-
水环境中重金属存在隐蔽性、稳定性、易富集和难降解等特点,容易通过饮水途径在人体内富集,从而危及人体健康[1-2],其来源主要有自然来源和人为来源,前者包括地质侵蚀、风化等自然过程,后者包括矿业活动、金属加工、工业和生活废水排放、化石燃料燃烧、农药和化肥的不恰当施用等人类活动[3-5]. 20世纪70年代以来,国内外学者从重金属形态分析、空间分布及来源、迁移与积累和污染效应等多方面对水体中重金属进行了研究[6-11],如王漫漫[8]、钟明[9]、旷攀[10]和谭冰[11]等分别对太湖流域、沙颍河流域、贵州普定水库和洋河流域万全段地表水体和沉积物中重金属污染和生态风险进行了评价,均有效支撑了当地水资源的科学管理.
近年来,云贵地区地表水中重金属的环境影响得到了越来越多学者的关注. 刘伟等 [12]的研究探讨了贵州麻江县煤矿集中开采区摆沙河流域地表水重金属污染特征,马先杰等[13]的研究对贵州8个典型锰矿区地表水及表层沉积物重金属污染特征及生态风险进行了评价,熊燕等[14]的研究则对南盘江流域(云南段)水系沉积物中重金属含量分布特征及其污染状况进行了分析,均发现不同地区地表水中重金属存在不同程度的富集,而矿业活动是地表水和水系沉积物中重金属富集的主要来源. 珠江流域地表水中重金属污染情况也是学者关注的重点之一,杨思林等[15]的研究认为珠江流域的水体和土壤均有不同程度的重金属污染,且下游流域污染较上游严重. 姚波等[16]和陈晓鸿等[17]的研究对珠江流域上游云贵地区和南盘江流域曲靖段农田土壤重金属的污染特征进行了分析,发现土壤中重金属污染也不容忽视.
小黄泥河地处珠江源区、云贵两省交界地带,为全国重要江河水功能区,同时也是云贵重要的矿业活动区,对珠江源的保护有着重要的现实意义. 目前,关于小黄泥河流域的研究相对较少,李继平等[18]和肖文博等[19] 的研究探讨了小黄泥河水资源合理配置和利用的方法,涂春霖等[20]的研究分析了小黄泥河流域地表水的水化学特征及控制因素,但关于其重金属的研究还鲜有涉及,基于此,本研究对小黄泥河流域地表水中重金属的空间分布特征及来源进行解析,并对其污染水平进行综合评价,以期为小黄泥河流域水环境综合治理提供科学依据.
云贵高原小黄泥河流域重金属分布特征及健康风险评价
Distribution and health risk assessment of heavy metals in Xiaohuangni River Basin on Yunnan-Guizhou Plateau
-
摘要: 小黄泥河为珠江源区南盘江流域主要支流之一,也是云贵高原重要的江河水功能区,查明小黄泥河流域地表水重金属分布特征、污染程度和健康风险,可以为珠江源区的生态环境保护提供有力支撑. 系统采集小黄泥河干流及支流河水样品,对河水样品中重金属Fe、Mn、Cu、Pb、Zn、Cd和类金属As进行测定,并采用内梅罗综合污染指数法和健康风险评价模型,对小黄泥河流域地表水中的重金属进行污染评价和健康风险评价. 结果表明,小黄泥河流域河水中重金属平均浓度顺序为:Fe(810.66 μg·L−1)>Mn(126.90 μg·L−1)>Zn(24.71 μg·L−1)>As(2.45 μg·L−1)>Cu(2.33 μg·L−1)>Pb(0.43 μg·L−1)>Cd(0.03 μg·L−1),其中Fe和Mn两种重金属存在超标现象,其他重金属均未出现超标现象. 相关性分析及因子分析表明,地表水中7种重金属元素主要受到采煤活动、道路交通和地质背景3个因素的控制,其贡献率分别为48.00%、19.66%和15.97%. Fe和Mn的单因子污染指数较高,存在不同程度的污染,而其他重金属总体上不存在污染风险. 综合污染指数评价结果显示,干流水质总体优于支流,下游支流为高度污染,上游支流为轻度污染,均主要受到Fe和Mn的影响. 地表水中重金属产生的健康风险总体可控,其大小依次为As>Cd>Fe>Cu>Pb>Zn>Mn,除下游支流部分点位As的健康风险高于最大可接受风险值外,致癌物Cd及非致癌物Cu、Pb、Fe、Mn和Zn的健康风险均远低于最大可接受风险值.Abstract: The Xiaohuangni River is one of the main tributaries of the Nanpan River Basin in the source area of the Pearl River, and it is also an important river water function area in the Yunnan-Guizhou Plateau. The identification of the distribution characteristics, pollution levels and health risks of heavy metals in the surface water of the Xiaohuangni River basin can provide strong support for the protection of the source area of the Pearl River. The samples of main stream and tributaries of Xiaohuangni River were collected to determine the