-
重金属污染是生物圈面临的最广泛、最严重的环境问题之一[1-2]。《2014全国污染调查公报》显示,我国土壤环境质量总体堪忧,以重金属为代表的无机污染物超标点位数占全部超标点位的82.8%,在耕地土壤系统中点位超标率为19.4%,污染情况最为严重,而主要污染物为Cd、Pb等[3]。随着重金属在土壤中不断地蓄积,重金属污染将会导致严重的农业损失,对动物和人类的健康产生严重威胁[4-6]。因此,重金属对人类健康和农业环境的潜在风险性在不断增加。
原位化学钝化修复技术因其经济、高效被广泛关注,而其使用关键在于依据土壤理化性质选择合适的钝化材料[7]。常用的钝化材料分为有机材料(有机肥、腐植酸、污泥、富里酸、粪便、秸秆等)、无机材料(含硅材料、含钙材料、含磷材料、黏土矿物、金属氧化物、生物炭等)和有机-无机复合材料等3种类型[8-9]。这些钝化材料一方面能够有效改善土壤理化性质,增加土壤营养元素含量[10];另一方面,钝化材料能够提高土壤pH,与重金属发生吸附、氧化还原、络合或沉淀作用,改变重金属在土壤中的赋存形态,使重金属的生物有效性下降,从而降低其生物毒性[11-14],这也是钝化修复土壤重金属污染的主要机制。梁妮等[15]研究表明,生物炭与腐殖土混合施入进行修复,Pb生物有效态含量显著降低,生物炭与腐殖土复合的修复效果更好;沈章军等[16]对的研究表明,海泡石、生石灰、鸡粪、秸秆腐殖质有效地钝化了Pb、Cd和Cu的活性,相对于单一材料处理,海泡石与鸡粪和秸秆腐殖质混合处理表现出更好的降低重金属活性;张彦娟等[17]的研究表明,在Cd、Pb、Zn、Cu污染土壤中,施用钙镁磷肥、坡缕石、生物炭组配钝化剂在治理重金属复合污染蔬菜地具有明显的优势,其对全方位修复重金属复合污染土壤的效果好于单一钝化剂;陈盾[18]的研究表明,羟基磷灰石+钙镁磷肥复配处理对Cd污染土壤钝化效果相较单一钝化剂最佳,黑麦草体内Cd含量分别为0.183 mg·kg−1和0.085 mg·kg−1,较对照分别降低了93.64%和91.77%;张新帅等[19]的研究表明,石灰、生物炭单施和配施均降低土壤Cd有效性和玉米Cd含量,提高玉米产量,具有明显的土壤改良效应,处理中石灰与生物炭配合施用最佳,处理效果最好。
长期使用单一钝化材料会对土壤环境造成负面影响,甚至可能加剧其他污染风险或出现污染反复的状况,所以多种钝化材料联合使用不仅对农田土壤环境更加友好,而且还可达到更好的修复效果。但目前对于无机钝化材料的联用以及与有机钝化材料的联用对重金属污染修复的复合效应研究较少。因此本研究通过选用生物炭熟、钙镁磷肥、石灰及猪粪为原位钝化修复材料进行单施、两两混施苗期玉米盆栽实验,对土壤中Cd、Pb化学形态分布、有效态含量及其在苗期玉米植株体内的分布和苗期玉米生长状况进行综合分析,为土壤重金属钝化修复材料的筛选及其应用提供科学依据。
不同钝化材料及其组合对Cd、Pb污染土壤的修复效果及玉米生长的影响
Effects of different passivation materials and combinations on the remediation of Cd and Pb polluted soil and the growth of Maize
-
摘要: 为高效钝化修复农田土壤重金属污染及促进作物生长,以生物炭、熟石灰、钙镁磷肥、猪粪作为钝化材料,采用盆栽实验研究了材料单施及两两混施对Cd、Pb复合污染土壤的修复效果,以及对苗期玉米生长状况的影响。结果表明,4种材料单施、两两混施处理均能不同程度提高土壤pH,有效降低土壤弱酸提取态Cd、Pb含量5.83%—9.71%、6.27%—14.48%,增加土壤残渣态Cd、Pb含量54.45%—72.73%、4.36%—43.00%。与对照相比,猪粪单施、混施处理苗期玉米株高增长6.47%—20.28%,干重增加0.37—1.01倍;生物炭-钙镁磷肥、生物炭-熟石灰混施处理能够显著提高土壤pH,分别降低土壤有效态Cd含量18.53%、19.83%,降低有效态Pb含量17.53%、20.61%,降低玉米叶片MDA含量44.95%、58.43%,降低玉米植株SOD活性77.28%、80.56%,CAT活性41.57%、43.28%,POD活性56.84%、58.23%。生物炭-钙镁磷肥、生物炭-熟石灰混施处理效果最佳,能够有效钝化土壤Cd、Pb,并促进玉米生长,有效缓解玉米因受Cd、Pb胁迫造成的氧化物损伤。