-
PM2.5是空气动力学直径小于或等于2.5 μm的大气颗粒物,含有金属、碳质、无机盐、挥发性有机化合物(VOC)、多环芳烃(PAH)、花粉等多种化学成分[1]. 其中金属元素进入人体后在人体中蓄积,长期暴露会导致多种疾病甚至癌症,对人体健康构成巨大风险[2]. 因此,PM2.5中金属元素的污染特性和对健康的影响备受关注.
PM2.5中的金属元素来源于自然和人为活动,如地壳尘埃、住宅供暖、工业生产、汽车尾气排放和燃油燃烧等[3]. 各种受体模型被用来定量识别潜在污染源. 其中一些受体模型(如主成分分析、因子分析和聚类分析)无法保证结果非负,而正定矩阵因子(PMF)模型可以得到每个数据的非负贡献[4-5],有效解决了该问题,从而得到广泛的应用. 由于各类源的金属元素组成和毒性的差异,对金属元素浓度贡献最大的源不一定是人类健康风险的最大来源[6]. 使用受体模型进行健康风险评估已成为当前主流[7-9]. 通过结合PMF模型和人类健康风险评价模型,可以得到以源头为导向的健康风险评价,该方法有助于科学的制定风险管控策略.
涉及人类健康风险评价,以往的研究大多采用确定性方法,对变量使用固定值,却忽略了污染物浓度和暴露参数的不确定性,这可能会高估或低估实际风险. 蒙特卡洛模拟利用服从一定分布的随机数来模拟变量,极大的降低了不确定性,还可以提供风险超过指导阈值的概率[10]. 蒙特卡洛模拟已被应用于食品[11]、土壤[12]、沉积物[13]等领域的风险评价,在健康风险评价中显示出巨大潜力.
本文的研究区域为伊犁河谷地区,伊犁河谷位于新疆西北部,天山山脉西部. 三面环山,形成向西开敞的喇叭形谷地,可以接收来自大西洋的湿润水汽,属于温带大陆性气候. “十三五”期间,全国PM2.5浓度呈现下降趋势,然而伊犁河谷的经济政治中心伊宁市的PM2.5浓度呈现出不减反增趋势. 本文结合蒙特卡洛模拟、PMF模型、人类健康风险评价模型,对伊犁河谷夏季PM2.5中11种金属元素进行来源解析和健康风险评价,识别和量化金属元素的主要来源并评估其概率健康风险,确定优先控制因素.
伊犁河谷夏季PM2.5中金属元素以源为导向的健康风险评价
Source-oriented health risk assessment of PM2.5 bound metal elements during summer in Ili Valley
-
摘要: 为了精准评估PM2.5中金属元素的健康风险及科学确定优先控制源,结合蒙特卡洛模拟、PMF模型、人类健康风险评价模型,评估PM2.5中金属元素以源为导向的概率健康风险(呼吸吸入途径). 以伊犁河谷2021年7月PM2.5为对象,分析其中11种金属元素(As、Bi、Cd、Cr、Cu、Ni、Pb、Zn、Al、Ti和Ca)浓度特征. 结果表明,观测期间Cd的地累积指数最高(5.89),为严重污染水平. PM2.5中金属元素的来源为扬尘源(56.15%)、化石燃料燃烧源(24.15%)、交通源(10.18%)和工业源(9.51%). 成年男性、成年女性和儿童的非致癌风险大于可接受阈值(HI = 1)的概率均为15.89%. 成年男性、成年女性和儿童的致癌风险均100%大于可忽略阈值(TCR = 1×10−6),其中儿童的致癌风险未达到显著致癌水平(TCR = 1×10−4),成年男性和成年女性的致癌风险存在18.17%的概率达到显著致癌水平. 化石燃料燃烧源、扬尘源、交通源和工业源对成年男性非致癌风险的贡献率分别为42.1%、24.1%、21.3%和12.4%,而成年男性的致癌风险主要来自工业源(70.0%)和化石燃料燃烧源(23.0%),建议伊犁河谷地区加强化石燃料燃烧源和工业源的管控.Abstract: To accurately assess the health risk of PM2.5 bound metal elements and scientifically prioritize sources for control, this study combined Monte Carlo simulation, PMF model, and human health risk assessment model, and evaluated the source-oriented probabilistic health risks (inhalation route) of PM2.5 bound metal elements. Eleven metal elements (As, Bi, Cd, Cr, Cu, Ni, Pb, Zn, Al, Ti and Ca) in PM2.5 in Ili Valley in July 2021 were investigated in this study. The results showed that the geo-accumulation index of Cd was the highest (5.89) during the observation period, indicating high pollution level of Cd. Metal elements in PM2.5 were mainly contributed by fugitive dust (56.15%), fossil fuel combustion (24.15%), traffic (10.18%) and industry (9.51%). The probabilities that non-carcinogenic risk for adult males, females and children exceeded the acceptable threshold (HI = 1) were 15.89%, while those that the carcinogenic risk for adult males, females and children exceeded the negligible threshold (TCR = 1×10−6) were 100%. In addition to the significant level of carcinogenic risk, the adult males, females had the probability of 18.17% that exceeded the significant level (TCR = 1×10−4), while no chance for children to exceed the significant level. For adult males, the heavy metals emitted from fossil fuel combustion, dust, traffic and industry contributed 42.1%, 24.1%, 21.3% and 12.4% of the non-carcinogenic risk. The carcinogenic risk for adult males was mainly contributed by industrial sources (70.0%) and fossil fuel combustion sources (23.0%). Based on the health risk assessment results, it is suggested to strengthen the control of fossil fuel combustion sources and industrial sources in Ili Valley.
