-
土壤重金属具有不能降解、自净能力差、隐蔽性强和毒性大等特点,给人类生存和生态安全带来极大风险,从而备受社会关注[1]. 根据国家(原)环保部门的调查和统计显示[2],我国每年有1.2×107 t粮食受到重金属污染,土壤环境质量总体不容乐观. 土壤作为农业生产的主要载体和生态环境的重要组成部分,探明其重金属污染特征、污染来源和基于源成分谱的生态风险状况是当下土壤重金属污染防治工作的迫切需求[3].
近年来,土壤重金属含量特征、来源情况和生态风险状况受到国内外学者广泛关注. Keshavarzi等[4]对北爱尔兰工业、农业和城市地区土壤中重金属的含量特征、污染累积和生态风险水平进行分析,结果表明Mn含量最高,Cd含量最低,As、Cd和Pb有很高的生态风险;Wang等[5]对中国西南部喀斯特地区土壤中重金属的含量和来源进行分析,结果表明土壤中的重金属污染主要与自然来源有关,而人类活动的影响也不容忽视. 然而当前研究一方面较多集中于表层土壤,但表层土壤厚度相对固定,可能涵盖了多年的混合重金属积累信息. 因此,仅对表层的研究不足以解释重金属在不同土壤层中的积累及其垂直污染特征[6],也很难解释在不同管理措施(如耕作、施肥)、淋溶、母质和积累影响下的垂直分布特征[7-8];另一方面,现有研究大多集中在典型地区非农业因素影响下的农田土壤污染,如化工厂、采矿和冶炼区[9-10],但我国大部分地区目前的农业活动相对独立,主要受农业因素本身影响[11];施肥、管理、耕作、灌溉等其他农业活动已被证实在一定程度上影响了不同土壤层中重金属的富集和转化能力[7-8]. 因此,对农业活动本身造成的重金属污染的探索是不可忽视的,尤其是在农田土壤剖面研究中,重金属的垂直分布和污染特征具有重要的现实意义,可以提供有关污染历史的重要信息.
四川省富顺县地处四川盆地南部,沱江下游,农业生产以粮食作物为主,农业劳动力以中老年为主,“单打独斗”的现象较为明显,是典型的传统小农经济[12]. 近年来为满足现代化发展的需求,开始建设以水稻、高粱、玉米为主的优质粮油高产示范区,重点发展优质“中稻+再生稻”、优质“高粱+再生高粱”等特色优势产业[13]. 该区域属于大面积的峨眉山玄武岩和碳酸盐岩分布区,是典型的金属元素地球化学高背景区[14],土壤中金属元素富集程度较高,易在生物体内富集影响人类健康和区域生态系统平衡[15],但目前针对该区域土壤重金属污染状况的专门研究尚未见报道.
本文以四川省富顺县典型丘陵区农田剖面土壤(0—70 cm)为研究对象,将正定矩阵因子分解模型(PMF)与污染累积和生态风险评价指数相结合,对区域内农田土壤重金属(Cd、Cr、Cu、Ni、Pb、Zn)的垂直分布特征、污染现状和主要污染源及其污染贡献量进行探究,以期加强对川南丘陵典型农作区对土壤剖面重金属污染特征影响的认识,并为土壤重金属污染治理提供科学依据.
地球化学元素高背景农作区土壤剖面重金属来源解析及污染评价
Source identification and pollution assessment of heavy metals in soil profile of agricultural area with high background of geochemical elements
-
摘要: 为探明典型地球化学元素高背景农作区土壤剖面重金属的含量及污染风险,以四川省富顺县典型农作区田和旱地为研究对象,明晰其土壤中重金属元素(Cd、Cr、Cu、Ni、Pb、Zn)的垂直分布特征,并利用正定矩阵因子分析法(PMF)探究其重金属污染来源,基于PMF得到的源成分谱,利用地累积指数法和内梅罗综合风险指数法分析区域内每种源对重金属累积及污染风险的贡献. 结果表明,Cd、Cr、Cu、Ni、Pb和Zn在水田土壤剖面中的含量分别为0.19—0.62、47.94—51.15、19.90—21.02、25.61—29.67、18.75—22.15、59.24—71.13 mg·kg−1,旱地土壤剖面中的含量分别为0.15—0.62、47.53—58.39、18.91—22.04、25.26—32.13、17.45—21.75、59.78—77.58 mg·kg−1. 6种重金属中仅Cd元素含量的平均值高于四川省背景值. 水田和旱地土壤的Cd和Pb具有明显的表聚性,而Cr、Cu、Ni、Zn则随土层加深整体呈先降低后增加的趋势. PMF模型结果表明农业源的贡献率随土层加深而降低,在表土层中的贡献尤为突出(水田,50.6%;旱地,55.1%),混合源的贡献率随土层加深而升高,在底土层中的贡献尤为突出(水田55.5%;旱地58.7%),自然源的贡献率受土层影响不大、较为均匀,为21.3—33.3%. 基于源成分谱的污染累积与生态风险评价表明,研究区土壤Cd元素存在较强的污染累积和生态风险,且以农业源的风险最大,混合源风险最小;其余5种重金属元素无污染累积风险,但存在轻微生态风险. 3种源中以农业源对生态风险的贡献最大,平均达65.3%,其次为混合源(29.1%),自然源贡献率平均仅为5.6%. 研究结果表明,应重点关注该区域土壤重金属Cd污染问题,且需加强对农业源的防治.