Abstract: In order to effectively passivate and remediate heavy metal pollution in farmland soil and promote crop growth, biochar, hydrated lime, calcium magnesium phosphate fertilizer and pig manure were used as passivation materials. A pot experiment was carried out to study the remediation effect of single application and mixed application of materials on Cd and Pb contaminated soil and the growth status of maize at seedling stage. The results indicated that both single and mixed application of passivation materials increased the soil pH in varying degrees, and effectively reduced acid extraction state of Cd and Pb by 5.83%—9.71%, 6.27%—14.48%, and increased residual state of Cd and Pb by 54.45%—72.73%, 4.36%—43.00%, respectively. Compared with the control treatment, the plant height of maize at seedling stage increased by 6.47%—20.28% and the dry weight increased by 0.37—1.01 times. The mixed application of biochar-calcium magnesium phosphate fertilizer and biochar-hydrated lime could significantly increase soil pH, reduce the available Cd by 18.53% and 19.83%, the available Pb content by 17.53% and 20.61%, MDA in maize leaves by 44.95%, 58.43%, the activity of SOD by 77.28%, 80.56%, the activity of CAT by 41.57%, 43.28%, and the activity of POD by 56.84%, 58.23%, respectively. The mixed application of biochar-calcium magnesium phosphate fertilizer and biochar-hydrated lime has the best treatment effect, which can effectively passivate soil Cd and Pb, promote maize growth, and effectively alleviate the oxide damage of maize caused by Cd and Pb stress.
-
Key words:
- passivation /
- heavy metals /
- effective state /
- MDA /
- antioxidant enzyme activity
-
表 1 供试土壤基本理化性质
Table 1. Basic physical and chemical properties of tested soil
土壤背景值
Soil background
valuepH 碱解氮
(mg·kg−1)
Available N有效磷/(mg·kg−1)
Available P速效钾/
(mg·kg−1)
Available K有机质/
(mg·kg−1)
OM全Cd/
(mg·kg−1)
Total Cd全Pb/
(mg·kg−1)
Total Pb7.42 13.52 0.37 141.21 31.71 0.24 4.46 表 2 供试材料基本性质
Table 2. Basic properties of tested materials
供试材料
Test materialpH 全Cd/(mg·kg−1)
Total Cd全Pb/(mg·kg−1)
Total Pb生物炭 10.12 0.01 9.25 钙镁磷肥 7.81 0.07 10.2 熟石灰 12.93 0.08 20.14 猪粪 7.28 0.52 35.24 表 3 不同处理对土壤pH、养分的影响
Table 3. Effects of different treatments on soil pH、nutrients
处理
TreatmentspH 碱解氮/
(mg·kg−1)
Available N有效磷/
(mg·kg−1)
Available P速效钾/
(mg·kg−1)
Available K有机质/
(g·kg−1)