concentrations of Fe, Mn, Cu, Pb, Zn, Cd and metalloid of As in the water. The Nemerow index method and health risk assessment model were applied to assess the degree of contamination and health risk of heavy metals in surface water. The results show that the average concentration of each heavy metals can be ranked as Fe(810.66 μg·L−1)>Mn(126.90 μg·L−1)>Zn(24.71 μg·L−1)>As(2.45 μg·L−1)>Cu(2.33 μg·L−1)>Pb(0.43 μg·L−1)>Cd(0.03 μg·L−1), in which Fe and Mn are the main excessive heavy metals, and other heavy metals do not exceed the standard. Correlation analysis and factor analysis show that the seven heavy metals are mainly affected by coal mining activities, traffic sources and geological background, and their contribution rates are 48.00%, 19.66% and 15.97%, respectively. According to single factor pollution index, Fe and Mn have different degrees of pollution, while other heavy metals generally are pollution-free. And according to the comprehensive pollution index, the water quality of the main stream is better than that of the tributaries, the downstream tributaries are highly polluted and the upstream tributaries are slightly polluted, both are mainly affected by Fe and Mn. The health risk caused by heavy metals in the surface water is generally controllable, and the health risk value of each heavy metals can be ranked as As > Cd > Fe > Cu > Pb > Zn > Mn. Except that the health risk of As at some points of downstream tributaries is higher than the maximum acceptable risk value, the health risk of carcinogen Cd and non-carcinogens Cu, Pb, Fe, Mn and Zn are far lower than the maximum acceptable risk value.
-
表 1 重金属污染评价标准
Table 1. Evaluation criteria for heavy metal pollution
Pi Pn 污染程度
Degree of contaminationPi ≤ 1 Pn ≤ 0.7 安全 1< Pi ≤ 2 0.7 < Pn ≤ 1 警戒 2<Pi≤ 3 1<Pn≤ 2 轻度污染 Pi > 3 Pn > 2 高度污染 表 2 重金属毒理学参数
Table 2. Toxicological parameters of the heavy metals
化学致癌物
Carcinogenqi/[mg·(kg·d)−1] 化学非致癌物
Non-carcinogenRFDi/[mg·(kg·d) −1] As 15 Fe 0.7 Cd 6.1 Pb 0. 001 4 Cu 0. 005 Zn 0. 3 Mn 1.4 表 3 小黄泥河流域重金属质量浓度统计特征1)
Table 3. Statistical characteristics of heavy metal concentration in Xiaohuangni River basin
样点
Samples统计参数
Statistical parameterspH As Cd Cu Fe Mn Zn Pb 干流
Main streams