-
关键词:
- 土壤剖面 /
- 重金属 /
- 垂直分布 /
- 正定矩阵因子分解PMF /
- 污染评价.
Abstract: In order to investigate the content and pollution risk of heavy metals (HMs) in the soil profile of typical agricultural areas with high background of geochemical elements, the vertical distribution characteristics of HMs (Cd, Cr, Cu, Ni, Pb, Zn) in soils of paddy field and dryland that collected from a typical agricultural area in Fushun County, Sichuan Province were studied; the sources of HM pollution were explored by using positive matrix factorization (PMF); and the contribution of each source to the pollution assessment in the region was analyzed by using Geoaccumulation Index ($ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ ) and Nemerow Integrated Risk Index (NIRI). The results showed that the contents of Cd, Cr, Cu, Ni, Pb and Zn in the soil profile of paddy field were 0.19—0.62, 47.94—51.15, 19.90—21.02, 25.61—29.67, 18.75—22.15, and 59.24—71.13 mg·kg−1, respectively. The contents of the above six HMs in dryland soil profile were 0.15—0.62, 47.53—58.39, 18.91—22.04, 25.26—32.13, 17.45—21.75, and 59.78—77.58 mg·kg−1, respectively. Among the six HMs, only the average content of Cd was higher than the background value in Sichuan Province. Meanwhile, Cd and Pb had obvious surface aggregation in paddy field and dryland soil, whereas Cr, Cu, Ni and Zn decreased first and then increased with the deepening of soil layer. The results of PMF model showed that the contribution rate of agricultural source was the highest in the topsoil layer (paddy field, 50.6%; dryland, 55.1%), and decreased with the deepening of soil layer. The contribution rate of mix source also increased with the deepening of soil layer, but the largest contribution was in subsoil (paddy field, 55.5%; dryland, 58.7%). In addition, the contribution rate of lithogenic source was not changed with soil layer, the values were ranging from 21.3% to 33.3%. The pollution accumulation and ecological risk assessment based on source component spectrum showed that there were moderately polluted accumulation and considerable ecological risk of Cd in the study area. Furthermore, the risk of the agricultural source was the highest, and the risk of mixed source was the least. The other five heavy metals have no cumulative pollution risk, but have slight ecological risk. Among the three sources, agricultural source contributed the most to the ecological risk, with an average contributed rate was 65.3%, followed by mixed source (29.1%), and natural sources contributed only 5.6%. In conclusion, it needs to pay more attention to the problem of soil Cd pollution in this region, and the prevention and control of agricultural sources should be strengthened. -
-
[1] 韩春梅, 王林山, 巩宗强, 等. 土壤中重金属形态分析及其环境学意义 [J]. 生态学杂志, 2005, 24(12): 1499-1502. HAN C M, WANG L S, GONG Z Q, et al. Chemical forms of soil heavy metals and their environmental significance [J]. Chinese Journal of Ecology, 2005, 24(12): 1499-1502(in Chinese).
[2] 中华人民共和国环境保护部, 中华人民共和国国土资源部. 全国土壤污染状况调查公报[R]. 北京: 中华人民共和国国土资源部, 2014. State Environmental Protection Administration of China, State Environmental Land and Resources Administration of China. Bulletin of national soil pollution survey[R]. Beijing: State Environmental Land and Resources Administration of China, 2014 (in Chinese).