-
Key words:
- PM2.5 /
- Monte Carlo simulation /
- PMF /
- source apportionment /
- health risk assessment.
-
表 1 吸入暴露浓度计算参数含义及取值
Table 1. Parameter values of average exposure concentration
参数
Parameters参数含义
Name单位
Unit分布
Distribution成年男性取值
Values for adult males成年女性取值
Values for adult females儿童取值
Value of children数据来源
Source of dataC 元素浓度 μg·m−3 对数正态分布 — — — 本研究 ET 暴露时间 h·d -1 常数 24 [19] EF 暴露频率 d·r−1 三角分布 TRI (180, 345, 365) TRI (180, 345, 365) [19, 23] ED 暴露年限 a 均匀分布 (0, 24) (0, 6) [6, 19] AT 平均暴露时间 h 常数 365×ED×24(非致癌) [19] 365×70×24(致癌) [19] -
[1] MICHAEL S, MONTAG M, DOTT W. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter [J]. Environmental Pollution, 2013, 183: 19-29. doi: 10.1016/j.envpol.2013.01.026 [2] 舒嫒嫒, 柏荣耀, 石俊豪, 等. 孝感市开放源扬尘重金属污染特征、来源及健康风险评价 [J]. 环境化学, 2022, 41(2): 499-510. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2021042302 SHU A A, BAI R Y, SHI J H, et al. Pollution characteristics, sources and health risk assessment of heavy metals in open-source dusts in Xiaogan City [J]. Environmental Chemistry, 2022, 41(2): 499-510(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2021042302
[3] 徐雪梅, 冯小琼, 陈军辉, 等. 攀枝花市PM2.5中金属元素污染特征及健康风险评估 [J]. 环境化学, 2021, 40(9): 2780-2788. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2020052702 XU X M, FENG X Q, CHEN J H, et al. Pollution characteristic and health risk assessment of metal elements in PM2.5 of Panzhihua City [J]. Environmental Chemistry, 2021, 40(9): 2780-2788(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2020052702
[4] DENG J J, ZHANG Y R, QIU Y Q, et al. Source apportionment of PM2.5 at the Lin'an regional background site in China with three receptor models [J]. Atmospheric Research, 2018, 202: 23-32. doi: 10.1016/j.atmosres.2017.11.017 [5] PAATERO P. Least squares formulation of robust non-negative factor analysis [J]. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1): 23-35. doi: 10.1016/S0169-7439(96)00044-5 [6] SUN J, ZHAO M, HUANG J L, et al. Determination of priority control factors for the management of soil trace metal(loid)s based on source-oriented health risk assessment[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 127116. [7] LIU B S, WU J H, WANG J, et al. Chemical characteristics and sources of ambient PM2.5 in a harbor area: Quantification of health risks to workers from source-specific selected toxic elements [J]. Environmental Pollution, 2021, 268: 115926. doi: 10.1016/j.envpol.2020.115926 [8] HUANG J H, GUO S T, ZENG G M, et al. A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use [J]. Environmental Pollution, 2018, 243: 49-58. doi: 10.1016/j.envpol.2018.08.038 [9] PENG X, SHI G L, LIU G R, et al. Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model [J]. Environmental Pollution, 2017, 221: 335-342. doi: 10.1016/j.envpol.2016.11.083 [10] GUO P, LI H, ZHANG G, et al. Contaminated site-induced health risk using Monte Carlo simulation: evaluation from the brownfield in Beijing, China [J]. Environmental Science and Pollution Research International, 2021, 28(20): 25166-25178. doi: 10.1007/s11356-021-12429-4 [11] PIRSAHEB M, HADEI M, SHARAFI K. Human health risk assessment by Monte Carlo simulation method for heavy metals of commonly consumed cereals in Iran - Uncertainty and sensitivity analysis [J]. Journal of Food Composition and Analysis, 2021, 96: 103697. doi: 10.1016/j.jfca.2020.103697 [12] LEI M, LI K, GUO G, et al. Source-specific health risks apportionment of soil potential toxicity elements combining multiple receptor models with Monte Carlo simulation [J]. Science of the Total Environment, 2022, 817: 152899. doi: 10.1016/j.scitotenv.2021.152899 [13] ACHARJEE A, AHMED Z, KUMAR P, et al. Assessment of the ecological risk from heavy metals in the surface sediment of river Surma, Bangladesh: Coupled approach of Monte Carlo simulation and Multi-Component statistical analysis [J]. Water, 2022, 14(2): 180. doi: 10.3390/w14020180 [14] MULLER G. Index of geoaccumulation in sediments of the Rhine river [J]. GeoJournal, 1969, 2(3): 108-118. [15] 魏复盛. 中国土壤元素背景值(第2版)[M]. 北京: 中国环境科学出版社, 1990: 94-483. WEI F S. Background values of soil elements in China (2nd edition)[M]. Beijing: China Environmental Science Press, 1990: 94-483 (in Chinese).
[16] 刘玥, 郭文强, 武晔秋. 基于PMF模型的大同市城区公园地表灰尘中重金属污染评价及来源解析 [J]. 环境化学, 2022, 41(5): 1616-1628. doi: 10.7524/j.issn.0254-6108.2021091103 LIU Y, GUO W Q, WU Y Q. Pollution assessment and source analysis of surface dust heavy metals in parks of Datong city based on Positive matrix factorization model [J]. Environmental Chemistry, 2022, 41(5): 1616-1628(in Chinese). doi: 10.7524/j.issn.0254-6108.2021091103
[17] PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values [J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203 [18] US EPA. Risk assessment guidance for superfund, volume I: human health evaluation manual (Part A)[R]. Washington DC: USEPA, 1989. [19] US EPA. Risk assessment guidance for superfund, volume I: human health evaluation manual (Part F, supplemental guidance for inhalation risk assessment)[R]. Washington DC: USEPA, 2009. [20] US EPA. User's guide/technical background document for US EPA region 9's RSL (regional screening levels) tables[R]. Washington DC: USEPA, 2022. [21] LI H M, WANG Q G, SHAO M, et al. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China[J]. Environmental Pollution, 2016, 208(Part B): 655-662. [22] HUANG L, BAI Y H, MA R Y, et al. Winter chemical partitioning of metals bound to atmospheric fine particles in Dongguan, China, and its health risk assessment [J]. Environmental Science and Pollution Research, 2019, 26(13): 13664-13675. doi: 10.1007/s11356-019-05001-8 [23] HUANG J L, WU Y Y, SUN J X, et al. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model [J]. Journal of Hazardous Materials, 2021, 415: 125629. doi: 10.1016/j.jhazmat.2021.125629 [24] 鲍昱璇, 谢海燕, 张一龙, 等. 和田市夏季PM2.5、PM10元素污染特征及健康风险评价 [J]. 环境科学与技术, 2022, 45(1): 154-162. BAO Y X, XIE H Y, ZHANG Y L, et al. PM2.5 and PM10 pollution characteristics during summer in Hotan City and relevant health risk assessment [J]. Environmental Science & Technology, 2022, 45(1): 154-162(in Chinese).
