-
持久性有机污染物(persistent organic pollutants,POPs)通常具有半挥发性、难降解性、高毒性和高生物蓄积性,可长距离迁移至远离污染源的偏远地区,并在各环境介质中广泛分布,威胁全球生态安全和人类健康[1]. 土壤因其较高的吸附容量,成为POPs最重要的储存库之一[2]. 《关于POPs的斯德哥尔摩公约》和《远距离越境空气污染公约》等一系列区域或国际公约的生效,使得有机氯农药(OCPs)、多氯联苯(PCBs)和多环芳烃(PAHs)等故意或非故意排放的POPs逐步得到控制[3]. 对于这些纳入公约管控的污染物,人为产生的“一次排放源”逐渐减少,土壤等环境介质中POPs的“二次释放”成为愈加重要的环境过程[3-5]. 此外,尽管POPs具有持久性,其仍能在特定环境下发生降解转化[6]. POPs的部分降解转化产物可能有着比母体化合物更高的毒性[7]和/或更高的亲水性[8],给土壤-地下水系统带来未知风险,并通过各种暴露途径威胁人体健康. 对土壤中POPs的二次释放和降解过程及其降解转化产物的研究有助于准确评估POPs的生态效应与健康风险[6, 9].
气候变暖是21世纪全球生态系统和人类社会面临的重大挑战. 政府间气候变化专门委员会(IPCC)第六次报告[10]指出,全球平均气温将在本世纪中叶至少升高1—1.8 ℃,升温幅度最高可达5.7℃. IPCC报告和联合国环境署(UNEP)[11]均强调应重视气候变暖下的环境污染问题. 气候变暖通过改变气象与大气化学条件、土壤理化性质和微生物活性等[12],直接或间接影响土壤中POPs的迁移转化(图1)及毒性效应.
气候变暖会加剧土壤中POPs向大气的二次释放,可能弱化甚至抵消POPs的减排效果[14];气候变暖也可能加速土壤中POPs的降解(包括生物降解和光降解)[3],有利于POPs的消除抑或提升其环境风险(根据降解转化产物毒性差异). 鉴于气候变化给全球POPs控制和削减引入了较大不确定性[12, 15],气候变化对POPs环境行为的影响受到格外关注[3, 16]. 另一方面,对于尚未纳入公约管控的新污染物[17],其中一部分也具有与POPs类似的理化性质,其二次挥发和降解过程同样受气候变化干扰,相关研究日益增多.
本文聚焦全球气候变暖情景下土壤中POPs各迁移转化过程的动态变化,总结了气候变化对土壤中POPs的二次挥发、降解以及毒性效应的影响,并对今后开展相关研究提出建议和展望.
气候变化下土壤中持久性有机污染物的二次挥发、降解及毒性效应研究进展
Re-volatilization, degradation, and toxicological effects of persistent organic pollutants (POPs) in soil under climate change: A review
-
摘要: 全球气候变化是21世纪人类社会面临的巨大挑战,其中,气候变暖下的环境污染问题受到国际广泛关注. 持久性有机污染物(persistent organic pollutants,POPs)是一类具有半挥发性、难降解性、高毒性和高生物累积性的高关注度化学物质,土壤是其主要储存库. 气候变暖直接或间接影响土壤中POPs的迁移转化及毒性效应,可能放大POPs对区域乃至全球的生态与健康风险. 本文综述了土壤中POPs二次挥发和降解过程的国内外研究进展,分别讨论了气候变化情景下土壤中POPs二次挥发、生物降解、光降解和毒性效应的动态变化趋势,并归纳分析了土壤中POPs环境行为及毒性效应研究中尚待解决的问题,以期为气候变化与POPs全球循环及其环境风险相关研究提供参考.Abstract: Global climate change is a huge challenge facing the world in the 21st century, and environmental pollution under climate warming has received extensive international attention. Persistent organic pollutants (POPs) are substances of very high concern which are usually semi-volatile, highly resistant to degradation, highly toxic, and highly bioaccumulative. Soil is the main reservoir of POPs. Climate warming directly or indirectly affects the transportation, transformation, and toxic effects of POPs in soil, which may amplify the ecological and health risks of POPs to the regional and global environment. Here we review the research progress of re-volatilization and degradation of POPs in soil; discuss the dynamic trends of re-volatilization, biodegradation, photodegradation, and toxic effects of POPs in soil under climate change scenarios; and summarize some unresolved problems in the domain of environmental behavior and toxic effects of POPs in soil. This article could provide references for future studies on global cycling and environmental risks of POPs under climate change.