OM对照CK 7.53±0.24 c 14.03±0.51 E 5.61±0.16 J 67.40±2.45 F 31.33±3.12 E 钙镁磷肥单施C 7.73±0.21 ab 14.94±0.48 DE 27.16±0.25 B 66.33±5.12 F 26.32±2.14 E 生物炭单施B 7.84±0.18 ab 14.54±0.21 DE 9.16±0.25 H 169.07±3.12 A 101.51±3.65 A 熟石灰单施L 7.90±0.11 a 14.84±0.31 DE 6.84±0.21 I 53.87±4.45 G 29.03±5.44 E 猪粪单施P 7.68±0.14 ab 22.74±0.65 A 22.68±0.34 D 125.13±8.23 CD 42.79±2.43 D 生物炭-钙镁磷肥混施BC 7.85±0.16 ab 14.74±0.45 DE 21.08±0.22 E 138.67±6.65 B 62.23±3.25 C 生物炭-熟石灰混施BL 7.88±0.13 ab 15.33±0.24 D 9.28±0.15 H 115.67±5.32 D 63.64±4.12 BC 生物炭-猪粪混施BP 7.86±0.23 ab 19.07±0.35 B 17.64±0.24 G 133.13±10.25 BC 70.95±2.54 B 熟石灰-钙镁磷肥混施LC 7.88±0.15 ab 14.94±0.26 DE 23.32±018 C 74.73±4.21 F 31.73±1.84 E 熟石灰-猪粪混施LP 7.87±0.11 ab 17.65±0.18 C 18.24±0.13 F 64.27±5.12 F 41.79±2.12 D 猪粪-钙镁磷肥混施PC 7.60±0.24 b 17.22±0.13 C 28.72±0.33 A 87.80±7.14 E 41.08±3.14 D 注:大写字母表示在P<0.01水平上的差异极显著,小写字母表示在P<0.05水平上的差异显著.
Note: Capital letters indicate significant difference at P < 0.01 level,and lowercase letters indicate significant difference at P < 0.05 level.表 4 土壤理化性质与Cd、Pb化学形态的相关性分析
Table 4. Correlation Analysis between chemical forms of Cd、Pb and soil properties
Cd、Pb化学形态
Chemical speciation of Cd、 PbpH 碱解氮
Available N有效磷
Available P速效钾
Available K有机质
OM弱酸提取态Cd −0.871** 0.222 0.209 0.044 −0.128 可还原态Cd −0.820** 0.071 0.142 0.054 −0.071 可氧化态Cd 0.968** −0.168 −0.229 −0.121 0.058 残渣态Cd 0.828** −0.147 −0.135 −0.001 0.140 弱酸提取态Pb −0.917** 0.016 0.039 0.007 −0.107 可还原态Pb −0.976** 0.084 0.189 0.075 −0.202 可氧化态Pb 0.957** −0.060 −0.227 −0.039 0.170 残渣态Pb 0.971** −0.107 −0.155 −0.006 0.128 注:** 表示达到极显著相关性(P<0.01)水平.
Note:** indicate the level of P<0.01. -
[1] HAMID Y, TANG L, YASEEN M, et al. Comparative efficacy of organic and inorganic amendments for cadmium and lead immobilization in contaminated soil under rice-wheat cropping system [J]. Chemosphere, 2019, 214: 259-268. doi: 10.1016/j.chemosphere.2018.09.113 [2] O'CONNOR D, PENG T Y, ZHANG J L, et al. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials [J]. Science of the Total Environment, 2018, 619/620: 815-826. doi: 10.1016/j.scitotenv.2017.11.132 [3] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京, 2014. Ministry of Environment of the People's Republic of China, Ministry of Natural Resources of the People's Republic of China. National survey bulletin on soil pollution[R]. Beijing, 2014.