[25] HE W H, MENG H, HAN J, et al. Spatiotemporal PM2.5 estimations in China from 2015 to 2020 using an improved gradient boosting decision tree [J]. Chemosphere, 2022, 296: 134003. doi: 10.1016/j.chemosphere.2022.134003 [26] 苏都尔·克热木拉, 伊丽米热·阿布达力木, 迪丽努尔·塔力甫. 乌鲁木齐市采暖期大气PM2.5-10、PM2.5中重金属和多环芳烃的分布及其相关性 [J]. 环境化学, 2013, 32(4): 706-707. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2013.04.028 SUDUR K, IRIMIJE A, DILINUL T. Distribution and correlation of heavy metals and polycyclic aromatic hydrocarbons in atmospheric PM2.5-10, PM2.5 during the heating period in Urumqi city [J]. Environmental Chemistry, 2013, 32(4): 706-707(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2013.04.028
[27] 王伟, 张静, 姬亚芹, 等. 鞍山市夏季PM2.5中元素污染特征与来源初探 [J]. 南开大学学报(自然科学版), 2015, 48(1): 34-39. WANG W, ZHANG J, JI Y Q, et al. The preliminary exploration of pollution characteristics and sources of elements in PM2.5 during summer in Anshan city [J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2015, 48(1): 34-39(in Chinese).
[28] 张静, 姬亚芹, 王伟, 等. 应用地累积指数评价鞍山市夏季PM2.5中元素的污染 [J]. 环境工程学报, 2016, 10(5): 2551-2556. ZHANG J, JI Y Q, WANG W, et al. Applying the geoaccumulation index to evaluate element pollution of PM2.5 in Anshan city during summer [J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2551-2556(in Chinese).
[29] 谢忱, 杨文, 张文杰, 等. 中国23城市PM2.5载带典型重金属的污染特征及健康风险评价研究 [J]. 环境与健康杂志, 2019, 36(8): 693-702,753. XIE C, YANG W, ZHANG W J, et al. Pollution characteristics and health risk assessment of heavy metals in PM2.5 in 23 Chinese cities [J]. Journal of Environment and Health, 2019, 36(8): 693-702,753(in Chinese).
[30] GALVÃO E S, DE CASSIA FERONI R, D’AZEREDO ORLANDO M T. A review of the main strategies used in the interpretation of similar chemical profiles yielded by receptor models in the source apportionment of particulate matter [J]. Chemosphere, 2021, 269: 128746. doi: 10.1016/j.chemosphere.2020.128746 [31] LIN Y C, HSU S C, CHOU C C K, et al. Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals [J]. Environmental Pollution, 2016, 208: 284-293. doi: 10.1016/j.envpol.2015.07.044 [32] FABRETTI J F, SAURET N, GAL J F, et al. Elemental characterization and source identification of PM2.5 using Positive Matrix Factorization: The Malraux road tunnel, Nice, France [J]. Atmospheric Research, 2009, 94(2): 320-329. doi: 10.1016/j.atmosres.2009.06.010 [33] CRILLEY L R, LUCARELLI F, BLOSS W J, et al. Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign [J]. Environmental Pollution, 2017, 220: 766-778. doi: 10.1016/j.envpol.2016.06.002 [34] 韩力慧, 张鹏, 张海亮, 等. 北京市大气细颗粒物污染与来源解析研究 [J]. 中国环境科学, 2016, 36(11): 3203-3210. HAN L H, ZHANG P, ZHANG H L, et al. Pollution and source apportionment of atmospheric fine particles in Beijing [J]. China Environmental Science, 2016, 36(11): 3203-3210(in Chinese).
[35] 田莎莎, 张显, 卞思思, 等. 沈阳市PM2.5污染组分特征及其来源解析 [J]. 中国环境科学, 2019, 39(2): 487-496. TIAN S S, ZHANG X, BIAN S S, et al. Characteristics of PM2.5 pollution components and their sources in Shenyang [J]. China Environmental Science, 2019, 39(2): 487-496(in Chinese).
[36] SAH D, VERMA P K, KUMARI K M, et al. Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway [J]. Environmental Geochemistry and Health, 2019, 41: 1445-1458. doi: 10.1007/s10653-018-0223-8 [37] ZHAO S, TIAN H Z, LUO L N, et al. Temporal variation characteristics and source apportionment of metal elements in PM2.5 in urban Beijing during 2018-2019 [J]. Environmental Pollution, 2021, 268: 115856. doi: 10.1016/j.envpol.2020.115856 [38] 伊犁哈萨克自治州人民政府. 伊犁哈萨克自治州2021年国民经济和社会发展统计公报[R]. 伊犁: 伊犁哈萨克自治州人民政府, 2022. THE PEOPLE'S GOVERNMENT OF ILI KAZAK AUTONOMOUS PREFECTURE. Statistical bulletin of national economic and social development of Ili Kazak Autonomous Prefecture in 2021[R]. Ili: Ili Kazak Autonomous Prefecture People's government, 2022 (in Chinese).