-
在过去的数十年里,由于社会经济的迅速发展,我国对能源的需求日益增长,使得许多地区的霾事件频繁发生,这与高浓度的细颗粒物PM2.5密切相关[1-3]. 因为PM2.5质量和粒径较小,可以在大气中长期滞留和远距离输送,而且其比表面积大,容易吸附重金属、微生物等有毒有害物质,因此PM2.5对气候效应、大气环境和人体健康都有重要影响[4-6]. 水溶性无机离子是PM2.5的主要成分,其对大气气溶胶的酸碱度和成核、云滴增长起到了重要的作用[7-11],而二次无机气溶胶
${\rm{SO}}_4^{2-} $ 、${\rm{NO}}_3^{-} $ 和NH4+(SNA)在水溶性无机离子中占比较高. SNA一般来自二次转化,SO2、NO2转化为${\rm{SO}}_4^{2-} $ 、${\rm{NO}}_3^{-} $ 的过程会受温度、湿度等气象因素变化的影响[12-14].长三角地区是中国经济带的核心区域,其城市密度大、工业发达但却人为污染严重且PM2.5超标频发[15-16]. 南京作为长三角地区的中心城市,相对湿度非常高,为70.43% ± 21.40%,全年平均温度达到(17.33 ± 9.50) ℃[17],其独特的地理环境和湿润温暖的气象条件,使得南京的大气污染问题不可忽视. 根据江苏省生态环境状况公报的数据显示(http://sthjt.jiangsu.gov.cn/col/col83740/index.html),2015年至2016年南京市的PM2.5年均浓度均未达到环境空气质量二级标准,且冬春季重霾天频发,为了对南京地区大气细颗粒物污染进行有效的治理,需要了解大气细颗粒物的化学组分、污染物的来源和各个污染源对PM2.5的贡献,以便对长三角地区的空气质量和环境变化进行分析.
已有的研究主要探讨了PM2.5的浓度变化、化学组分以及来源解析,但在南京地区同时用正定矩阵因子分析模型(PMF)和潜在源贡献因子法(PSCF)分析PM2.5中不同化学成分以及其污染贡献的研究比较少. 本文以南京的PM2.5和水溶性无机离子(
${\rm{NO}}_3^{-} $ 、${\rm{SO}}_4^{2-} $ 、${\rm{NH}}_4^{+} $ 、Cl-、K+、Mg2+、Ca2+、Na+)为研究对象,探讨了不同PM2.5浓度水平下水溶性无机离子的污染特征及形成机制,对大气污染物二次转化的机理进行了深入的研究,运用正交矩阵因子(PMF)源解析模型,得出主要污染源及其贡献率,并基于气团传输特征,采用潜在源贡献因子法(PSCF)和浓度权重轨迹法(CWT),定性和定量地识别了二次无机气溶胶的潜在源区以及污染贡献,为南京大气污染防治提供了科学的参考.
基于二次无机气溶胶研究南京冬春季霾污染过程的形成特征和来源解析
Formation characteristics and source analysis of haze pollution process during winter and spring in Nanjing based on secondary inorganic aerosol
-
摘要: 为研究南京细颗粒物PM2.5中水溶性无机离子的污染特征、来源及其潜在源区贡献,本文于2015年12月—2016年4月采集PM2.5样品,并测定了8种水溶性无机离子(
${\rm{NO}}_3^{-} $ 、${\rm{SO}}_4^{2-} $ 、${\rm{NH}}_4^{+} $ 、Cl-、K+、Mg2+、Ca2+、Na+)的浓度,运用正定矩阵因子(PMF)源解析探究PM2.5来源,结合后向轨迹模型(HYSPLIT)、潜在源区分析法(PSCF)和浓度权重轨迹分析法(CWT),确定了相应组分的潜在污染源区域,并对污染贡献进行定量计算. 结果显示,在不同污染水平下,${\rm{SO}}_4^{2-} $ 、${\rm{NO}}_3^{-} $ 和${\rm{NH}}_4^{+} $ (SNA)均为 PM2.5的主要成分,在高相对湿度(RH >50%)和低温(T <8 ℃)的条件有利于提高二次无机气溶胶的生成速率. PMF源解析发现二次转化源的贡献最显著,其次是扬尘源、生物质燃烧源和海洋源. SNA的潜在源区分布类似,但${\rm{NO}}_3^{-} $ 的CWT峰值超过24 μg·m−3,且CWT高值区范围较大,这进一步表明在观测期间汽车尾气排放和燃料燃烧是主要的潜在来源.Abstract: In order to analyze the pollution characteristics, sources and potential contribution of water-soluble inorganic ions in fine particulate matter PM2.5 in Nanjing, PM2.5 samples were collected from December 2015 to April 2016, and the concentrations of eight water-soluble inorganic ions (${\rm{NO}}_3^{-} $ 、${\rm{SO}}_4^{2-} $ 、${\rm{NH}}_4^{+} $ 、Cl-、K+、Mg2+、Ca2+、Na+) were measured. Positive matrix factorization (PMF) method was used to explore the source of PM2.5, combined with Backward trajectory model (HYSPLIT), the potential source contribution function (PSCF) analysis and the concentration weighted trajectory (CWT) analysis, the potential source area of each component was determined, and the pollution contribution was calculated quantitatively. The results showed that under different pollution levels,${\rm{SO}}_4^{2-} $ ,${\rm{NO}}_3^{-} $ and${\rm{NH}}_4^{+} $ (SNA) were the main components of PM2.5, and high relative