(N=12)最小值 7.21 0.25 0.02 0.36 55.09 1.50 3.35 0.07 最大值 8.48 3.47 0.06 1.96 469.00 46.90 43.20 0.59 平均值 8.01 1.60 0.02 1.39 241.66 25.93 16.35 0.34 标准偏差 0.34 1.08 0.01 0.44 145.85 16.08 11.61 0.17 变异系数 4.20 67.90 53.52 31.42 60.35 62.00 71.02 49.89 上游支流
Upstream tributaries
(N=9)最小值 7.68 0.08 0.02 0.62 40 1.5 5.35 0.16 最大值 8.44 3.09 0.03 5.70 2306.58 15.2 29.18 1.17 平均值 7.98 1.26 0.02 2.55 639.71 5.18 14.05 0.49 标准偏差 0.24 1.19 0.01 1.66 683.49 5.01 7.26 0.28 变异系数 3.03 94.31 25.06 65.15 106.84 96.64 51.70 58.33 中游支流
Midstream tributaries
(N=13)最小值 7.11 0.51 0.015 0.51 27.8 1.45 7.06 0.1 最大值 8.45 5.66 0.09 6.31 1567 416 41 0.71 平均值 7.77 2.67 0.02 1.46 311.75 67.92 18.67 0.26 标准偏差 0.39 1.10 0.02 1.47 410.53 107.48 10.11 0.19 变异系数 5.01 41.36 96.23 100.64 131.68 158.26 54.13 72.31 下游支流
Downstream tributaries
(N=24)最小值 6.48 0.4 0.015 0.41 17.1 0.96 3.99 0.11 最大值 8.86 21.5 0.15 13.4 6471 1201 142 3.94 平均值 8.06 3.19 0.04 3.19 1429.50 254.97 36.16 0.54 标准偏差 0.50 4.20 0.04 3.37 1806.85 330.83 35.73 0.78 变异系数 6.16 131.43 100.39 105.67 126.40 129.75 98.81 143.00 全流域
Whole basin
(N=58)最小值 6.48 0.075 0.015 0.362 17.1 0.96 3.35 0.069 最大值 9.14 21.5 0.15 13.4 6471 1201 142 3.94 平均值 7.98 2.45 0.03 2.33 810.66 126.90 24.71 0.43 标准偏差 0.43 2.94 0.03 2.51 1323.39 244.77 26.11 0.54 变异系数 5.34 120.13 104.67 107.87 163.25 192.89 105.67 125.39 地表水水质标准 6—9 50 5 1000 300 100 1000 50 pH为无量纲,其他指标为μg·L−1,变异系数为%.
pH is dimensionless, other indicators are μg·L−1, and the coefficient of variation is %.表 4 小黄泥河流域地表水重金属浓度均值与其它水体比较(μg·L−1)
Table 4. Comparison of heavy metal concentrations in surface water of Xiaohuangni River basin with other water bodies
Fe Mn Zn Cu As Cd Pb 本研究 810.66 126.9 24.71 2.33 2.45 0.03 0.43 贵州普定水库[10] ─ ─ ─ 3.332 0.036 0.334 4.97 贵州摆沙河流域[12] 68479 2745 184 ─ 11.1 ─ ─ 贵州红枫湖[27] 247 42 33.1 1.24 ─ 0.11 4.63 东江淡水河流域[28] ─ 305.00 151.5 67.5 ─ ─ 15 东江[28] ─ 145 30 8 ─ ─ 8.5 柳江流域[26] 150. 85 45. 75 10. 78 17. 78 0. 99 1. 28 2. 44 龙江中下游[29] ─ ─ 2.39 0.90 1.31 0.05 0.34 西江干流中下游[29] ─ ─ 3.14 1.28 1.66 0.03 0.35 注:—表示无数据. —no data. 表 5 小黄泥河流域地表水重金属浓度相关关系1)
Table 5. Correlation coefficients between major ions of river water in Xiaohuangni River basin
As Cd Cu Fe Mn Zn Pb As 1 Cd 0.60** 1 Cu 0.71** 0.78** 1 Fe 0.70** 0.71** 0.87** 1 Mn 0.44** 0.64** 0.44** 0.60** 1 Zn 0.03 0.32* 0.15 0.22 0.19 1 Pb 0.13 0.33* 0.52** 0.38** 0.11 0.01 1 **表示在0.01 水平(双侧)上显著相关,*表示在 0.05 水平(双侧)上显著相关.