-
Key words:
- emerging contaminants /
- soil-air exchange /
- degradation products /
- environmental risks /
- global warming
-
表 1 不同环境温度下四种PAHs的部分理化性质
Table 1. Selected physic-chemical properties of four PAHs under different environmental temperature
温度/℃
Temperature菲
Phenanthrene芘
Pyrene苯并[a]芘
Benzo(a)pyrene苯并[ghi]苝
Benzo(ghi)perylene辛醇-气分
配系数a
lg KOA辛醇-水分
配系数a
lg KOW饱和蒸
气压/Paa
lg PL辛醇-气分配系数
lg KOA辛醇-水分
配系数
lg KOW饱和蒸
气压/Pa
lg PL辛醇-气分配系数
lg KOA辛醇-水分
配系数
lg KOW饱和蒸
气压/Pa
lg PL辛醇-气分配系数
lg KOA辛醇-水分
配系数
lg KOW饱和蒸
气压/Pa
lg PL25.0 7.6 4.9 −1.0 8.9 5.6 −2.4 11.5 7.0 −5.1 12.6 7.7 −6.3 15.5 8.1 5.0 −1.4 9.3 5.7 −2.9 12.1 7.1 −5.8 13.2 7.9 −7.0 11.4 8.3 5.1 −1.6 9.5 5.7 −3.1 12.4 7.2 −6.0 13.5 7.9 −7.4 4.0 8.7 5.2 −2.0 9.9 5.8 −3.6 12.9 7.3 −6.6 14.1 8.1 −8.0 −3.3 9.0 5.3 −2.3 10.4 5.9 −4.0 13.5 7.4 −7.2 14.7 8.2 −8.6 a 此处PAHs理化性质(KOA、KOW和PL)的相转移内能取值见文献[13]. 表 2 不同地表温度下土壤中PAHs生物降解半衰期的统计数据[13, 54]
Table 2. Statistical data of biodegradation half-lives of PAHs in soil under different surface temperature
温度/℃
Temperature菲
Phenanthrene芘
Pyrene苯并[a]芘
Benzo(a)pyrene苯并[ghi]苝
Benzo(ghi)perylene中值/d
Median valueP5a/d P95b/d 中值/d
Median valueP5/d P95/d 中值/d
Median valueP5/d P95/d 中值/d
Median valueP5/d P95/d 25.0 21 6 155 246 52 635 261 220 600 635 539 2928 15.5 50 14 369 586 123 1513 622 524 1430 1513 1284 6977 11.4 74 20 547 868 182 2241 921 776 2117 2241 1902 10333 4.0 155 42 1144 1816 380 4688 1927 1624 4430 4688 3979 21616 −3.3 334 91 2466 3914 819 10103 4152 3500 9546 10103 8575 46583 a 第5百分位数统计值5th percentile values;b 第95百分位数统计值95th percentile values. 表 3 气候变化对土壤中POPs二次挥发、生物降解和光降解的影响
Table 3. Effects of climate change on re-volatilization, biodegradation, and photodegradation of POPs in soil
气候变化情景
Climate change scenarios二次挥发
Re-volatilization生物降解
Biodegradation光降解
Photodegradation气象与大气化学因素 升温 ↑ a ↑? b ↑ 辐射增强 ↑ 光氧化剂浓度升高 ↑ 土壤理化性质与生物因素 土壤湿度增加 ↑ ↑↓ c ↑ 细粒组分减少 ↑ 矿物质增加 ↑? ↑? SOM分解加快 ↑ ↑↓ ↑↓ 根际分泌物增加 ↑? a 增强Increased rates;b 增强或不确定变化Increased rates or uncertain trend;c 增强或减弱Increased or decreased rates. -
[1] WANIA F, MACKAY D. Peer reviewed: Tracking the distribution of persistent organic pollutants [J]. Environmental Science & Technology, 1996, 30(9): 390A-396A. [2] COUSINS I T, BECK A J, JONES K C. A review of the processes involved in the exchange of semi-volatile organic compounds (SVOC) across the air–soil interface [J]. Science of the Total Environment, 1999, 228(1): 5-24. doi: 10.1016/S0048-9697(99)00015-7 [3] 王小萍, 孙殿超, 姚檀栋. 气候变化与持久性有机污染物全球循环 [J]. 中国科学(地球科学), 2016, 46(10): 1301-1316. WANG X P, SUN D C, YAO T D. Climate change and global cycling of persistent organic pollutants: A critical review [J]. Scientia Sinica (Terrae), 2016, 46(10): 1301-1316(in Chinese).
