-
重金属作为典型的累积性污染物,其难降解、毒性强、易于生物富集等特点,不仅对生态环境和生物体造成严重危害,而且最终会严重阻碍人类社会的可持续发展[1]. 近年来,随着现代城市化、工农业的快速发展,污染物排放逐年增加,沉积物-水体重金属污染已经成为全球重点关注的问题之一[2]. 目前,国内外在沉积物-水体重金属污染领域的研究集中在重金属含量影响[3-4]、时空分布[5-6]、迁移转化机理[7]、溯源分析和风险评估[8-10]. 其中对重金属来源和贡献进行解析,微观上可以对重金属在沉积物中的化学行为及其与环境的关系等方面的机理提供重要的证据,宏观上可及时阻断污染源头,为河流生态环境保护提供科学依据[11].
现阶段对重金属来源的研究方法主要有因子分析法(FA)、主成分分析法(PCA)、聚类分析法、正矩阵分解法(PMF)等[2],对重金属生态风险评估的方法有地质累积指数法[12]、脸谱图法、潜在生态风险综合指数法[13]、沉积物质量基准法(SQG)等,综合运用统计方法不仅能有效识别沉积物中重金属的污染来源及贡献,而且能在一定程度上评估重金属的潜在生态风险[14]. PCA是应用最早且最广泛的识别污染物来源的方法,它不需要很难获得的污染源调查数据,但不能定量解析污染源的贡献[15]. APCS-MLR依据PCA进化而来,可以通过分析重金属含量与APCS之间的多元线性回归获得源贡献[16]. PMF对数据矩阵进行非负约束,但无法提供确定合理的因子个数[17]. 目前,PCA、APCS-MLR和PMF已分别不同程度的被应用于大气、土壤和水体中各种污染物的来源解析. 熊鑫玉等[18]运用PCA法识别鲁西北典型入海河流表层沉积物重金属的2个主要污染来源:工农业源、原煤和原油燃烧排放源. 匡荟芬等[2]运用PCA和PMF法解析鄱阳湖丰水期表层沉积物重金属来源,结果都表明重金属污染主要来自4种途径:矿业和工业活动、尾矿和废渣、农业活动、自然来源. Salim等[19]运用APCS-MLR和PMF两种方法识别韩国受混合土地覆盖的径流影响的集水区和分水岭地区的污染来源和贡献,APCS-MLR法确定了3个污染源,PMF法识别了5个污染源,说明针对不同土地使用类型PMF法更为准确.
随着“一带一路”倡议下经济的快速发展,塔里木河位于生态环境脆弱的南疆腹地,在南疆的生态保护和经济发展中占据了主要地位,具有农业灌溉、市政供水、景观用水和绿色走廊等功能. 近年来,塔里木河流域水资源污染越来越严重,但针对塔里木河流域沉积物重金属未有报道. 为保证塔里木河流域水环境的健康安全,本文选取上游阿拉尔-沙雅段表层沉积物为研究对象,测定Cu、Fe、Zn、Pb、As、Cr、Cd、Mn和Ni等9种重金属的含量,结合相关性分析(CA)、聚类分析、正定矩阵因子分析模型(PMF)和绝对主成分-多元线性回归分析(APCS-MLR)解析污染来源及其贡献,运用富集因子法、地质累积指数法、沉积物污染指数法和沉积物质量基准法对沉积物中重金属进行综合风险评估,以期为塔里木河沉积物-水体重金属污染防治、水环境的健康发展及保障区域可持续发展提供科学依据.