** means significant correlation at the 0.01 level (two-sided), * means significant correlation at the 0.05 level (two-sided).表 6 研究区水样旋转成分矩阵
Table 6. Rotational composition matrix of water samples
F1 F2 F3 As 0.86 0.04 −0.17 Cd 0.81 0.26 0.30 Cu 0.79 0.52 0.03 Fe 0.86 0.33 0.12 Mn 0.76 −0.12 0.23 Zn 0.10 0.01 0.97 Pb 0.12 0.96 0.01 特征值 3.36 1.38 1.12 贡献率/% 48.00 19.66 15.97 累积贡献率/% 48.00 67.66 83.63 表 7 饮水途径化学致癌物质和化学非致癌物质所致健康危害风险值(a−1)
Table 7. Health risk caused by chemical carcinogens and non-carcinogens via drinking water(a−1)
重金属
Heavy metals项目 干流(N=12)
Main steams上游支流(N=9)
Upstream tributaries中游支流(N=13)
Midstream tributaries下游支流(N=24)
Downstream tributaries成人
Adults儿童
Children成人
Adults儿童
Children成人
Adults儿童
Children成人
Adults儿童
Children致癌风险 As(×10−5) 范围 0.18—2.54 0.23—3.25 0.06—2.27 0.07—2.9 0.38—4.15 0.48—5.3 0.29—15.8 0.37—20.1 均值 1.17 1.49 0.93 1.18 1.96 2.5 2.34 2.99 Cd(×10−8) 范围 4.47—16.4 5.71—20.9 4.47—10.1 5.71—12.9 4.47—26.8 5.71—34.2 4.47—44.7 5.71—57.1 均值 6.21 7.93 7.35 9.39 6.19 7.9 13.2 16.8 非致癌风险 Cu(×10−10) 范围 0.35—1.92 0.45—2.45 0.61—5.58 0.77—7.12 0.50—6.17 0.64—7.87 0.40—13.1 0.51—16.7 均值 1.36 1.73 2.49 3.18 1.42 1.82 3.12 3.98 Pb(×10−10) 范围 0.24—2.06 0.31—2.63 0.55—40.7 0.70—5.19 0.35—24.8 0.45—3.16 0.38—13.8 0.49—17.6 均值 1.19 1.52 1.7 2.17 0.92 1.17 1.9 2.42 Fe(×10−10) 范围 0.39—3.27 0.49—4.18 0.28—16.1 0.36—20.6 0.20—10.9 0.25—14.0 0.12—45.2 0.15—57.7 均值 1.69 2.15 4.47 5.7 2.18 2.78 9.98 12.7 Mn(×10−12) 范围 0.52—16.4 0.67—20.9 0.50—5.31 0.67—6.77 0.51—145 0.65—185 0.34—419 0.43—535 均值 9.05 11.6 1.81 2.31 23.7 30.3 89 114 Zn(×10−12) 范围 5.46—70.4 6.96—89.8 8.71—47.5 11.1—60.7 11.5—66.8 14.7—85.3 6.5—231 8.3—295 均值 26.6 34 22.9 29.2 30.4 38.8 58.9 75.2 总风险(×10−5) 范围 0.19—2.55 0.24—3.25 0.06—2.28 0.08—2.91 0.38—4.15 0.48—5.3 0.30—15.8 0.38—20.2 均值 1.18 1.5 0.93 1.19 1.96 2.51 2.35 3 -
[1] YUAN G L, LIU C, CHEN L, et al. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China [J]. Journal of Hazardous Materials, 2011, 185(1): 336-345. doi: 10.1016/j.jhazmat.2010.09.039 [2] 张伟燕, 马龙, 吉力力·阿不都外力, 等. 博尔塔拉河地表水重金属来源分析及其污染评价 [J]. 干旱区资源与环境, 2019, 33(7): 100-106. ZHANG W Y, MA L, JILILI Abuduwaili, et al. Source analysis and pollution assessment of heavy metals in surface water of Bortala River, Northwest China [J]. Journal of Arid Land Resources and Environment, 2019, 33(7): 100-106(in Chinese).
[3] 温泉, 赵艳民, 曹伟, 等. 潮白河中游沉积物中重金属分布、来源及生态风险评估 [J]. 环境科学研究, 2020, 33(3): 599-607. WEN Q, ZHAO Y M, CAO W, et al. Distribution characteristics, sources and potential ecological risks of heavy metal pollution in the middle reaches of chaobai river [J]. Research of Environmental Sciences, 2020, 33(3): 599-607(in Chinese).
[4] YANG Q Q, LI Z Y, LU X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment [J]. Science of the Total Environment, 2018, 642: 690-700. doi: 10.1016/j.scitotenv.2018.06.068 [5] OUYANG W, WANG Y D, LIN C Y, et al. Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review [J]. Science of the Total Environment, 2018, 637/638: 208-220. doi: 10.1016/j.scitotenv.2018.04.434 [6] 刘昭, 周宏, 曹文佳, 等. 清江流域地表水重金属季节性分布特征及健康风险评价 [J]. 环境科学, 2021, 42(1): 175-183. LIU Z, ZHOU H, CAO W J, et al. Seasonal distribution characteristics and health risk assessment of heavy metals in surface water of Qingjiang River [J]. Environmental Science, 2021, 42(1): 175-183(in Chinese).