[4] XU X J, HUANG Q, HUANG Q Y, et al. Soil microbial augmentation by an EGFP-tagged Pseudomonas putida X4 to reduce phytoavailable cadmium [J]. International Biodeterioration & Biodegradation, 2012, 71: 55-60. [5] KIRAN, BHARTI R, SHARMA R. Effect of heavy metals: An overview[J]. Materials Today: Proceedings, 2022, 51(1): 880-885. [6] WANG Q, PAN F S, XU X M, et al. Cadmium level and soil type played a selective role in the endophytic bacterial community of hyperaccumulator Sedum alfred Hance [J]. Chemosphere, 2021, 263: 127986. doi: 10.1016/j.chemosphere.2020.127986 [7] 丁园, 敖师营, 陈怡红, 等. 4种钝化剂对污染水稻土中Cu和Cd的固持机制 [J]. 环境科学, 2021, 42(8): 4037-4044. doi: 10.13227/j.hjkx.202010260 DING Y, AO S Y, CHEN Y H, et al. Immobilization mechanism of four types of amendments on Cu and Cd in polluted paddy soil [J]. Environmental Science, 2021, 42(8): 4037-4044(in Chinese). doi: 10.13227/j.hjkx.202010260
[8] 吴霄霄, 曹榕彬, 米长虹, 等. 重金属污染农田原位钝化修复材料研究进展 [J]. 农业资源与环境学报, 2019, 36(3): 253-263. doi: 10.13254/j.jare.2018.0101 WU X X, CAO R B, MI C H, et al. Research progress of in situ passivated remedial materials for heavy metal contaminated soil [J]. Journal of Agricultural Resources and Environment, 2019, 36(3): 253-263(in Chinese). doi: 10.13254/j.jare.2018.0101
[9] 纪艺凝, 王农, 徐应明, 等. 无机-有机复配材料对Cd污染土壤的修复效应 [J]. 环境化学, 2017, 36(11): 2333-2340. doi: 10.7524/j.issn.0254-6108.2017060804 JI Y N, WANG N, XU Y M, et al. Effect of inorganic-organic compound mixtures on the immobilization remediation of Cd contaminated soil [J]. Environmental Chemistry, 2017, 36(11): 2333-2340(in Chinese). doi: 10.7524/j.issn.0254-6108.2017060804
[10] 陈炳睿, 徐超, 吕高明, 等. 6种固化剂对土壤Pb Cd Cu Zn的固化效果 [J]. 农业环境科学学报, 2012, 31(7): 1330-1336. CHEN B R, XU C, LV G M, et al. Effects of six kinds of curing agents on lead, cadmium, copper, zinc stabilization in the tested soil [J]. Journal of Agro-Environment Science, 2012, 31(7): 1330-1336(in Chinese).
[11] 李英, 商建英, 黄益宗, 等. 镉砷复合污染土壤钝化材料研究进展 [J]. 土壤学报, 2021, 58(4): 837-850. doi: 10.11766/trxb201912170575 LI Y, SHANG J Y, HUANG Y Z, et al. Research progress on passivation materials for cadmium-arsenic co-contamination in soil [J]. Acta Pedologica Sinica, 2021, 58(4): 837-850(in Chinese). doi: 10.11766/trxb201912170575
[12] WAN Y N, HUANG Q Q, WANG Q, et al. Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure [J]. Journal of Hazardous Materials, 2020, 384: 121293. doi: 10.1016/j.jhazmat.2019.121293 [13] 刘勇, 刘燕, 朱光旭, 等. 石灰对Cu、Cd、Pb、Zn复合污染土壤中重金属化学形态的影响 [J]. 环境工程, 2019, 37(2): 158-164. doi: 10.13205/j.hjgc.201902030 LIU Y, LIU Y, ZHU G X, et al. Effects of lime on chemical forms of heavy metals under combined pollution of Cu, Cd, Pb and Zn in soils [J]. Environmental Engineering, 2019, 37(2): 158-164(in Chinese). doi: 10.13205/j.hjgc.201902030
[14] 闫家普, 丁效东, 崔良, 等. 不同改良剂及其组合对土壤镉形态和理化性质的影响 [J]. 农业环境科学学报, 2018, 37(9): 1842-1849. doi: 10.11654/jaes.2018-0187 YAN J P, DING X D, CUI L, et al. Effects of several modifiers and their combined application on cadmium forms and physicochemical properties of soil [J]. Journal of Agro-Environment Science, 2018, 37(9): 1842-1849(in Chinese). doi: 10.11654/jaes.2018-0187
[15] 梁妮, 净婷菲, 李中文, 等. 不同钝化剂对土壤环境中重金属有效性和微生物群落的影响 [J]. 生态毒理学报, 2021, 16(1): 177-187. LIANG N, JING T F, LI Z W, et al. Effects of different amendments on the availability of heavy metals and microbial communities in contaminated soils [J]. Asian Journal of Ecotoxicology, 2021, 16(1): 177-187(in Chinese).
