] PANKOW J F. Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere [J]. Atmospheric Environment (1967), 1987, 21(11): 2275-2283. doi: 10.1016/0004-6981(87)90363-5 [57] FINIZIO A, MACKAY D, BIDLEMAN T, et al. Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols [J]. Atmospheric Environment, 1997, 31(15): 2289-2296. doi: 10.1016/S1352-2310(97)00013-7 [58] HARNER T, BIDLEMAN T F. Octanol–air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air [J]. Environmental Science & Technology, 1998, 32(10): 1494-1502. [59] DACHS J, EISENREICH S J. Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons [J]. Environmental Science & Technology, 2000, 34(17): 3690-3697. [60] ABRAHAM M H. Scales of solute hydrogen-bonding: Their construction and application to physicochemical and biochemical processes [J]. Chemical Society Reviews, 1993, 22(2): 73-83. doi: 10.1039/cs9932200073 [61] LAMMEL G, MULDER M D, SHAHPOURY P, et al. Nitro-polycyclic aromatic hydrocarbons - gas-particle partitioning, mass size distribution, and formation along transport in marine and continental background air [J]. Atmospheric Chemistry and Physics, 2017, 17(10): 6257-6270. doi: 10.5194/acp-17-6257-2017 [62] ZHAO T, YANG L X, HUANG Q, et al. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated-PAHs (NPAHs) emitted by gasoline vehicles: Characterization and health risk assessment [J]. Science of the Total Environment, 2020, 727: 138631. doi: 10.1016/j.scitotenv.2020.138631 [63] HAO X W, ZHANG X, CAO X Y, et al. Characterization and carcinogenic risk assessment of polycyclic aromatic and nitro-polycyclic aromatic hydrocarbons in exhaust emission from gasoline passenger cars using on-road measurements in Beijing, China [J]. Science of the Total Environment, 2018, 645: 347-355. doi: 10.1016/j.scitotenv.2018.07.113 [64] CAO X Y, HAO X W, SHEN X B, et al. Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from diesel trucks based on on-road measurements [J]. Atmospheric Environment, 2017, 148: 190-196. doi: 10.1016/j.atmosenv.2016.10.040 [65] YANG X Y, LIU S J, XU Y S, et al. Emission factors of polycyclic and nitro-polycyclic aromatic hydrocarbons from residential combustion of coal and crop residue pellets [J]. Environmental Pollution, 2017, 231: 1265-1273. doi: 10.1016/j.envpol.2017.08.087 [66] HUANG W, HUANG B, BI X H, et al. Emission of PAHs, NPAHs and OPAHs from residential honeycomb coal briquette combustion [J]. Energy & Fuels, 2014, 28(1): 636-642. [67] SHEN G F, TAO S, WEI S Y, et al. Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy- polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in rural Shanxi, China [J]. Environmental Science & Technology, 2013, 47(6): 2998-3005. [68] LIN Y, QIU X H, MA Y Q, et al. Concentrations and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in the atmosphere of North China, and the transformation from PAHs to NPAHs [J]. Environmental Pollution, 2015, 196: 164-170. doi: 10.1016/j.envpol.2014.10.005 [69] ZHANG Q Z, GAO R, XU F, et al. Role of water molecule in the gas-phase formation process of nitrated polycyclic aromatic hydrocarbons in the atmosphere: A computational study [J]. Environmental Science & Technology, 2014, 48(9): 5051-5057. [70] AREY J, ATKINSON R, ZIELINSKA B, et al. Diurnal concentrations of volatile polycyclic aromatic hydrocarbons and nitroarenes during a photochemical air pollution episode in Glendora, California [J]. Environmental Science & Technology, 1989, 23(3): 321-327. [71] ZHUO S J, DU W, SHEN G F, et al. Estimating relative contributions of primary and secondary sources of ambient nitrated and oxygenated polycyclic aromatic hydrocarbons [J]. Atmospheric Environment, 2017, 159: 126-134. doi: 10.1016/j.atmosenv.2017.04.003 [72] FEILBERG A, NIELSEN T. Photodegradation of nitro-PAHs in viscous organic media used as models of organic aerosols [J]. Environmental Science & Technology, 2001, 35(1): 108-113. [73] FAN Z, KAMENS R, ZHANG J B, et al. Ozone-nitrogen dioxide-NPAH heterogeneous soot particle reactions and modeling NPAH in the atmosphere [J]. Environmental Science \& Technology, 1996, 30: 2821-2827. [74] FAN Z H, KAMENS R M, JIANXIN H U, et al. Photostability of nitro-polycyclic aromatic hydrocarbons on combustion soot particles in sunlight [J]. Environmental Science and Technology, 1996, 30(4): 1358-1364. doi: 10.1021/es9505964 [75] BAMFORD H A, BAKER J E. Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region [J]. Atmospheric Environment, 2003, 37(15): 2077-2091. doi: 10.1016/S1352-2310(03)00102-X [76] TERRY B. Atmospheric processes: Wet and dry deposition of organic compounds are controlled by their vapor - particle partitioning [J]. Environmental Science and Technology, 1988, 22(4): 361-367. doi: 10.1021/es00169a002 [77] TANG N, SUZUKI G, MORISAKI H, et al. Atmospheric behaviors of particulate-bound polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in Beijing, China from 2004 to 2010 [J]. Atmospheric Environment, 2017, 152: 354-361. doi: 10.1016/j.atmosenv.2016.12.056 [78] 郑玫, 张延君, 闫才青, 等. 中国PM2.5来源解析方法综述 [J]. 北京大学学报(自然科学版), 2014, 50(6): 1141-1154. ZHENG M, ZHANG Y J, YAN C Q, et al. Review of PM2.5 source apportionment methods in China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(6): 1141-1154(in Chinese).