[4] CABRERIZO A, MUIR D, de SILVA A O, et al. Legacy and emerging persistent organic pollutants (POPs) in terrestrial compartments in the high Arctic: Sorption and secondary sources [J]. Environmental Science & Technology, 2018, 52(24): 14187-14197. [5] GONG P, WANG X P. Critical roles of secondary sources in global cycling of persistent organic pollutants under climate change [J]. Journal of Hazardous Materials Advances, 2022, 6: 100064. doi: 10.1016/j.hazadv.2022.100064 [6] DING Y, LI L, WANIA F, et al. Do dissipation and transformation of γ-HCH and p, p’-DDT in soil respond to a proxy for climate change?Insights from a field study on the eastern Tibetan Plateau [J]. Environmental Pollution, 2021, 278: 116824. doi: 10.1016/j.envpol.2021.116824 [7] MARQUÈS M, MARI M, AUDÍ-MIRÓ C, et al. Climate change impact on the PAH photodegradation in soils: Characterization and metabolites identification [J]. Environment International, 2016, 89/90: 155-165. doi: 10.1016/j.envint.2016.01.019 [8] HEBERER T, DÜNNBIER U. DDT metabolite bis(chlorophenyl)acetic acid: The neglected environmental contaminant [J]. Environmental Science & Technology, 1999, 33(14): 2346-2351. [9] MARQUÈS M, MARI M, SIERRA J, et al. Solar radiation as a swift pathway for PAH photodegradation: A field study [J]. The Science of the Total Environment, 2017, 581/582: 530-540. doi: 10.1016/j.scitotenv.2016.12.161 [10] IPCC. AR6 Climate Change 2021: The Physical Science Basis[EB/OL]. 2021. [2022-05-01]. https://www.ipcc.ch/report/ar6/wg1/. [11] UNEP. Climate Change and POPs: Predicting the Impacts. Report of the UNEP/AMAP Expert Group[EB/OL]. 2011. [2022-05-01]. https://www.amap.no/documents/download/3237/inline. [12] BISWAS B, QI F J, BISWAS J K, et al. The fate of chemical pollutants with soil properties and processes in the climate change paradigm—A review [J]. Soil Systems, 2018, 2(3): 51. doi: 10.3390/soilsystems2030051 [13] DING Y, LI L, WANIA F, et al. Formation of non-extractable residues as a potentially dominant process in the fate of PAHs in soil: Insights from a combined field and modeling study on the eastern Tibetan Plateau [J]. Environmental Pollution, 2020, 267: 115383. doi: 10.1016/j.envpol.2020.115383 [14] YU Y, KATSOYIANNIS A, BOHLIN-NIZZETTO P, et al. Polycyclic aromatic hydrocarbons not declining in Arctic air despite global emission reduction [J]. Environmental Science & Technology, 2019, 53(5): 2375-2382. [15] NOYES P D, MCELWEE M K, MILLER H D, et al. The toxicology of climate change: Environmental contaminants in a warming world [J]. Environment International, 2009, 35(6): 971-986. doi: 10.1016/j.envint.2009.02.006 [16] MA J M, HUNG H, TIAN C G, et al. Revolatilization of persistent organic pollutants in the Arctic induced by climate change [J]. Nature Climate Change, 2011, 1(5): 255-260. doi: 10.1038/nclimate1167 [17] LOHMANN R, BREIVIK K, DACHS J, et al. Global fate of POPs: Current and future research directions [J]. Environmental Pollution, 2007, 150(1): 150-165. doi: 10.1016/j.envpol.2007.06.051 [18] KOBLIŽKOVÁ M, RŮŽIČKOVÁ P, ČUPR P, et al. Soil burdens of persistent organic pollutants: Their levels, fate, and risks. part IV. quantification of volatilization fluxes of organochlorine pesticides and polychlorinated biphenyls from contaminated soil surfaces [J]. Environmental Science & Technology, 2009, 43(10): 3588-3595. [19] 任娇, 王小萍, 龚平, 等. 持久性有机污染物气—土界面交换研究进展 [J]. 地理科学进展, 2013, 32(2): 288-10,15. doi: 10.11820/dlkxjz.2013.02.015 REN J, WANG X P, GONG P, et al. Research progress on exchange of persistent organic pollutants at the air-soil interface [J]. Progress in Geography, 2013, 32(2): 288-10,15(in Chinese). doi: 10.11820/dlkxjz.2013.02.015
[20] LAMMEL G, DEGRENDELE C, GUNTHE S S, et al. Revolatilisation of soil-accumulated pollutants triggered by the summer monsoon in India [J]. Atmospheric Chemistry and Physics, 2018, 18(15): 11031-11040. doi: 10.5194/acp-18-11031-2018 [21] RŮŽIČKOVÁ P, KLÁNOVÁ J, CUPR P, et al. An assessment of air-soil exchange of polychlorinated biphenyls and organochlorine pesticides across central and southern Europe [J]. Environmental Science & Technology, 2008, 42(1): 179-185. [22] LI Y F, HARNER T, LIU L Y, et al. Polychlorinated biphenyls in global air and surface soil: Distributions, air-soil exchange, and fractionation effect [J]. Environmental Science & Technology, 2010, 44(8): 2784-2790. [23] ZHANG Q Y, WANG Y, ZHANG C, et al. A review of organophosphate esters in soil: Implications for the potential source, transfer, and transformation mechanism[J]. Environmental Research, 2022, 204(Pt B): 112122. [24] WONG F, BIDLEMAN T F. Aging of organochlorine pesticides and polychlorinated biphenyls in muck soil: Volatilization, bioaccessibility, and degradation [J]. Environmental Science & Technology, 2011, 45(3): 958-963. [25] HIPPELEIN M, MCLACHLAN M S. Soil/air partitioning of semivolatile organic compounds. 