humidity (RH > 50%) and low temperature (T < 8 ℃) were conducive to improving the generation rate of secondary inorganic aerosols. PMF source analysis found that secondary conversion sources contributed the most significantly, followed by dust sources, biomass burning sources and Marine sources. The distribution of potential source regions of SNA is similar, but the peak values of CWT of${\rm{NO}}_3^{-} $ was over 24 μg·m−3, and the range of high value of CWT was large, which further indicated that vehicle exhaust emissions and fuel combustion were the main potential sources during the observation period. -
图 3 不同污染水平下(a)
${\rm{SO}}_4^{2-} $ /EC,${\rm{NO}}_3^{-} $ /EC, (b)SO2,NO2, (c)SOR和NOR的变化特征,以及(d)与清洁大气时期的平均质量浓度对比Figure 3. Characteristics of (a)
${\rm{SO}}_4^{2-} $ /EC,${\rm{NO}}_3^{-} $ /EC, (b)SO2, NO2, (c)SOR and NOR at different pollution levels and (d) average mass concentration comparison of${\rm{SO}}_4^{2-} $ , SO2, NO3- and NO2 with the clean days -
[1] XIE M, LIAO J B, WANG T J, et al. Modeling of the anthropogenic heat flux and its effect on regional meteorology and air quality over the Yangtze River Delta region, China [J]. Atmospheric Chemistry and Physics, 2016, 16(10): 6071-6089. doi: 10.5194/acp-16-6071-2016 [2] FAN H, ZHAO C F, YANG Y K. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014-2018 [J]. Atmospheric Environment, 2020, 220: 117066. doi: 10.1016/j.atmosenv.2019.117066 [3] ZHANG Y, SHUAI C Y, BIAN J, et al. Socioeconomic factors of PM2.5 concentrations in 152 Chinese cities: Decomposition analysis using LMDI [J]. Journal of Cleaner Production, 2019, 218: 96-107. doi: 10.1016/j.jclepro.2019.01.322 [4] AN J L, CAO Q M, ZOU J N, et al. Seasonal variation in water-soluble ions in airborne particulate deposition in the suburban Nanjing area, Yangtze River Delta, China, during haze days and normal days [J]. Archives of Environmental Contamination and Toxicology, 2018, 74(1): 1-15. doi: 10.1007/s00244-017-0447-0 [5] HAYES R B, LIM C, ZHANG Y L, et al. PM2.5 air pollution and cause-specific cardiovascular disease mortality [J]. International Journal of Epidemiology, 2019, 49(1): 25-35. [6] ZHANG Y Q, DING Z, XIANG Q Q, et al. Short-term effects of ambient PM1 and PM2.5 air pollution on hospital admission for respiratory diseases: Case-crossover evidence from Shenzhen, China [J]. International Journal of Hygiene and Environmental Health, 2020, 224: 113418. doi: 10.1016/j.ijheh.2019.11.001 [7] 王心培, 王格慧, 谢郁宁, 等. 长三角背景点夏季大气PM2.5中水溶性无机离子污染特征及来源解析 [J]. 环境科学研究, 2020, 33(6): 1366-1375. WANG X P, WANG G H, XIE Y N, et al. Chemical characterization and source apportionment of water-soluble inorganic ions of summertime atmospheric PM2.5 in background of Yangtze River Delta region [J]. Research of Environmental Sciences, 2020, 33(6): 1366-1375(in Chinese).