APCS-MLR结合PMF模型的塔里木河上游沉积物重金属源解析与风险评估
APCS-MLR combined with PMF model for sediment heavy metal source analysis and risk assessment in the upper Tarim River Basin
-
摘要: 为探究塔里木河上游沉积物中重金属的污染来源及潜在生态风险,选取上游阿拉尔—沙雅段表层沉积物为研究对象,测定Cu、Fe、Zn、Pb、As、Cr、Cd、Mn和Ni等9种重金属的含量,分析其污染及空间分布特征. 结合相关性分析、聚类分析、绝对主成分-多元线性回归(APCS-MLR)和正定矩阵因子分析(PMF)等解析污染来源及其贡献,运用富集系数法、地质累积指数法、沉积物污染指数法和沉积物质量基准法(SQG)对重金属进行了风险评估. 结果表明,除As外,Cu、Fe、Zn、Pb、Cr、Cd、Mn和Ni的平均含量均超过背景值;空间上重金属含量较高的采样点基本都出现在河流汇合处及人类活动的密集区. 相关性分析、聚类分析和PCA/APCS分析表明,塔里木河上游沉积物的重金属来源主要有3类,第Ⅰ类中Cu、Fe、Zn、Pb、Mn和Ni可能代表禽类粪便和自然来源;第Ⅱ类中As、Cd和Ni可能代表农业活动源;第Ⅲ类中Pb和Cr可能代表交通活动源. APCS-MLR和PMF模型表明,源贡献率最高的是农业活动源,贡献率分别为63.20%和52.36%;养殖和自然来源、交通活动源是解析出的其他2个源,APCS-MLR和PMF解析得到的贡献率分别为10.80%、26.00%和36.09%、11.55%. 风险评估方法均表明Cd和Ni处于轻度污染,偶尔会产生生物毒性效应;Zn无污染,生物毒性效应很少发生;塔里木河上游沉积物整体为自然-低风险水平,但样点TH1、TH4和TH7可能存在潜在生态风险.
-
关键词:
- 河流沉积物 /
- 重金属 /
- 源解析 /
- 风险评估 /
- 绝对主成分-多元线性回归模型 /
- 正定矩阵因子分解法.
Abstract: In order to explore the pollution sources and potential ecological risks of heavy metals in sediments in the upper Tarim River Basin, the surface sediments of the Aral-Shaya section of the upper reaches were selected as the research objects, and the contents of nine heavy metals elements, including Cu, Fe, Zn, Pb, As, Cr, Cd, Mn, and Ni, were determined, and their pollution and spatial distribution characteristics were analyzed. Combined with correlation analysis, cluster analysis, Absolute Principal Component Score-Multiple Linear Regression (APCS-MLR) and Positive Matrix Factorization (PMF) to analyze pollution sources and their contributions, the risk assessment of heavy metals was carried out by cluster analysis, geological cumulative index, sediment pollution index method and environmental quality standard for sediments(SQG). The results showed that except As, the average contents of Cu, Fe, Zn, Pb, Cr, Cd, Mn and Ni exceeded the background value; The sampling points with high spatial heavy metal content are basically found at river confluences and areas with dense human activities. Correlation analysis, cluster analysis and PCA/APCS analysis showed that the sources of heavy metals in sediments in the upper Tarim River Basin were divided into three categories, and the first category was Cu, Fe, Zn, Pb, Mn and Ni, which may represent poultry manure and natural sources. Category 2 are As, Cd and Ni, which may represent sources of agricultural activity; Class 3 are Pb and Cr, which may represent sources of traffic activity. The APCS-MLR and PMF models showed that the highest contribution rate of the source was from agricultural activities, with the contribution rate of 63.2% and 52.36%, respectively. The