[7] 陈俊华, 章艳红, 沈威, 等. 抚河南昌段重金属空间分布特征及来源分析 [J]. 中国环境科学, 2020, 40(11): 4936-4944. CHEN J H, ZHANG Y H, SHEN W, et al. Distribution characteristics and source analysis of heavy metals in Nanchang section of the Fuhe River [J]. China Environmental Science, 2020, 40(11): 4936-4944(in Chinese).
[8] 王漫漫, 陆昊, 李慧明, 等. 太湖流域典型河流重金属污染和生态风险评估 [J]. 环境化学, 2016, 35(10): 2025-2035. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2016.10.2016022301 WANG M M, LU H, LI H M, et al. Pollution level and ecological risk assessment of heavy metals in typical rivers of Taihu Basin [J]. Environmental Chemistry, 2016, 35(10): 2025-2035(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2016.10.2016022301
[9] 钟明, 万云, 万安, 等. 沙颍河流域沉积物重金属污染特征及生态风险评价 [J]. 生态学杂志, 2016, 35(7): 1857-1864. ZHONG M, WAN Y, WAN A, et al. Pollution characteristics and ecological risk assessment of heavy metals in the sediments of Shaying River [J]. Chinese Journal of Ecology, 2016, 35(7): 1857-1864(in Chinese).
[10] 旷攀, 李秋华, 金爽, 等. 贵州高原普定水库水环境重金属的时空分布特征及风险评价 [J]. 环境科学研究, 2021, 34(3): 576-588. KUANG P, LI Q H, JIN S, et al. Spatial and temporal distribution of heavy metals in water environment of Puding Reservoir in Guizhou Province and risk assessment [J]. Research of Environmental Sciences, 2021, 34(3): 576-588(in Chinese).
[11] 谭冰, 王铁宇, 朱朝云, 等. 洋河流域万全段重金属污染风险及控制对策 [J]. 环境科学, 2014, 35(2): 719-726. TAN B, WANG T Y, ZHU Z Y, et al. Risk assessment and countermeasures of heavy metals pollution in Wanquan segment of Yanghe River [J]. Environmental Science, 2014, 35(2): 719-726(in Chinese).
[12] 刘伟, 刘胜华, 秦文, 等. 贵州煤矿集中开采区地表水重金属污染特征 [J]. 环境化学, 2020, 39(7): 1788-1799. doi: 10.7524/j.issn.0254-6108.2019042903 LIU W, LIU S H, QIN W, et al. The characteristics of heavy metals pollution in surface water at the intensive coal mining area in Guizhou [J]. Environmental Chemistry, 2020, 39(7): 1788-1799(in Chinese). doi: 10.7524/j.issn.0254-6108.2019042903
[13] 马先杰, 陆凤, 陈兰兰, 等. 贵州锰矿区地表水体重金属污染及生态风险评价 [J]. 环境科学与技术, 2018, 41(11): 191-197. MA X J, LU F, CHEN L L, et al. Heavy metal pollution of surface water-bodies in guizhou's Manganese mining areas: Characteristics and ecological risk assessment [J]. Environmental Science & Technology, 2018, 41(11): 191-197(in Chinese).
[14] 熊燕, 宁增平, 刘意章, 等. 南盘江流域(云南段)水系沉积物中重金属含量分布特征及其污染状况评价 [J]. 地球与环境, 2017, 45(2): 171-178. XIONG Y, NING Z P, LIU Y Z, et al. Distribution and pollution evaluation of heavy metals in sediments in the nanpan river basin (Yunnan section) [J]. Earth and Environment, 2017, 45(2): 171-178(in Chinese).
[15] 杨思林. 珠江上游沉积物与土壤金属元素地球化学特征研究[D]. 昆明: 昆明理工大学, 2014. YANG S L. Study on geochemical characteristics of metal elements in sediments and soil in the upper reaches of Pearl River[D]. Kunming: Kunming University of Science and Technology, 2014(in Chinese).
[16] 姚波, 杨爱萍, 陈华毅, 等. 珠江流域上游云贵地区农田土壤重金属污染状况及其风险性分析 [J]. 农业环境科学学报, 2020, 39(10): 2259-2266. YAO B, YANG A P, CHEN H Y, et al. Soil heavy metal pollution and risk assessment of agricultural soils in the Yunnan-Guizhou area, Upper Pearl River Basin [J]. Journal of Agro-Environment Science, 2020, 39(10): 2259-2266(in Chinese).