[16] 沈章军, 侯万青, 徐德聪, 等. 不同钝化剂对重金属在土壤-油菜中迁移的影响 [J]. 农业环境科学学报, 2020, 39(12): 2779-2788. doi: 10.11654/jaes.2020-0397 SHEN Z J, HOU W Q, XU D C, et al. Effects of different immobilization materials on heavy metal migration in contaminated soil-rape [J]. Journal of Agro-Environment Science, 2020, 39(12): 2779-2788(in Chinese). doi: 10.11654/jaes.2020-0397
[17] 张彦娟, 章明奎. 组配钝化剂对复合污染蔬菜地土壤重金属的钝化效果 [J]. 江西农业学报, 2020, 32(10): 121-124,130. doi: 10.19386/j.cnki.jxnyxb.2020.10.23 ZHANG Y J, ZHANG M K. Inactivation effect of mixed amendments on heavy metals in complex polluted vegetable soil [J]. Acta Agriculturae Jiangxi, 2020, 32(10): 121-124,130(in Chinese). doi: 10.19386/j.cnki.jxnyxb.2020.10.23
[18] 陈盾. 生物炭复配及硫改性对Cd污染农田土壤的修复效果研究[D]. 扬州: 扬州大学, 2020. CHEN D. Study on the remediation effect of biochar compounding and sulfur modification on Cd contaminated farmland soil[D]. Yangzhou, China: Yangzhou University, 2020(in Chinese).
[19] 张新帅, 张红宇, 黄凯, 等. 石灰与生物炭对矿山废水污染农田土壤的改良效应[J]. 农业环境科学学报: 2021, 41(3): 481-491. ZHANG X S, ZHANG H Y, HUANG K, et al. Beneficial effects of lime and biochar application on farmland soil polluted by mine wastewater[J]. Journal of Agro-Environment Science, 2022, 41(3): 481-491(in Chinese).
[20] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: Chinese Agriculture Press, 2000(in Chinese).
[21] 刘新. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2015. LIU X. Experimental guidance of Plant Physiology [M]. Beijing: Chinese Agriculture Press, 2015(in Chinese).