[8] HE K, ZHAO Q, MA Y, et al. Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities: Insights into the formation of secondary inorganic aerosols [J]. Atmospheric Chemistry and Physics, 2012, 12(3): 1377-1395. doi: 10.5194/acp-12-1377-2012 [9] ZHANG Y R, ZHANG H L, DENG J J, et al. Source regions and transport pathways of PM2.5 at a regional background site in East China [J]. Atmospheric Environment, 2017, 167: 202-211. doi: 10.1016/j.atmosenv.2017.08.031 [10] 尹寒梅, 陈军辉, 冯小琼, 等. 基于高分辨率MARGA分析成都市PM2.5中水溶性离子污染特征 [J]. 环境科学, 2020, 41(9): 3889-3898. YIN H M, CHEN J H, FENG X Q, et al. Analysis of characteristics of water-soluble ions in PM2.5 in Chengdu based on the MARGA [J]. Environmental Science, 2020, 41(9): 3889-3898(in Chinese).
[11] CAO J J, SHEN Z X, CHOW J C, et al. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities [J]. Journal of the Air & Waste Management Association, 2012, 62(10): 1214-1226. [12] MA P K, QUAN J N, JIA X C, et al. Effects of ozone and relative humidity in secondary inorganic aerosol formation during haze events in Beijing, China [J]. Atmospheric Research, 2021, 264: 105855. doi: 10.1016/j.atmosres.2021.105855 [13] GAO J, WEI Y T, SHI G L, et al. Roles of RH, aerosol pH and sources in concentrations of secondary inorganic aerosols, during different pollution periods [J]. Atmospheric Environment, 2020, 241: 117770. doi: 10.1016/j.atmosenv.2020.117770 [14] WANG H T, DING J, XU J, et al. Aerosols in an arid environment: The role of aerosol water content, particulate acidity, precursors, and relative humidity on secondary inorganic aerosols [J]. Science of the Total Environment, 2019, 646: 564-572. doi: 10.1016/j.scitotenv.2018.07.321 [15] 郭安可, 郭照冰, 张海潇, 等. 南京北郊冬季PM2.5中水溶性离子以及碳质组分特征分析 [J]. 环境化学, 2017, 36(2): 248-256. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2017.02.2016061703 GUO A K, GUO Z B, ZHANG H X, et al. Analysis of water soluble ions and carbon component in PM2.5 in the northern suburb of Nanjing in winter [J]. Environmental Chemistry, 2017, 36(2): 248-256(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2017.02.2016061703
[16] WANG H L, AN J L, CHENG M T, et al. One year online measurements of water-soluble ions at the industrially polluted town of Nanjing, China: Sources, seasonal and diurnal variations [J]. Chemosphere, 2016, 148: 526-536. doi: 10.1016/j.chemosphere.2016.01.066 [17] 龚宇麟, 银燕, 陈魁, 等. 南京北郊秋季气溶胶理化特征及潜在源区分布 [J]. 中国环境科学, 2017, 37(11): 4032-4043. GONG Y L, YIN Y, CHEN K, et al. Physical and chemical characteristics and potential source region distribution of aerosols over the northern suburb of Nanjing, during autumn [J]. China Environmental Science, 2017, 37(11): 4032-4043(in Chinese).