[3] 余垚, 朱丽娜, 郭天亮, 等. 我国含磷肥料中镉和砷土壤累积风险分析 [J]. 农业环境科学学报, 2018, 37(7): 1326-1331. YU Y, ZHU L N, GUO T L, et al. Risk assessment of cadmium and arsenic in phosphate fertilizer [J]. Journal of Agro-Environment Science, 2018, 37(7): 1326-1331(in Chinese).
[4] KESHAVARZI A, KUMAR V, ERTUNÇ G, et al. Ecological risk assessment and source apportionment of heavy metals contamination: an appraisal based on the Tellus soil survey [J]. Environmental Geochemistry and Health, 2021, 43(5): 2121-2142. doi: 10.1007/s10653-020-00787-w [5] WANG Y T, GUO G H, ZHANG D G, et al. An integrated method for source apportionment of heavy metal(loid)s in agricultural soils and model uncertainty analysis [J]. Environmental Pollution, 2021, 276: 116666. doi: 10.1016/j.envpol.2021.116666 [6] 阿吉古丽·马木提, 麦麦提吐尔逊·艾则孜, 艾尼瓦尔·买买提. 新疆焉耆县耕地土壤重金属垂直分布特征与污染风险 [J]. 水土保持研究, 2018, 25(2): 367-373. AJIGULI M, MAIMAITITUERXUN A, AINIWAER M. Vertical distribution characteristics and risk assessment of soil heavy metal contamination of farmlands in Yanqi County, Xinjiang [J]. Research of Soil and Water Conservation, 2018, 25(2): 367-373(in Chinese).
[7] 张炜华, 于瑞莲, 杨玉杰, 等. 厦门某旱地土壤垂直剖面中重金属迁移规律及来源解析 [J]. 环境科学, 2019, 40(8): 3764-3773. ZHANG W H, YU R L, YANG Y J, et al. Migration and source analysis of heavy metals in vertical soil profiles of the drylands of Xiamen City [J]. Environmental Science, 2019, 40(8): 3764-3773(in Chinese).
[8] 韩张雄, 万的军, 胡建平, 等. 土壤中重金属元素的迁移转化规律及其影响因素 [J]. 矿产综合利用, 2017(6): 5-9. HAN Z X, WAN D J, HU J P, et al. Migration and transformation of heavy metals in soil and its influencing factors [J]. Multipurpose Utilization of Mineral Resources, 2017(6): 5-9(in Chinese).
[9] 杨学兰, 马云飞. 基于PMF模型的济南市郊土壤重金属来源解析 [J]. 河北环境工程学院学报, 2020, 30(6): 44-47,72. YANG X L, MA Y F. Analysis of heavy metals sources in the soil of suburb area in Jinan based on PMF model [J]. Journal of Hebei University of Environmental Engineering, 2020, 30(6): 44-47,72(in Chinese).
[10] 孟敏, 杨林生, 韦炳干, 等. 我国设施农田土壤重金属污染评价与空间分布特征 [J]. 生态与农村环境学报, 2018, 34(11): 1019-1026. MENG M, YANG L S, WEI B G, et al. Contamination assessment and spatial distribution of heavy metals in greenhouse soils in China [J]. Journal of Ecology and Rural Environment, 2018, 34(11): 1019-1026(in Chinese).
[11] 李亚娜. 我国农田土壤重金属污染现状分析 [J]. 节能, 2019, 38(7): 118-119. LI Y N. Brief probe into heavy metal pollution of agricultural soils in China [J]. Energy Conservation, 2019, 38(7): 118-119(in Chinese).
[12] 陈小林, 李良均. 富顺县高粱+大豆产业发展模式分析 [J]. 大豆科技, 2020(4): 34-36. doi: 10.3969/j.issn.1674-3547.2020.04.009 CHEN X L, LI L J. Analysis on the development mode of Sorghum + soybean industry in Fushun County [J]. Soybean Science & Technology, 2020(4): 34-36(in Chinese). doi: 10.3969/j.issn.1674-3547.2020.04.009
[13] 郑里. 农业现代化的县域发展途径 以四川省富顺县为例 [J]. 当代县域经济, 2017(4): 46-47. ZHENG L. The way of county development of agricultural modernization: a case study of Fushun County, Sichuan Province [J]. Contemporary County Economy, 2017(4): 46-47(in Chinese).
[14] 成杭新, 彭敏, 赵传冬, 等. 表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制 [J]. 地学前缘, 2019, 26(6): 159-191. CHENG H X, PENG M, ZHAO C D, et al. Epigenetic geochemical dynamics and driving mechanisms of distribution patterns of chemical elements in soil, Southwest China [J]. Earth Science Frontiers, 2019, 26(6): 159-191(in Chinese).