contribution rates of APCS-MLR and PMF analysis of aquaculture sources, natural sources and transportation activity sources were 10.8%, 26.0%, 36.09% and 11.55%, respectively. Risk assessment methods all showed that Cd and Ni were mildly contaminated and occasionally had biotoxic effects; Zn is pollution-free, and biological toxicity effects rarely occur; The sediments in the upper Tarim River are naturally natural - low risk levels overall, but there may be potential ecological risks at the sites TH1, TH4 and TH7. -
表 1 重金属污染评价方法的分级标准
Table 1. Classification standard of heavy metal pollution evaluation method
富集系数法
(EF)EF EF<1 1≤EF<2 2≤EF<5 5≤EF<20 EF≥20 程度分级 无 轻度 中度 重度 极重度 地质累积指数法
(Igeo)Igeo Igeo≤0 0<Igeo≤1 1<Igeo≤2 2<Igeo≤3 3<Igeo≤4 4<Igeo≤5 Igeo>5 程度分级 无污染 轻度 偏中度 中度 偏重度 重度 极重度 沉积物污染指数法
(SPI)SPI SPI≤2 2<SPI≤5 5<SPI≤10 10<SPI≤20 SPI>20 程度分级 自然 低 中 高 危险 沉积物质量基准法
(STU)STU STU<4 4≤STU≤6 STU>6 程度分级 低毒性 中等毒性 高毒性 表 2 塔里木河上游表层沉积物重金属含量的描述性统计(mg·kg−1)
Table 2. Descriptive statistics of heavy metal contents in surface sediments of the upper reaches in Tarim River(mg·kg−1)
重金属
Heavy metal范围
Range平均值±标准差
Mean ± standard
deviation变异系数/%
Coefficient of
variation背景值
Background超标率/%
Rate of excess新疆水系沉积物背景值[31]
Background value of
stream sediment in XinjiangCu 8.20—36.30 18.09±8.73 48.24 15.04 33.33 28.50 Fe 16518.22—34907.20 22234.81±6113.56 27.50 19993.63 44.44 — Zn 35.14—87.87 49.87±17.63 35.35 45.42 33.33 75.40 Pb 11.02—25.03 15.94±4.46 27.97 12.60 66.67 17.26 As 14.01—38.90 26.39±7.60 28.80 31.10 22.22 8.76 Cr 30.88—67.76 45.50±10.21 22.44 39.12 77.78 51.40 Cd 0.80—1.86 1.30±0.31 23.73 0.95 88.89 0.15 Mn 262.49—625.43 372.39±118.81 31.90 282.66 66.67 807.90 Ni 14.37—33.50 22.86±6.80 29.76 19.27 55.56 24.50 表 3 塔里木河上游沉积物重金属因子分析结果
Table 3. Principal component analysis of Heavy Metals in stream sediments of Tarim River Basin
项目
ProjectPCA APCS PC1 PC2 PC3 APCS1 APCS2 APCS3 重金属 Cu 0.835 0.458 0.299 0.850 0.454 0.246 Fe 0.876 0.356 0.311 0.893 0.352 0.271 Zn 0.861 0.424 0.261 0.845 0.390 0.342 Pb 0.396 0.295 0.861 0.632 0.305 0.576 As 0.296 0.868 0.247 0.359 0.838 0.296 Cr 0.763 0.216 0.534 −0.225 −0.004 −0.951 Cd 0.315 0.878 0.212 0.335 0.904 0.001 Mn 0.743 0.509 0.415 0.817 0.510 0.243 Ni 0.639 0.745 0.166 0.630 0.763 −0.076 特征值 7.409 0.827 0.431 6.826 1.256 0.483 方差贡献率/% 82.32 9.19 4.79 75.84 13.95 5.37 累计贡献率/% 82.32 91.51 96.30 75.84 89.79 95.16 表 4 APCS-MLR解析污染源对重金属的贡献值结果(mg·kg−1)
Table 4. Source contributions of heavy metals in the sediment based on APCS-MLR(mg·kg−1)
重金属
Heavy metals畜禽粪便和自然来源
Livestock manure and
natural sources农业活动源
Agricultural
activities交通活动源
Traffic
activity解析值
Analytic