[18] PAATERO P, EBERLY S, BROWN S G, et al. Methods for estimating uncertainty in factor analytic solutions [J]. Atmospheric Measurement Techniques, 2014, 7(3): 781-797. doi: 10.5194/amt-7-781-2014 [19] PAATERO P, HOPKE P K, HOPPENSTOCK J, et al. Advanced factor analysis of spatial distributions of PM2.5 in the eastern United States [J]. Environmental Science & Technology, 2003, 37(11): 2460-2476. [20] WANG Y Q, ZHANG X Y, DRAXLER R R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data [J]. Environmental Modelling & Software, 2009, 24(8): 938-939. [21] TAO J, GAO J, ZHANG L, et al. PM2.5 pollution in a megacity of southwest China: Source apportionment and implication [J]. Atmospheric Chemistry and Physics, 2014, 14(16): 8679-8699. doi: 10.5194/acp-14-8679-2014 [22] SU J, HUANG G Q, CAO L X, et al. Evaluation and analysis of cascading spread caused by multisource dust migration in a pollution-related ecosystem [J]. Science of the Total Environment, 2019, 686: 10-25. doi: 10.1016/j.scitotenv.2019.05.252 [23] ZHANG K, XU J L, HUANG Q, et al. Precursors and potential sources of ground-level ozone in suburban Shanghai [J]. Frontiers of Environmental Science & Engineering, 2020, 14(6): 1-12. [24] TU X P, LU Y, YAO R S, et al. Air quality in Ningbo and transport trajectory characteristics of primary pollutants in autumn and winter [J]. Atmosphere, 2019, 10(3): 120. doi: 10.3390/atmos10030120 [25] 刘寿东, 张莉, 张园园, 等. 温湿度对南京北郊PM2.5中二次无机离子生成演化的影响 [J]. 生态环境学报, 2018, 27(4): 714-721. LIU S D, ZHANG L, ZHANG Y Y, et al. Influences of temperature and humidity on formation and evolution of secondary aerosol inorganic ions of PM2.5 at northern suburban Nanjing [J]. Ecology and Environmental Sciences, 2018, 27(4): 714-721(in Chinese).
[26] ZHENG G J, DUAN F K, SU H, et al. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions [J]. Atmospheric Chemistry and Physics, 2015, 15(6): 2969-2983. doi: 10.5194/acp-15-2969-2015 [27] YUE D L, ZHONG L J, ZHANG T, et al. Pollution properties of water-soluble secondary inorganic ions in atmospheric PM2.5 in the Pearl River Delta region [J]. Aerosol and Air Quality Research, 2015, 15(5): 1737-1747. doi: 10.4209/aaqr.2014.12.0333 [28] ZANG L, ZHANG Y, ZHU B, et al. Characteristics of water-soluble inorganic aerosol pollution and its meteorological response in Wuhan, Central China [J]. Atmospheric Pollution Research, 2021, 12(3): 362-369. doi: 10.1016/j.apr.2021.01.003 [29] 李皓, 樊曙先, 张悦, 等. 南京市区郊区大气PM10、PM2.1中PAHs的分布特征及影响因素 [J]. 中国环境科学, 2017, 37(1): 60-68. LI H, FAN S X, ZHANG Y, et al. Characteristics and influence factors of PAHs in PM10 and PM2.1 in urban and suburban Nanjing, China [J]. China Environmental Science, 2017, 37(1): 60-68(in Chinese).
[30] 郭文帝, 王开扬, 郭晓方, 等. 太原市气溶胶中硫、氮转化特征 [J]. 环境化学, 2016, 35(1): 11-17. doi: 10.7524/j.issn.0254-6108.2016.01.2015060305 GUO W D, WANG K Y, GUO X F, et al. Characteristics of sulfur and nitrogen conversion in the aerosol, Taiyuan [J]. Environmental Chemistry, 2016, 35(1): 11-17(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.01.2015060305
[31] MANKTELOW P T, CARSLAW K S, MANN G W, et al. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm [J]. Atmospheric Chemistry and Physics, 2010, 10(2): 365-382. doi: 10.5194/acp-10-365-2010 [32] HE Q S, YAN Y L, GUO L L, et al. Characterization and source analysis of water-soluble inorganic ionic species in PM2.5 in Taiyuan city, China [J]. Atmospheric Research, 2017, 184: 48-55. doi: 10.1016/j.atmosres.2016.10.008 [33] LI H M, WANG Q G, YANG M, et al. Chemical characterization and source apportionment of PM2.5 aerosols in a megacity of southeast China [J]. Atmospheric Research, 2016, 181: 288-299. doi: 10.1016/j.atmosres.2016.07.005