[22] CAKMAK I, STRBAC D, MARSCHNER H. Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds [J]. Journal of Experimental Botany, 1993, 44(1): 127-132. doi: 10.1093/jxb/44.1.127 [23] HAMID Y, TANG L, HUSSAIN B, et al. Adsorption of Cd and Pb in contaminated gleysol by composite treatment of sepiolite, organic manure and lime in field and batch experiments [J]. Ecotoxicology and Environmental Safety, 2020, 196: 110539. doi: 10.1016/j.ecoenv.2020.110539 [24] BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize? [J]. Journal of Hazardous Materials, 2014, 266: 141-166. doi: 10.1016/j.jhazmat.2013.12.018 [25] 黄连喜, 魏岚, 刘晓文, 等. 生物炭对土壤-植物体系中铅镉迁移累积的影响 [J]. 农业环境科学学报, 2020, 39(10): 2205-2216. doi: 10.11654/jaes.2020-0740 HUANG L X, WEI L, LIU X W, et al. Effects of biochar on the migration and accumulation of lead and cadmium in soil-plant systems [J]. Journal of Agro-Environment Science, 2020, 39(10): 2205-2216(in Chinese). doi: 10.11654/jaes.2020-0740
[26] ZHOU Z, XU Z H, FENG Q J, et al. Effect of pyrolysis condition on the adsorption mechanism of lead, cadmium and copper on tobacco stem biochar [J]. Journal of Cleaner Production, 2018, 187: 996-1005. doi: 10.1016/j.jclepro.2018.03.268 [27] 安梅, 董丽, 张磊, 等. 不同种类生物炭对土壤重金属镉铅形态分布的影响 [J]. 农业环境科学学报, 2018, 37(5): 892-898. doi: 10.11654/jaes.2017-1388 AN M, DONG L, ZHANG L, et al. Influence of different kinds of biochar on Cd and Pb forms in soil [J]. Journal of Agro-Environment Science, 2018, 37(5): 892-898(in Chinese). doi: 10.11654/jaes.2017-1388
[28] WU W C, WU J H, LIU X W, et al. Inorganic phosphorus fertilizer ameliorates maize growth by reducing metal uptake, improving soil enzyme activity and microbial community structure [J]. Ecotoxicology and Environmental Safety, 2017, 143: 322-329. doi: 10.1016/j.ecoenv.2017.05.039 [29] LU H L, WU Y X, LIANG P X, et al. Alkaline amendments improve the health of soils degraded by metal contamination and acidification: Crop performance and soil bacterial community responses [J]. Chemosphere, 2020, 257: 127309. doi: 10.1016/j.chemosphere.2020.127309 [30] WANG C R, HUANG Y C, ZHANG C B, et al. Inhibition effects of long-term calcium-magnesia phosphate fertilizer application on Cd uptake in rice: Regulation of the iron-nitrogen coupling cycle driven by the soil microbial community [J]. Journal of Hazardous Materials, 2021, 416: 125916. doi: 10.1016/j.jhazmat.2021.125916 [31] 马国泰, 杜红艳, 刘芝妨, 等. 猪粪施用量对土壤和辣椒中Cd和Pb积累的影响 [J]. 甘肃农业科技, 2021, 52(1): 28-34. doi: 10.3969/j.issn.1001-1463.2021.01.006 MA G T, DU H Y, LIU Z F, et al. Effect of pig manure application on Cd and Pb accumulation in soil and pepper [J]. Gansu Agricultural Science and Technology, 2021, 52(1): 28-34(in Chinese). doi: 10.3969/j.issn.1001-1463.2021.01.006
[32] 曾凡健. 畜禽粪便堆肥钝化修复Pb/Cd污染土壤的潜力与强化研究[D]. 杭州: 浙江大学, 2020. ZENG F J. The study on the capacity and enhancement of immobilizing remediation of Pb/Cd contaminated soil using livestock manure composts[D]. Hangzhou: Zhejiang University, 2020(in Chinese).