[17] 陈晓鸿, 李强, 喇优抓. 南盘江流域曲靖段土壤及农作物中重金属污染特征与生态风险评价 [J]. 安徽农学通报, 2020, 26(15): 126-132. CHEN X H, LI Q, LA Y Z, et al. The pollution characteristics and ecological risk assessment of heavy metals in the crops and soils from the Qujing section of the nanpan river [J]. Anhui Agricultural Science Bulletin, 2020, 26(15): 126-132(in Chinese).
[18] 李继平, 姚章民. 小黄泥河流域水资源供需分析及合理配置探讨 [J]. 人民珠江, 2003, 24(5): 21-23. LI J P, YAO Z M. Supply and demand analysis and rational allocation of water resources in Xiaonihe River Basin [J]. Pearl River, 2003, 24(5): 21-23(in Chinese).
[19] 肖文博, 王保华, 贺庆峰. 小黄泥河洪水资源利用研究 [J]. 人民珠江, 2015, 36(6): 9-11. XIAO W B, WANG B H, HE Q F. Research on utilization of flood resources in Xiao huangni river [J]. Pearl River, 2015, 36(6): 9-11(in Chinese).
[20] 涂春霖, 尹林虎, 和成忠, 等. 珠江源区小黄泥河流域地表水水化学组成特征及控制因素 [J]. 环境科学, 2022, 43(4): 1885-1897. TU C L, YIN L H, HE C Z, et al. Hydrochemical composition characteristics and control factors of xiaohuangni river basin in the upper Pearl River [J]. Environmental Science, 2022, 43(4): 1885-1897(in Chinese).
[21] 蔡永兵, 孙延康, 孟凡德, 等. 典型金矿区入湾河流重金属的时空分布特征及风险评价 [J]. 环境化学, 2021, 40(4): 1167-1178. doi: 10.7524/j.issn.0254-6108.2020110602 CAI Y B, SUN Y K, MENG F D, et al. Spatial-temporal distribution characteristics and risk assessment of heavy metals in a river flowing into the bay in a typical gold mining area [J]. Environmental Chemistry, 2021, 40(4): 1167-1178(in Chinese). doi: 10.7524/j.issn.0254-6108.2020110602
[22] 何宇, 洪欣, 闭潇予, 等. 九洲江流域水环境重金属污染特征及来源解析 [J]. 环境化学, 2021, 40(1): 240-253. doi: 10.7524/j.issn.0254-6108.2020062812 HE Y, HONG X, BI X Y, et al. Characteristics and sources of heavy metal pollution in water environment of Jiuzhou River Basin [J]. Environmental Chemistry, 2021, 40(1): 240-253(in Chinese). doi: 10.7524/j.issn.0254-6108.2020062812
[23] 王若师, 许秋瑾, 张娴, 等. 东江流域典型乡镇饮用水源地重金属污染健康风险评价 [J]. 环境科学, 2012, 33(9): 3083-3088. WANG R S, XU Q J, ZHANG X, et al. Health risk assessment of heavy metals in typical township water sources in Dongjiang River Basin [J]. Environmental Science, 2012, 33(9): 3083-3088(in Chinese).
[24] 林曼利, 桂和荣, 彭位华, 等. 典型矿区深层地下水重金属含量特征及健康风险评价: 以皖北矿区为例 [J]. 地球学报, 2014, 35(5): 589-598. doi: 10.3975/cagsb.2014.05.09 LIN M L, GUI H R, PENG W H, et al. Health risk assessment of heavy metals in deep groundwater from different aquifers of a typical coal mining area: A case study of a coal mining area in northern Anhui Province [J]. Acta Geoscientica Sinica, 2014, 35(5): 589-598(in Chinese). doi: 10.3975/cagsb.2014.05.09
[25] ADIMALLA N. Groundwater quality for drinking and irrigation purposes and potential health risks assessment: A case study from semi-arid region of south India [J]. Exposure and Health, 2019, 11(2): 109-123. doi: 10.1007/s12403-018-0288-8 [26] 张清华, 韦永著, 曹建华, 等. 柳江流域饮用水源地重金属污染与健康风险评价 [J]. 环境科学, 2018, 39(4): 1598-1607. ZHANG Q H, WEI Y Z, CAO J H, et al. Heavy metal pollution of the drinking water sources in the Liujiang River Basin, and related health risk assessments [J]. Environmental Science, 2018, 39(4): 1598-1607(in Chinese).