value实测平均值
Measured
value解析值/实测平均值
Analytical/measuredR2 Cu 9.131 11.968 8.739 29.838 18.092 1.65 0.995 Fe 6704.992 6505.930 6371.626 19582.549 22234.813 0.88 0.984 Zn 19.005 22.377 15.433 56.815 49.870 1.14 0.982 Pb 2.211 3.934 12.856 19.001 15.943 1.19 0.976 As 2.820 19.747 6.296 28.863 26.393 1.09 0.843 Cr 9.759 6.592 18.262 34.612 45.497 0.76 0.863 Cd 0.123 0.816 0.221 1.159 1.302 0.89 0.865 Mn 110.587 180.891 165.251 456.729 372.394 1.23 0.973 Ni 5.527 15.176 3.786 24.489 22.857 1.07 0.985 表 5 水体沉积物中重金属的质量基准值统计
Table 5. Quality reference value statistics of heavy metal in water sediments
重金属
Heavy metalsCu Zn Pb As Cr Cd Ni Mn Fe TEL 18.7 124 30.2 7.24 52.3 0.7 15.9 — — PEL 108 271 112 41.6 160.0 4.2 42.8 — — -
[1] 罗鹏程, 涂耀仁, 孙婷婷, 等. 太浦河水体与沉积物中重金属的季节变化特征与污染评价[J]. 环境科学, 2023, 44(6): 3184-3197. LUO P C, TU Y R, SUN T T, et al. Seasonal Variation Characteristics and Pollution Assessment of Heavy Metals in Water and Sediment of Taipu River[J].Environmental Science2023, 44(6): 3184- 3197(in Chinese).
[2] 匡荟芬, 胡春华, 吴根林, 等. 结合主成分分析法(PCA)和正定矩阵因子分解法(PMF)的鄱阳湖丰水期表层沉积物重金属源解析 [J]. 湖泊科学, 2020, 32(4): 964-976. doi: 10.18307/2020.0406 KUANG H F, HU C H, WU G L, et al. Combination of PCA and PMF to apportion the sources of heavy metals in surface sediments from Lake Poyang during the wet season [J]. Journal of Lake Sciences, 2020, 32(4): 964-976(in Chinese). doi: 10.18307/2020.0406
[3] 訾鑫源, 张鸣, 谷孝鸿, 等. 洪泽湖围栏养殖对表层沉积物重金属含量影响与生态风险评价 [J]. 环境科学, 2021, 42(11): 5355-5363. ZI X Y, ZHANG M, GU X H, et al. Impact of enclosure culture on heavy metal content in surface sediments of Hongze Lake and ecological risk assessment [J]. Environmental Science, 2021, 42(11): 5355-5363(in Chinese).
[4] 刘文, 吉力力·阿不都外力, 马龙. 博斯腾湖表层沉积物元素地球化学特征及重金属污染评价 [J]. 地球环境学报, 2019, 10(2): 128-140. LIU W, JILILI A, MA L. Geochemical characteristics of major and trace elements and heavy metal pollution status in surface sediment of Bosten Lake [J]. Journal of Earth Environment, 2019, 10(2): 128-140(in Chinese).
[5] 唐道斌, 罗松英, 李雅婷, 等. 湛江观海长廊红树林表层沉积物重金属时空分布特征及污染评价 [J]. 环境污染与防治, 2022, 44(12): 1639-1642,1651. TANG D B, LUO S Y, LI Y T, et al. Temporal and spatial distribution characteristics and pollution assessment of heavy metals in mangrove surface sediments in Zhanjiang Guanhai Corridor [J]. Environmental Pollution & Control, 2022, 44(12): 1639-1642,1651(in Chinese).
[6] 徐美娟, 杨佳, 任晓景, 等. 宁波市地表水重金属时空分布特性和健康风险评价 [J]. 环境科学, 2023, 44(3): 1407-1415. XU M J, YANG J, REN X J, et al. Temporal-spatial distribution and health risk assessment of heavy metals in the surface water of Ningbo [J]. Environmental Science, 2023, 44(3): 1407-1415(in Chinese).