[15] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算 [J]. 环境科学与技术, 2008, 31(2): 112-115. XU Z Q, NI S J, TUO X G, et al. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index [J]. Environmental Science & Technology, 2008, 31(2): 112-115(in Chinese).
[16] PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values [J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203 [17] NORRIS G, DUVALL R, BROWN S, et al. 2014. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC 20460. EPA/600/R-14/108[R]. [18] CHAI L, WANG Y H, WANG X, et al. Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China [J]. Ecological Indicators, 2021, 125: 107507. doi: 10.1016/j.ecolind.2021.107507 [19] 朱晓丽, 薛博倩, 李雪, 等. 基于PMF模型的宝鸡铅锌尾矿库周边农田土壤重金属源解析 [J]. 西北大学学报(自然科学版), 2021, 51(1): 43-53. ZHU X L, XUE B Q, LI X, et al. Sources apportionment of heavy metals in farmland soil around lead-zinc tailings reservoir based on PMF model [J]. Journal of Northwest University (Natural Science Edition), 2021, 51(1): 43-53(in Chinese).
[20] MÜLLER G. Index of geoaccumulation in sediments of the Rhine River [J]. Geology Journal, 1969, 2: 108-118. [21] 傅绍清, 苏方康, 宋怡, 等. 成都平原菜园土壤及主要蔬菜作物重金属背景值的研究 [J]. 西南农业学报, 1992, 5(1): 34-40. FU S Q, SU F K, SONG Y, et al. Background values of heavy metals in garden soil and vegetables in Chengdu plain [J]. Southwest China Journal of Agricultural Sciences, 1992, 5(1): 34-40(in Chinese).
[22] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [23] MEN C, LIU R M, XU L B, et al. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China [J]. Journal of Hazardous Materials, 2020, 388: 121763. doi: 10.1016/j.jhazmat.2019.121763 [24] 左文萍, 黎清华, 张彦鹏, 等. 火山岩风化区农田重金属污染及健康风险评价——以海口江东新区为例[J]. 地球科学, 2022, 1-15. ZUO W P, LI Q H, ZHANG Y P, et al. Assessment of heavy metal pollution and health risk in farmland in the volcanic weathering area — a case study in Jiangdong new district of Haikou[J]. Earth Science, 2022, 1-15(in Chinese).
[25] 刘孝严, 樊亚男, 刘鹏, 等. 基于文献计量分析的长江经济带农田土壤重金属污染特征[J]. 环境科学,2022, 43(11): 5169-5179. LIU X Y, FAN Y N, LIU P, et al. Characteristics of heavy metals pollution in farmland soil of the Yangtze River economic belt based on bibliometric analysis[J]. Environmental Science, 2022, 1-16(in Chinese).
[26] 徐志豪, 吴健, 唐浩, 等. 崇明岛农田土壤重金属分布特征及生态风险[J]. 农业环境科学学报,2022,41(11):2488-2496. XU Z H, WU J, TANG H, et al. Distribution characteristics and ecological risk of heavy metals in soil of arable land on Chongming Island[J]. Journal of Agro-Environment Science, 2022,41(11):2488-2496(in Chinese).
[27] 崔艳红, 孙鹏, 曹冬梅, 等. 松嫩平原产油区农田土壤重金属含量及污染风险评价 [J]. 土壤通报, 2022, 53(5): 1-12. CUI Y H, SUN P, CAO D M, et al. Analysis of heavy metal contents and pollution risk assessment in farmland soil in oil producing areas on Songnen Plain [J]. Chinese Journal of Soil Science, 2022, 53(5): 1-12(in Chinese).
[28] 何腾兵, 黄会前, 付天岭, 等. 施用10年猪粪肥的黄壤剖面重金属分布及风险评价 [J]. 安全与环境学报, 2018, 18(2): 789-794. HE T B, HUANG H Q, FU T L, et al. Analysis of the heavy metal risk content rate through the vertical profile of the yellow soil a decade late due to the swine manure application [J]. Journal of Safety and Environment, 2018, 18(2): 789-794(in Chinese).
[29] 李融. 闽西中堡银多金属矿区周边农田土壤剖面重金属分布及其评价 [J]. 中国农学通报, 2015, 31(31): 237-241. LI R. Distribution and evaluation of heavy metals in soil profiles in agricultural fields around Zhongbao silver polymetallic mining in Western Fujian [J]. Chinese Agricultural Science Bulletin, 2015, 31(31): 237-241(in Chinese).