[27] 田林锋, 胡继伟, 秦樊鑫, 等. 重金属元素在贵州红枫湖水体中的分布特征 [J]. 中国环境科学, 2011, 31(3): 481-489. TIAN L F, HU J W, QIN F X, et al. Distribation of heavy metal elements in the water body from Lake Hongfeng [J]. China Environmental Science, 2011, 31(3): 481-489(in Chinese).
[28] 王丽, 陈凡, 马千里, 等. 东江淡水河流域地表水和沉积物重金属污染特征及风险评价 [J]. 环境化学, 2015, 34(9): 1671-1684. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2015.09.2015012703 WANG L, CHEN F, MA Q L, et al. Pollution characteristics and risk assessment of heavy metals in surface water and sediment in Danshui River of Dongjiang [J]. Environmental Chemistry, 2015, 34(9): 1671-1684(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2015.09.2015012703
[29] 文泽伟. 龙江—柳江—西江流域的水化学特征和重金属污染研究[D]. 广州: 华南理工大学, 2016. WEN Z W. Study on hydrochemistry characteristics and heavy metal pollution in the Longjiang-Liujiang-Xijiang watershed[D]. Guangzhou: South China University of Technology, 2016(in Chinese).
[30] ZHOU J, FENG K, PEI Z P, et al. Pollution assessment and spatial variation of soil heavy metals in Lixia River Region of Eastern China [J]. Journal of Soils and Sediments, 2016, 16(3): 748-755. doi: 10.1007/s11368-015-1289-x [31] 袁建飞, 邓国仕, 徐芬, 等. 毕节市北部岩溶地下水水化学特征及影响因素的多元统计分析 [J]. 中国地质, 2016, 43(4): 1446-1456. YUAN J F, DENG G S, XU F, et al. The multivariate statistical analysis of chemical characteristics and influencing factors of Karst groundwater in the northern part of Bijie City, Guizhou Province [J]. Geology in China, 2016, 43(4): 1446-1456(in Chinese).
[32] 沈杨, 何江涛, 王俊杰, 等. 基于多元统计方法的地下水水化学特征分析: 以沈阳市李官堡傍河水源地为例 [J]. 现代地质, 2013, 27(2): 440-447. doi: 10.3969/j.issn.1000-8527.2013.02.024 SHEN Y, HE J T, WANG J J, et al. Hydrochemical characteristics of groundwater based on multivariate statistical analyses: Taking the liguanpu ripanian wellhead area in Shenyang City for example [J]. Geoscience, 2013, 27(2): 440-447(in Chinese). doi: 10.3969/j.issn.1000-8527.2013.02.024
[33] 田利, 谢红东, 张学东. 贵州盘县土城向斜南西翼二叠系龙潭组地球化学特征及意义 [J]. 中国煤炭地质, 2014, 26(7): 15-20,32. TIAN L, XIE H D, ZHANG X D. Permian Longtan formation geochemical characteristics and significance in southwest limb of Tucheng syncline, Panxian, Guizhou [J]. Coal Geology of China, 2014, 26(7): 15-20,32(in Chinese).
[34] 周逃涛, 张晓丽, 齐亚林, 等. 滇东老厂地区龙潭组页岩矿物组成特征及脆性分析 [J]. 矿产与地质, 2019, 33(04): 670-675. doi: 10.3969/j.issn.1001-5663.2019.04.013 ZHOU T T, ZHANG X L, QI Y L, et al. Mineral composition and brittleness analysis of shale of Longtan Formation in Laochang area, East Yunnan [J]. Mineral resources and geology, 2019, 33(04): 670-675(in Chinese). doi: 10.3969/j.issn.1001-5663.2019.04.013
[35] 孙国敏, 王春雷, 张淑霞. 黑龙江省地表水铁锰超标成因分析 [J]. 东北水利水电, 2013, 31(4): 34-35,40. doi: 10.3969/j.issn.1002-0624.2013.04.016 SUN G M, WANG C L, ZHANG S X. Cause analysis of excessive iron and Manganese in surface water of Heilongjiang Province [J]. Water Resources & Hydropower of Northeast China, 2013, 31(4): 34-35,40(in Chinese). doi: 10.3969/j.issn.1002-0624.2013.04.016
[36] 林德洪, 刘汉武, 史绪山. 贵州鬃岭煤矿区水环境污染特征及成因分析 [J]. 安全与环境工程, 2021, 28(5): 186-195. LIN D H, LIU H W, SHI X S. Characteristics and cause analysis of water pollution in zongling coal mining area, Guizhou [J]. Safety and Environmental Engineering, 2021, 28(5): 186-195(in Chinese).