[79] LIN Y, QIU X H, MA Y Q, et al. A novel approach for apportionment between primary and secondary sources of airborne nitrated polycyclic aromatic hydrocarbons (NPAHs) [J]. Atmospheric Environment, 2016, 138: 108-113. doi: 10.1016/j.atmosenv.2016.05.017 [80] WADA M, KIDO H, KISHIKAWA N, et al. Assessment of air pollution in Nagasaki City: Determination of polycyclic aromatic hydrocarbons and their nitrated derivatives, and some metals [J]. Environmental Pollution, 2001, 115(1): 139-147. doi: 10.1016/S0269-7491(01)00093-8 [81] ZHAO J B, ZHANG J, SUN L N, et al. Characterization of PM2.5-bound nitrated and oxygenated polycyclic aromatic hydrocarbons in ambient air of Langfang during periods with and without traffic restriction [J]. Atmospheric Research, 2018, 213: 302-308. doi: 10.1016/j.atmosres.2018.06.015 [82] WANG W, JING L, ZHAN J, et al. Nitrated polycyclic aromatic hydrocarbon pollution during the Shanghai World Expo 2010 [J]. Atmospheric Environment, 2014, 89: 242-248. doi: 10.1016/j.atmosenv.2014.02.031 [83] TANG N, HATTORI T, TAGA R N, et al. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan-Japan Sea countries [J]. Atmospheric Environment, 2005, 39(32): 5817-5826. doi: 10.1016/j.atmosenv.2005.06.018 [84] ZHANG J M, YANG L X, LEDOUX F, et al. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in rural and suburban areas in Shandong and Henan Provinces during the 2016 Chinese New Year's holiday [J]. Environmental Pollution, 2019, 250: 782-791. doi: 10.1016/j.envpol.2019.04.040 [85] MA Y Q, CHENG Y B, QIU X H, et al. A quantitative assessment of source contributions to fine particulate matter (PM2.5)-bound polycyclic aromatic hydrocarbons (PAHs) and their nitrated and hydroxylated derivatives in Hong kong [J]. Environmental Pollution, 2016, 219: 742-749. doi: 10.1016/j.envpol.2016.07.034 [86] WANG J Z, XU H M, GUINOT B, et al. Concentrations, sources and health effects of parent, oxygenated- and nitrated- polycyclic aromatic hydrocarbons (PAHs) in middle-school air in Xi'an, China [J]. Atmospheric Research, 2017, 192: 1-10. doi: 10.1016/j.atmosres.2017.03.006 [87] YADAV I C, DEVI N L, SINGH V K, et al. Concentrations, sources and health risk of nitrated- and oxygenated-polycyclic aromatic hydrocarbon in urban indoor air and dust from four cities of Nepal [J]. Science of the Total Environment, 2018, 643: 1013-1023. doi: 10.1016/j.scitotenv.2018.06.265 [88] KALISA E, NAGATO E, BIZURU E, et al. Pollution characteristics and risk assessment of ambient PM2.5-bound PAHs and NPAHs in typical Japanese and New Zealand Cities and rural sites [J]. Atmospheric Pollution Research, 2019, 10(5): 1396-1403. doi: 10.1016/j.apr.2019.03.009 [89] PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values [J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203 [90] LAMY E, KASSIE F, GMINSKI R, et al. 3-Nitrobenzanthrone (3-NBA) induced micronucleus formation and DNA damage in human hepatoma (HepG2) cells [J]. Toxicology Letters, 2004, 146(2): 103-109. doi: 10.1016/j.toxlet.2003.07.001 [91] SCHEEPERS P T, MARTENS M H, VELDERS D D, et al. 1-Nitropyrene as a marker for the mutagenicity of diesel exhaust-derived particulate matter in workplace atmospheres [J]. Environmental and Molecular Mutagenesis, 1995, 25(2): 134-147. doi: 10.1002/em.2850250207 [92] SCHEEPERS P T J, MARTENS M H J, KIMMEL J P F, et al. Determination of inhalation exposure to 1-nitropyrene in workplace atmospheres and urban dwellings [J]. Polycyclic Aromatic Compounds, 1999, 17(1/2/3/4): 267-275. [93] SCHEEPERS P T J, MICKA V, MUZYKA V, et al. Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining [J]. The Annals of Occupational Hygiene, 2003, 47(5): 379-388.