[30] 史锐, 岳荣, 张红. 有色金属采选冶基地周边土壤中重金属纵向分层研究 [J]. 土壤通报, 2016, 47(1): 186-191. SHI R, YUE R, ZHANG H. Research on vertical distribution of heavy metal in soil around non-ferrous metal industry area [J]. Chinese Journal of Soil Science, 2016, 47(1): 186-191(in Chinese).
[31] 杨军, 郑袁明, 陈同斌, 等. 中水灌溉下重金属在土壤中的垂直迁移及其对地下水的污染风险 [J]. 地理研究, 2006, 25(3): 449-456. YANG J, ZHENG Y M, CHEN T B, et al. Leaching of heavy metals in soil column under irrigation reclaimed water: A simulation experiment [J]. Geographical Research, 2006, 25(3): 449-456(in Chinese).
[32] 郑顺安. 我国典型农田土壤中重金属的转化与迁移特征研究[D]. 杭州: 浙江大学, 2010. ZHENG S A. Studies on the transformation and transport of heavy metals in typical Chinese agricultural soils[D]. Hangzhou: Zhejiang University, 2010(in Chinese).
[33] ZHANG M, WANG X P, LIU C, et al. Identification of the heavy metal pollution sources in the rhizosphere soil of farmland irrigated by the Yellow River using PMF analysis combined with multiple analysis methods—using Zhongwei City, Ningxia, as an example [J]. Environmental Science and Pollution Research, 2020, 27(14): 16203-16214. doi: 10.1007/s11356-020-07986-z [34] WU J, LI J, TENG Y G, et al. A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks [J]. Journal of Hazardous Materials, 2020, 388: 121766. doi: 10.1016/j.jhazmat.2019.121766 [35] CHAI L, WANG Y H, WANG X, et al. Quantitative source apportionment of heavy metals in cultivated soil and associated model uncertainty [J]. Ecotoxicology and Environmental Safety, 2021, 215: 112150. doi: 10.1016/j.ecoenv.2021.112150 [36] 贺灵, 吴超, 曾道明, 等. 中国西南典型地质背景区土壤重金属分布及生态风险特征 [J]. 岩矿测试, 2021, 40(3): 384-396. HE L, WU C, ZENG D M, et al. Distribution of heavy metals and ecological risk of soils in the typical geological background region of southwest China [J]. Rock and Mineral Analysis, 2021, 40(3): 384-396(in Chinese).
[37] 姜寒冰, 姜常义, 钱壮志, 等. 云南峨眉山高钛和低钛玄武岩的岩石成因 [J]. 岩石学报, 2009, 25(5): 1117-1134. JIANG H B, JIANG C Y, QIAN Z Z, et al. Petrogenesis of high-Ti and low-Ti basalts in Emeishan, Yunnan, China [J]. Acta Petrologica Sinica, 2009, 25(5): 1117-1134(in Chinese).
[38] 胡瑞忠, 陶琰, 钟宏, 等. 地幔柱成矿系统: 以峨眉山地幔柱为例 [J]. 地学前缘, 2005, 12(1): 42-54. HU R Z, TAO Y, ZHONG H, et al. Mineralization systems of a mantle plume: A case study from the Emeishan igneous Province, southwest China [J]. Earth Science Frontiers, 2005, 12(1): 42-54(in Chinese).
[39] LIU Y B, MA Z H, LIU G N, et al. Accumulation risk and source apportionment of heavy metals in different types of farmland in a typical farming area of Northern China [J]. Environmental Geochemistry and Health, 2021, 43(12): 5177-5194. doi: 10.1007/s10653-021-01002-0 [40] 柴磊, 王新, 马良, 等. 基于PMF模型的兰州耕地土壤重金属来源解析 [J]. 中国环境科学, 2020, 40(9): 3919-3929. CHAI L, WANG X, MA L, et al. Sources appointment of heavy metals in cultivated soils of Lanzhou based on PMF models [J]. China Environmental Science, 2020, 40(9): 3919-3929(in Chinese).