1. method development and influence of physical–chemical properties [J]. Environmental Science & Technology, 1998, 32(2): 310-316. [26] WONG F, HUNG H, DRYFHOUT-CLARK H, et al. Time trends of persistent organic pollutants (POPs) and Chemicals of Emerging Arctic Concern (CEAC) in Arctic air from 25 years of monitoring [J]. Science of the Total Environment, 2021, 775: 145109. doi: 10.1016/j.scitotenv.2021.145109 [27] WANIA F, WESTGATE J N. On the mechanism of mountain cold-trapping of organic chemicals [J]. Environmental Science & Technology, 2008, 42(24): 9092-9098. [28] WANG X P, WANG C F, ZHU T T, et al. Persistent organic pollutants in the polar regions and the Tibetan Plateau: A review of current knowledge and future prospects [J]. Environmental Pollution, 2019, 248: 191-208. doi: 10.1016/j.envpol.2019.01.093 [29] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望 [J]. 地球科学进展, 2022, 37(2): 187-201. CHAI L, WANG X P. Current knowledge and future prospects regarding persistent organic pollutants over the Tibetan Plateau [J]. Advances in Earth Science, 2022, 37(2): 187-201(in Chinese).
[30] REN J, WANG X P, GONG P, et al. Characterization of Tibetan soil as a source or sink of atmospheric persistent organic pollutants: Seasonal shift and impact of global warming [J]. Environmental Science & Technology, 2019, 53(7): 3589-3598. [31] CABRERIZO A, DACHS J, BARCELÓ D, et al. Climatic and biogeochemical controls on the remobilization and reservoirs of persistent organic pollutants in Antarctica [J]. Environmental Science & Technology, 2013, 47(9): 4299-4306. [32] CABRERIZO A, DACHS J, MOECKEL C, et al. Ubiquitous net volatilization of polycyclic aromatic hydrocarbons from soils and parameters influencing their soil-air partitioning [J]. Environmental Science & Technology, 2011, 45(11): 4740-4747. [33] DAVIE-MARTIN C L, HAGEMAN K J, CHIN Y P, et al. Influence of temperature, relative humidity, and soil properties on the soil-air partitioning of semivolatile pesticides: Laboratory measurements and predictive models [J]. Environmental Science & Technology, 2015, 49(17): 10431-10439. [34] LI N Q, WANIA F, LEI Y D, et al. A comprehensive and critical compilation, evaluation, and selection of physical–chemical property data for selected polychlorinated biphenyls [J]. Journal of Physical and Chemical Reference Data, 2003, 32(4): 1545-1590. doi: 10.1063/1.1562632 [35] DAS S, HAGEMAN K J. Influence of adjuvants on pesticide soil–air partition coefficients: Laboratory measurements and predicted effects on volatilization [J]. Environmental Science & Technology, 2020, 54(12): 7302-7308. [36] DEGRENDELE C, AUDY O, HOFMAN J, et al. Diurnal variations of air-soil exchange of semivolatile organic compounds (PAHs, PCBs, OCPs, and PBDEs) in a central European receptor area [J]. Environmental Science & Technology, 2016, 50(8): 4278-4288. [37] HELLSING M S, JOSEFSSON S, HUGHES A V, et al. Sorption of perfluoroalkyl substances to two types of minerals [J]. Chemosphere, 2016, 159: 385-391. doi: 10.1016/j.chemosphere.2016.06.016 [38] KOMPRDA J, KOMPRDOVÁ K, SÁŇKA M, et al. Influence of climate and land use change on spatially resolved volatilization of persistent organic pollutants (POPs) from background soils [J]. Environmental Science & Technology, 2013, 47(13): 7052-7059. [39] DAVIDSON E A, JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J]. Nature, 2006, 440(7081): 165-173. doi: 10.1038/nature04514 [40] HIPPELEIN M, MCLACHLAN M S. Soil/air partitioning of semivolatile organic compounds. 2. influence of temperature and relative humidity [J]. Environmental Science & Technology, 2000, 34(16): 3521-3526. [41] DENG Y, XU W, ZENG Q H, et al. Effects of temperature and relative humidity on soil-air partition coefficients of organophosphate flame retardants and polybrominated diphenyl ethers[J]. Chemosphere, 2022, 291(Pt 1): 132716. [42] SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: A review [J]. Earth-Science Reviews, 2010, 99(3/4): 125-161. [43] CORNELISSEN G, GUSTAFSSON Ö, BUCHELI T D, et al. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation [J]. Environmental Science & Technology, 2005, 39(18): 6881-6895. [44] ALI U, SWEETMAN A J, RIAZ R, et al. Organohalogenated contaminants (OHCs) in high-altitude environments: A review and implication for a black carbon relationship [J]. Critical Reviews in Environmental Science and Technology, 2017, 47(13): 1143-1190. doi: 10.1080/10643389.2017.1345601 [45] 黄焕芳. 青藏高原有机氯农药的大气长距离迁移转化研究[D]. 武汉: 中国地质大学, 2018. HUANG H F. Long-range atmospheric transport and transformations of organochlorine pesticides (OCPs) in the Qinghai-Tibet plateau[D]. Wuhan: China University of Geosciences, 2018 (in Chinese).