[37] 陆青锋, 吴士豪, 秦身钧, 等. 贵州盘县矿区煤中伴生元素的地球化学特征 [J]. 煤炭科学技术, 2017, 45(10): 169-175. LU Q F, WU S H, QIN S J, et al. Geochemical features of associated elements in coal from Panxian Minefield of Guizhou [J]. Coal Science and Technology, 2017, 45(10): 169-175(in Chinese).
[38] 秦身钧, 高康, 王金喜, 等. 黔西南盘县火烧铺和金佳矿区晚二叠世煤中伴生元素的地球化学特征 [J]. 煤炭学报, 2016, 41(6): 1507-1516. QIN S J, GAO K, WANG J X, et al. Geochemistry of the associated elements in the Late Permian Coal from the Huoshaopu and Jinjia Mines, Southwestern Guizhou [J]. Journal of China Coal Society, 2016, 41(6): 1507-1516(in Chinese).
[39] 杨建业. 贵州普安矿区晚二叠世煤中微量元素的质量分数和赋存状态 [J]. 燃料化学学报, 2006, 34(2): 129-135. YANG J Y. Contents and occurrence modes of trace elements in the Late Permian coals from Puan Coalfield, Guizhou Province [J]. Journal of Fuel Chemistry and Technology, 2006, 34(2): 129-135(in Chinese).
[40] 李学先. 酸性矿山废水影响下喀斯特流域水文地球化学特征及演化规律研究[D]. 贵阳: 贵州大学, 2018. LI X X. Study on hydrogeochemical characteristics and evolution rules of Karst Basin under the effects of acid mine waste water[D]. Guiyang: Guizhou University, 2018(in Chinese).
[41] 王增辉. 鲁西南平原区大气干湿沉降元素输入通量及来源浅析: 以巨野县为例 [J]. 物探与化探, 2020, 44(4): 839-846. WANG Z H. An analysis of the input flux and source of elements in dry and wet atmospheric deposition of southwest plain of Shandong: A case study of Juye County [J]. Geophysical and Geochemical Exploration, 2020, 44(4): 839-846(in Chinese).
[42] 郭锋, 申慧芳, 樊文华. 大同市矿区中学地表灰尘重金属粒级效应及健康风险评估 [J]. 水土保持学报, 2013, 27(1): 162-166. GUO F, SHEN H F, FAN W H. Particle size distribution and health risk assessment of heavy metal of surface dust in middle school of mining district in Datong City [J]. Journal of Soil and Water Conservation, 2013, 27(1): 162-166(in Chinese).
[43] 韩润生, 吴鹏, 张艳, 等. 西南特提斯川滇黔成矿区富锗铅锌矿床成矿理论研究新进展 [J]. 地质学报, 2022, 96(2): 554-573. HAN R S, WU P, ZHANG Y, et al. New research progress in metallogenic theory for rich Zn-Pb-(Ag-Ge) deposits in the Sichuan-Yunnan-Guizhou Triangle (SYGT) area, southwestern Tethys [J]. Acta Geologica Sinica, 2022, 96(2): 554-573(in Chinese).
[44] 熊伟, 程鹏林, 周高, 等. 黔西北铅锌成矿区成矿金属来源的铅同位素示踪 [J]. 矿物学报, 2015, 35(4): 425-429. XIONG W, CHENG P L, ZHOU G, et al. The origin of ore-forming metals in northwestern Guizhou Pb-Zn metallogenic district constrained by Pb isotopes [J]. Acta Mineralogica Sinica, 2015, 35(4): 425-429(in Chinese).
[45] 马金凤. 微量元素铁与一些疾病关系的研究 [J]. 微量元素与健康研究, 1999, 16(3): 72-74. MA J F. Study on the relationship between trace iron and some diseases [J]. Studies of Trace Elements and Health, 1999, 16(3): 72-74(in Chinese).