[41] PARDYJAK E R, SPECKART S O, YIN F, et al. Near source deposition of vehicle generated fugitive dust on vegetation and buildings: Model development and theory [J]. Atmospheric Environment, 2008, 42(26): 6442-6452. doi: 10.1016/j.atmosenv.2008.04.024 [42] WU Q M, HU W Y, WANG H F, et al. Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China [J]. Science of the Total Environment, 2021, 780: 146557. doi: 10.1016/j.scitotenv.2021.146557 [43] 宋波, 张云霞, 庞瑞, 等. 广西西江流域农田土壤重金属含量特征及来源解析 [J]. 环境科学, 2018, 39(9): 4317-4326. SONG B, ZHANG Y X, PANG R, et al. Analysis of characteristics and sources of heavy metals in farmland soils in the Xijiang River draining of Guangxi [J]. Environmental Science, 2018, 39(9): 4317-4326(in Chinese).
[44] NANOS N, RODRÍGUEZ MARTÍN J A. Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero River Basin (Spain) [J]. Geoderma, 2012, 189-190: 554-562. doi: 10.1016/j.geoderma.2012.06.006 [45] 张爱国, 魏兴萍. 西南典型岩溶槽谷土壤重金属污染与来源解析 [J]. 环境科学与技术, 2020, 43(12): 166-176. ZHANG A G, WEI X P. Pollution and source analysis of heavy metals in soils of typical Karst troughs in southwestern China [J]. Environmental Science & Technology, 2020, 43(12): 166-176(in Chinese).
[46] 张云芸. 基于海量文献的中国农田土壤重金属镉的时空分布及风险评价[D]. 太原: 山西大学, 2019. ZHANG Y Y. Temporal and spatial distribution and risk assessment of cadmium in farmland soils in China based on bibliometrics[D]. Taiyuan: Shanxi University, 2019(in Chinese).
[47] NING C C, GAO P D, WANG B Q, et al. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content [J]. Journal of Integrative Agriculture, 2017, 16(8): 1819-1831. doi: 10.1016/S2095-3119(16)61476-4 [48] 曾庆庆, 付天岭, 邹洪琴, 等. 贵州省某县辣椒种植区土壤重金属空间分布特征及来源解析 [J]. 农业环境科学学报, 2021, 40(1): 102-113. ZENG Q Q, FU T L, ZOU H Q, et al. Spatial distribution characteristics and sources of heavy metals in soil in a pepper growing area of County in Guizhou Province, China [J]. Journal of Agro-Environment Science, 2021, 40(1): 102-113(in Chinese).
[49] RAJMOHAN N, PRATHAPAR S A, JAYAPRAKASH M, et al. Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin [J]. Environmental Monitoring and Assessment, 2014, 186(9): 5411-5427. doi: 10.1007/s10661-014-3790-x [50] 马晓慧, 郝春明, 王梦露, 等. 峰峰煤矿塌陷区典型农田土壤剖面重金素元素化学风化规律 [J]. 科学技术与工程, 2021, 21(3): 1202-1210. MA X H, HAO C M, WANG M L, et al. Chemical weathering law of heavy metal element in typical farmland soil profile in subsidence area of Fengfeng coal mine [J]. Science Technology and Engineering, 2021, 21(3): 1202-1210(in Chinese).
[51] 黄卫, 庄荣浩, 刘辉, 等. 农田土壤镉污染现状与治理方法研究进展 [J]. 湖南师范大学自然科学学报, 2022, 45(1): 49-56. doi: 10.7612/j.issn.1000-2537.2022.1.hnsfdx-zr202201006 HUANG W, ZHUANG R H, LIU H, et al. Recent advances of the current situation and remediation methods of cadmium contamination in paddy soil [J]. Journal of Natural Science of Hunan Normal University, 2022, 45(1): 49-56(in Chinese). doi: 10.7612/j.issn.1000-2537.2022.1.hnsfdx-zr202201006
[52] RUBY M V, LOWNEY Y W. Selective soil particle adherence to hands: Implications for understanding oral exposure to soil contaminants [J]. Environmental Science & Technology, 2012, 46(23): 12759-12771. [53] WANG K, MA J Y, LI M Y, et al. Mechanisms of Cd and Cu induced toxicity in human gastric epithelial cells: Oxidative stress, cell cycle arrest and apoptosis [J]. Science of the Total Environment, 2021, 756: 143951. doi: 10.1016/j.scitotenv.2020.143951 [54] 陈瑜佳, 屈星辰, 张斌, 等. 香河县农田土壤重金属污染生态与健康风险评价[J] . 环境科学, 2022, 43(12): 5728-5741. CHEN Y J, QU X C, ZHANG B, et al. Ecological and health risk assessment of heavy metal pollution in farmland soil of Xianghe County[J]. Environmental Science, 2022, 43(12): 5728-5741(in Chinese).