[46] KÄSTNER M, NOWAK K M, MILTNER A, et al. Classification and modelling of nonextractable residue (NER) formation of xenobiotics in soil–A synthesis [J]. Critical Reviews in Environmental Science and Technology, 2014, 44(19): 2107-2171. doi: 10.1080/10643389.2013.828270 [47] 丁洋, 张原, 黄焕芳, 等. 土壤中持久性有机污染物不可提取态残留的测试方法、生成特征与环境风险研究进展 [J]. 环境化学, 2023, 42(1): 199-212. doi: 10.7524/j.issn.0254-6108.2021091504 DING Y, ZHANG Y, HUANG H F, et al. Determination, formation, and environmental risk of non-extractable residue (NER) of persistent organic pollutants (POPs) in soil: A review [J]. Environmental Chemistry, 2023, 42(1): 199-212(in Chinese). doi: 10.7524/j.issn.0254-6108.2021091504
[48] MA J M, CAO Z H. Quantifying the perturbations of persistent organic pollutants induced by climate change [J]. Environmental Science & Technology, 2010, 44(22): 8567-8573. [49] HANSEN K M, CHRISTENSEN J H, GEELS C, et al. Modelling the impact of climate change on the atmospheric transport and the fate of persistent organic pollutants in the Arctic [J]. Atmospheric Chemistry and Physics, 2015, 15(11): 6549-6559. doi: 10.5194/acp-15-6549-2015 [50] WANIA F. Assessing the potential of persistent organic chemicals for long-range transport and accumulation in polar regions [J]. Environmental Science & Technology, 2003, 37(7): 1344-1351. [51] SHEN L, WANIA F. Compilation, evaluation, and selection of physical–chemical property data for organochlorine pesticides [J]. Journal of Chemical & Engineering Data, 2005, 50(3): 742-768. [52] XIAO H, LI N Q, WANIA F. Compilation, evaluation, and selection of physical-chemical property data for α-, β-, and γ-hexachlorocyclohexane [J]. Journal of Chemical & Engineering Data, 2004, 49(2): 173-185. [53] 廖洋, 梁海鹏, 黄春萍, 等. 土壤持久性有机污染物控制与修复研究进展 [J]. 四川师范大学学报:自然科学版, 2013, 36(5): 777-786. LIAO Y, LIANG H P, HUANG C P, et al. Recent Development in Control and Remediation of Persistent Organic Pollutants in Soil Environment [J]. Journal of Sichuan Normal University (Natural Science), 2013, 36(5): 777-786(in Chinese).
[54] 丁洋. 青藏高原东缘土壤中典型持久性有机污染物的来源与迁移转化机制[D]. 武汉: 中国地质大学, 2021. DING Y. Source Identification and Mechanisms of Transportation and Transformation of Typical Persistent Organic Pollutants in the Soil from the Eastern Tibetan Plateau[D]. Wuhan: China University of Geosciences, 2021(in Chinese).
[55] 阮哲璞, 徐希辉, 陈凯, 等. 微生物降解持久性有机污染物的研究进展与展望 [J]. 微生物学报, 2020, 60(12): 2763-2784. RUAN Z P, XU X H, CHEN K, et al. Recent advances in microbial catabolism of persistent organic pollutants [J]. Acta Microbiologica Sinica, 2020, 60(12): 2763-2784(in Chinese).