[33] ZHOU W J, REN L W, ZHU L Z. Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure [J]. Environmental Pollution, 2017, 223: 247-254. doi: 10.1016/j.envpol.2017.01.019 [34] LIU P, HU W Y, TIAN K, et al. Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: A comparative study of China and South Korea [J]. Environment International, 2020, 137: 105519. doi: 10.1016/j.envint.2020.105519 [35] 王逸群, 许端平, 薛杨, 等. Pb和Cd赋存形态与土壤理化性质相关性研究 [J]. 地球与环境, 2018, 46(5): 451-455. doi: 10.14050/j.cnki.1672-9250.2018.46.118 WANG Y Q, XU D P, XUE Y, et al. Correlation between fractionation content of pb, Cd and physico-chemical properties of contaminated soils [J]. Earth and Environment, 2018, 46(5): 451-455(in Chinese). doi: 10.14050/j.cnki.1672-9250.2018.46.118
[36] 王玉婷, 王紫玥, 刘田田, 等. 钝化剂对镉污染土壤修复效果及青菜生理效应影响 [J]. 环境化学, 2020, 39(9): 2395-2403. doi: 10.7524/j.issn.0254-6108.2020032505 WANG Y T, WANG Z Y, LIU T T, et al. Effects of amendments on remediation of cadmium-contaminated soil and physiological characteristics of pakchoi [J]. Environmental Chemistry, 2020, 39(9): 2395-2403(in Chinese). doi: 10.7524/j.issn.0254-6108.2020032505
[37] KRIKA F, AZZOUZ N, NCIBI M C. Adsorptive removal of cadmium from aqueous solution by cork biomass: Equilibrium, dynamic and thermodynamic studies [J]. Arabian Journal of Chemistry, 2016, 9: S1077-S1083. doi: 10.1016/j.arabjc.2011.12.013 [38] HE Y B, HUANG D Y, ZHU Q H, et al. A three-season field study on the in situ remediation of Cd-contaminated paddy soil using lime, two industrial by-products, and a low-Cd-accumulation rice cultivar [J]. Ecotoxicology and Environmental Safety, 2017, 136: 135-141. doi: 10.1016/j.ecoenv.2016.11.005 [39] PURAKAYASTHA T J, BERA T, BHADURI D, et al. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security [J]. Chemosphere, 2019, 227: 345-365. doi: 10.1016/j.chemosphere.2019.03.170 [40] HAMID Y, TANG L, HUSSAIN B, et al. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review [J]. Science of the Total Environment, 2020, 707: 136121. doi: 10.1016/j.scitotenv.2019.136121 [41] BARROW C J. Biochar: Potential for countering land degradation and for improving agriculture [J]. Applied Geography, 2012, 34: 21-28. doi: 10.1016/j.apgeog.2011.09.008 [42] 杨淑颐. 生物炭对水稻土和黑土中Cd和Pb的生物有效性的影响[D]. 雅安: 四川农业大学, 2019. YANG S Y. Effect of biochar on bioavailability of Cd and Pb in paddy and black soil[D]. Yaan, China: Sichuan Agricultural University, 2019(in Chinese).
[43] 袁金华, 徐仁扣. 稻壳制备的生物质炭对红壤和黄棕壤酸度的改良效果 [J]. 生态与农村环境学报, 2010, 26(5): 472-476. doi: 10.3969/j.issn.1673-4831.2010.05.013 YUAN J H, XU R K. Effects of rice-hull-based biochar regulating acidity of red soil and yellow brown soil [J]. Journal of Ecology and Rural Environment, 2010, 26(5): 472-476(in Chinese). doi: 10.3969/j.issn.1673-4831.2010.05.013
[44] XU X Y, CAO X D, ZHAO L. Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars [J]. Chemosphere, 2013, 92(8): 955-961. doi: 10.1016/j.chemosphere.2013.03.009 [45] ZHAI X Q, LI Z W, HUANG B, et al. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization [J]. Science of the Total Environment, 2018, 635: 92-99. doi: 10.1016/j.scitotenv.2018.04.119 [46] ALBERT H A, LI X, JEYAKUMAR P, et al. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis [J]. Science of the Total Environment, 2021, 755: 142582. doi: 10.1016/j.scitotenv.2020.142582 [47] 朱启东, 鲁艳红, 廖育林, 等. 施氮量对双季稻产量及氮磷钾吸收利用的影响 [J]. 水土保持学报, 2019, 33(2): 183-188. doi: 10.13870/j.cnki.stbcxb.2019.02.029 ZHU Q D, LU Y H, LIAO Y L, et al. Effects of nitrogen application rates on yield and nitrogen, phosphorus and potassium uptake of double cropping rice [J]. Journal of Soil and Water Conservation, 2019, 33(2): 183-188(in Chinese). doi: 10.13870/j.cnki.stbcxb.2019.02.029