[56] LAL R, PANDEY G, SHARMA P, et al. Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation [J]. Microbiology and Molecular Biology Reviews, 2010, 74(1): 58-80. doi: 10.1128/MMBR.00029-09 [57] 陶雪琴, 党志, 卢桂宁, 等. 污染土壤中多环芳烃的微生物降解及其机理研究进展 [J]. 矿物岩石地球化学通报, 2003, 22(4): 356-360. doi: 10.3969/j.issn.1007-2802.2003.04.014 TAO X Q, DANG Z, LU G N, et al. Biodegradation mechanism of polycyclic aromatic hydrocarbons (PAHs) in soil: A review [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(4): 356-360(in Chinese). doi: 10.3969/j.issn.1007-2802.2003.04.014
[58] ZHU X J, DSIKOWITZKY L, KUCHER S, et al. Formation and fate of point-source nonextractable DDT-related compounds on their environmental aquatic-terrestrial pathway [J]. Environmental Science & Technology, 2019, 53(3): 1305-1314. [59] ZHANG Z M, SARKAR D, BISWAS J K, et al. Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review[J]. Bioresource Technology, 2022, 344(Pt B): 126223. [60] AREY J, ATKINSON R. Photochemical reactions of PAHs in the atmosphere[M]//PAHs: An Ecotoxicological Perspective. Chichester, UK: John Wiley & Sons, Ltd, : 47-63. [61] SINKKONEN S, PAASIVIRTA J. Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling [J]. Chemosphere, 2000, 40(9/10/11): 943-949. [62] SCHWARZENBACH R P, GSCHWEND P M, IMBODEN D M. Environmental Organic Chemistry[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc. , 2002. [63] 张乃莉, 郭继勋, 王晓宇, 等. 土壤微生物对气候变暖和大气N沉降的响应 [J]. 植物生态学报, 2007, 31(2): 252-261. doi: 10.17521/cjpe.2007.0029 ZHANG N L, GUO J X, WANG X Y, et al. Soil microbial feedbacks to climate warming and atmospheric n deposition [J]. Chinese Journal of Plant Ecology, 2007, 31(2): 252-261(in Chinese). doi: 10.17521/cjpe.2007.0029
[64] ALKORTA I, EPELDE L, GARBISU C. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation [J]. FEMS Microbiology Letters, 2017, 364(19): fnx200. [65] OKERE U V, SEMPLE K T. Biodegradation of PAHs in ‘pristine’ soils from different climatic regions [J]. Journal of Bioremediation & Biodegradation, 2012, S1: 006. [66] BARRIOS R E, AKBARIYEH S, LIU C Y, et al. Climate change impacts the subsurface transport of atrazine and estrone originating from agricultural production activities [J]. Environmental Pollution, 2020, 265: 115024. doi: 10.1016/j.envpol.2020.115024 [67] WHITE J C, KELSEY J W, HATZINGER P B, et al. Factors affecting sequestration and bioavailability of phenanthrene in soils [J]. Environmental Toxicology and Chemistry, 1997, 16(10): 2040-2045. doi: 10.1002/etc.5620161008 [68] BISWAS B, SARKAR B, RUSMIN R, et al. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction [J]. Environment International, 2015, 85: 168-181. doi: 10.1016/j.envint.2015.09.017 [69] YANG Y, ZHANG N, XUE M, et al. Effects of soil organic matter on the development of the microbial polycyclic aromatic hydrocarbons (PAHs) degradation potentials [J]. Environmental Pollution, 2011, 159(2): 591-595. doi: 10.1016/j.envpol.2010.10.003 [70] 邢维芹, 骆永明, 李立平, 等. 持久性有机污染物的根际修复及其研究方法 [J]. 土壤, 2004, 36(3): 258-263. doi: 10.3321/j.issn:0253-9829.2004.03.006 XING W Q, LUO Y M, LI L P, et al. Rhizosphere remediation from persistent organic pollutants and research approaches [J]. Soils, 2004, 36(3): 258-263(in Chinese). doi: 10.3321/j.issn:0253-9829.2004.03.006
[71] AI F X, EISENHAUER N, JOUSSET A, et al. Elevated tropospheric CO2 and O3 concentrations impair organic pollutant removal from grassland soil [J]. Scientific Reports, 2018, 8: 5519. doi: 10.1038/s41598-018-23522-z [72] CÉBRON A, LOUVEL B, FAURE P, et al. Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates [J]. Environmental Microbiology, 2011, 13(3): 722-736. doi: 10.1111/j.1462-2920.2010.02376.x [73] USEPA. Chemistry Dashboard[EB/OL]. [2022-05-01]. https://comptox.epa.gov/dashboard. [74] 刘尘, 牛晓君, 谢贵婷. 大气环境变化对污染土壤中PBDEs自然降解过程的影响研究 [J]. 环境科学学报, 2015, 35(10): 3242-3251. LIU C, NIU X J, XIE G T. Natural degradation process of PBDEs in polluted soil under the changes of atmospheric environment [J]. Acta Scientiae Circumstantiae, 2015, 35(10): 3242-3251(in Chinese).
[75] 张利红, 陈忠林, 徐成斌, 等. 表层土壤中菲的紫外光降解研究 [J]. 农业环境科学学报, 2009, 28(6): 1115-1119. ZHANG L H, CHEN Z L, XU C B, et al. The photodegradation of phenanthrene on soil surface under UV light [J]. Journal of Agro-Environment Science, 2009, 28(6): 1115-1119(in Chinese).
[76] UNEP. Environmental effects of ozone depletion and its interactions with climate change: 2010 Assessment[EB/OL]. 2010. [2022-05-01]. https://www.unep.org/resources/report/environmental-effects-ozone-depletion-and-its-interactions-climate-change-2010. [77] BAIS A F, MCKENZIE R L, BERNHARD G, et al. Ozone depletion and climate change: Impacts on UV radiation [J]. Photochemical & Photobiological Sciences, 2015, 14: 19-52. [78] 贾龙, 葛茂发, 徐永福, 等. 大气臭氧化学研究进展 [J]. 化学进展, 2006, 18(11): 1565-1574. doi: 10.3321/j.issn:1005-281X.2006.11.019 JIA L, GE M F, XU Y F, et al. Advances in atmospheric ozone chemistry [J]. Progress in Chemistry, 2006, 18(11): 1565-1574(in Chinese). doi: 10.3321/j.issn:1005-281X.2006.11.019
[79] 张利红, 李培军, 李雪梅, 等. 有机污染物在表层土壤中光降解的研究进展 [J]. 生态学杂志, 2006, 25(3): 318-322. ZHANG L H, LI P J, LI X M, et al. Research advance in photodegradation of organic pollutants in surface soil [J]. Chinese Journal of Ecology, 2006, 25(3): 318-322(in Chinese).
[80] PAN Y H, TSANG D C W, WANG Y Y, et al. The photodegradation of polybrominated diphenyl ethers (PBDEs) in various environmental matrices: Kinetics and mechanisms [J]. Chemical Engineering Journal, 2016, 297: 74-96. doi: 10.1016/j.cej.2016.03.122 [81] 王依雪, 康春莉, 刘汉飞, 等. 模拟太阳光作用下2-氯萘在土壤中的光降解 [J]. 科学技术与工程, 2015, 15(15): 222-224. doi: 10.3969/j.issn.1671-1815.2015.15.042 WANG Y X, KANG C L, LIU H F, et al. Photodegradation of 2-chloronaphthalene in soil under the simulated solar light [J]. Science Technology and Engineering, 2015, 15(15): 222-224(in Chinese). doi: 10.3969/j.issn.1671-1815.2015.15.042
[82] 牛军峰, 余刚, 刘希涛. 水相中POPs光化学降解研究进展 [J]. 化学进展, 2005, 17(5): 938-948. NIU J F, YU G, LIU X T. Advances in photolysis of persistent organic pollutants in water [J]. Progress in Chemistry, 2005, 17(5): 938-948(in Chinese).
[83] 牛军峰, 全燮, 陈景文, 等. 低有机碳含量表层土中Fe2O3对γ-666光解的催化作用 [J]. 环境科学, 2002, 23(2): 92-95. NIU J F, QUAN X, CHEN J W, et al. Effect of Fe2O3 on photodegradation of γ-666 in surface soils with low amount of organic substance [J]. Enviromental Science, 2002, 23(2): 92-95(in Chinese).
[84] LIU J Q, XIANG W R, LI C G, et al. Kinetics and mechanism analysis for the photodegradation of PFOA on different solid particles [J]. Chemical Engineering Journal, 2020, 383: 123115. doi: 10.1016/j.cej.2019.123115 [85] 阎百兴, 汤洁. 黑土侵蚀速率及其对土壤质量的影响 [J]. 地理研究, 2005, 24(4): 499-506. doi: 10.3321/j.issn:1000-0585.2005.04.002 YAN B X, TANG J. Study on black soil erosion rate and the transformation of soil quality influenced by erosion [J]. Geographical Research, 2005, 24(4): 499-506(in Chinese). doi: 10.3321/j.issn:1000-0585.2005.04.002
[86] 潘相敏, 陈立民, 成玉, 等. 气溶胶中多环芳烃光降解的初步研究 [J]. 环境化学, 1999, 18(4): 327-332. PAN X M, CHEN L M, CHENG Y, et al. A preliminary research on photodegradation of pahs in aerosols [J]. Environmental Chemistry, 1999, 18(4): 327-332(in Chinese).
[87] 蔡啸宇. 多氯联苯的光\光敏化降解机理研究[D]. 北京: 华北电力大学(北京), 2016. CAI X Y. Research on the photo and photosensitive degradation of PCBs[D]. Beijing: North China Electric Power University, 2016(in Chinese).
[88] ZALESKA A, HUPKA J, WIERGOWSKI M, et al. Photocatalytic degradation of lindane, p, p'-DDT and methoxychlor in an aqueous environment [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2000, 135(2/3): 213-220. [89] NGUYEN V H, SMITH S M, WANTALA K, et al. Photocatalytic remediation of persistent organic pollutants (POPs): A review [J]. Arabian Journal of Chemistry, 2020, 13(11): 8309-8337. doi: 10.1016/j.arabjc.2020.04.028 [90] 张红, 吕永龙, 辛晓云, 等. 杀虫剂类POPs对土壤中微生物群落多样性的影响 [J]. 生态学报, 2005, 25(4): 937-942. doi: 10.3321/j.issn:1000-0933.2005.04.041 ZHANG H, LÜ Y L, XIN X Y, et al. Effects of organochlorine pesticides on soil microbial community functional diversity [J]. Acta Ecologica Sinica, 2005, 25(4): 937-942(in Chinese). doi: 10.3321/j.issn:1000-0933.2005.04.041
[91] 武彤, 田柳, 崔建升, 等. 六溴环十二烷对映体对玉米的生理和基因损伤研究 [J]. 环境科学学报, 2018, 38(12): 4864-4872. WU T, TIAN L, CUI J S, et al. Physiological and genetic damage effects of hexabromocyclododecane enantiomers on maize [J]. Acta Scientiae Circumstantiae, 2018, 38(12): 4864-4872(in Chinese).
[92] 罗云, 张保琴, 任晓倩, 等. 氯代多环芳烃的污染现状及毒性研究进展 [J]. 生态毒理学报, 2017, 12(3): 120-134. LUO Y, ZHANG B Q, REN X Q, et al. Advances in the researches on the occurrence and toxicity of chlorinated polycyclic aromatic hydrocarbons [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 120-134(in Chinese).
[93] 胡霞林, 刘景富, 卢士燕, 等. 环境污染物的自由溶解态浓度与生物有效性 [J]. 化学进展, 2009, 21(2/3): 514-523. HU X L, LIU J F, LU S Y, et al. Freely dissolved concentration and bioavailability of environmental pollutants [J]. Progress in Chemistry, 2009, 21(2/3): 514-523(in Chinese).
[94] QU C, QI S, YANG D, et al. Risk assessment and influence factors of organochlorine pesticides (OCPs) in agricultural soils of the hill region: A case study from Ningde, southeast China [J]. Journal of Geochemical Exploration, 2015, 149: 43-51. doi: 10.1016/j.gexplo.2014.11.002 [95] ORTEGA-CALVO J J, HARMSEN J, PARSONS J R, et al. From bioavailability science to regulation of organic chemicals [J]. Environmental Science & Technology, 2015, 49(17): 10255-10264. [96] NADAL M, MARQUÈS M, MARI M, et al. Climate change and environmental concentrations of POPs: A review[J]. Environmental Research, 2015, 143(Pt A): 177-185. [97] WETTERAUER B, RICKING M, OTTE J C, et al. Toxicity, dioxin-like activities, and endocrine effects of DDT metabolites: DDA, DDMU, DDMS, and DDCN [J]. Environmental Science and Pollution Research, 2012, 19(2): 403-415. doi: 10.1007/s11356-011-0570-9 [98] 黄苑, 苏晓鸥, 王瑞国, 等. 多氯联苯羟基化代谢物及其雌激素效应研究进展 [J]. 生态毒理学报, 2018, 13(5): 58-68. doi: 10.7524/AJE.1673-5897.20180111001 HUANG Y, SU X O, WANG R G, et al. Advances on hydroxylated polychlorinated biphenyls metabolites and the estrogenic effects [J]. Asian Journal of Ecotoxicology, 2018, 13(5): 58-68(in Chinese). doi: 10.7524/AJE.1673-5897.20180111001
[99] 马涛, 孔继婕, 韩孟书, 等. 环境中硝基多环芳烃的污染现状及其毒性效应研究进展 [J]. 环境化学, 2020, 39(9): 2430-2440. doi: 10.7524/j.issn.0254-6108.2019062907 MA T, KONG J J, HAN M S, et al. Review on the pollution status and toxicity effects of nitrated polycyclic aromatic hydrocarbons in the environment [J]. Environmental Chemistry, 2020, 39(9): 2430-2440(in Chinese). doi: 10.7524/j.issn.0254-6108.2019062907