[7] 于江, 孙溢点, 张旭, 等. 金沙江流域沉积物中重金属迁移转化规律研究 [J]. 中国农村水利水电, 2022(7): 10-15,24. YU J, SUN Y D, ZHANG X, et al. Research on the migration and transformation characteristics of heavy metals in sediments of Jinsha River Basin [J]. China Rural Water and Hydropower, 2022(7): 10-15,24(in Chinese).
[8] 郭雨岸, 陈秀玲, 蔡炳贵, 等. 闽东定海-黄岐湾表层沉积物重金属污染特征及来源解析 [J]. 环境化学, 2023, 42(3): 769-778. doi: 10.7524/j.issn.0254-6108.2022071702 GUO Y A, CHEN X L, CAI B G, et al. Characteristics and source analysis of heavy metal pollution in surface sediments of Huangqi Bay, Dinghai, eastern Fujian [J]. Environmental Chemistry, 2023, 42(3): 769-778(in Chinese). doi: 10.7524/j.issn.0254-6108.2022071702
[9] 陈斌, 尹晓娜, 姜广甲, 等. 珠江口外陆架海域表层沉积物重金属潜在生态风险评价及来源分析 [J]. 应用海洋学学报, 2021, 40(3): 520-528. doi: 10.3969/J.ISSN.2095-4972.2021.03.017 CHEN B, YIN X N, JIANG G J, et al. Assessment of the potential ecological risk of heavy metals in the sediments of continental shelf and their sources off the Pearl River Estuary [J]. Journal of Applied Oceanography, 2021, 40(3): 520-528(in Chinese). doi: 10.3969/J.ISSN.2095-4972.2021.03.017
[10] 施亚盛, 李光耀, 吴爱静, 等. 东苕溪沉积物重金属生态风险评价和源解析 [J]. 生态科学, 2021, 40(6): 67-74. SHI Y S, LI G Y, WU A J, et al. Ecological risk assessment and source identification of heavy metals in surface sediments of East Tiaoxi River [J]. Ecological Science, 2021, 40(6): 67-74(in Chinese).
[11] 代静, 李欣, 王小燕, 等. 大明湖表层沉积物重金属污染特征及生态风险评价 [J]. 环境化学, 2020, 39(1): 249-263. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2019021401 DAI J, LI X, WANG X Y, et al. Pollution characteristics and ecological risk assessment of heavy metals in the surface sediments of Daming Lake [J]. Environmental Chemistry, 2020, 39(1): 249-263(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2019021401
[12] 张阿龙, 高瑞忠, 张生, 等. 吉兰泰盐湖盆地土壤重金属铬、汞、砷分布的多方法评价 [J]. 土壤学报, 2020, 57(1): 130-141. ZHANG A L, GAO R Z, ZHANG S, et al. Evaluation using numerous methods of distribution of heavy metals Cr, Hg and As in Jilantai salt lake basin [J]. Acta Pedologica Sinica, 2020, 57(1): 130-141(in Chinese).
[13] 李富, 刘赢男, 郭殿凡, 等. 哈尔滨松江湿地重金属空间分布及潜在生态风险评价 [J]. 环境科学研究, 2019, 32(11): 1869-1878. LI F, LIU Y N, GUO D F, et al. Distribution and potential ecological risk assessment of heavy metals in the sediment of the Songjiang wetland in Harbin city [J]. Research of Environmental Sciences, 2019, 32(11): 1869-1878(in Chinese).
[14] 张兆永, 吉力力·阿不都外力, 姜逢清. 艾比湖表层沉积物重金属的来源、污染和潜在生态风险研究 [J]. 环境科学, 2015, 36(2): 490-496. ZHANG Z Y, JLILI A, JIANG F Q. Sources, pollution statue and potential ecological risk of heavy metals in surface sediments of Aibi lake, northwest China [J]. Environmental Science, 2015, 36(2): 490-496(in Chinese).
[15] 郭杰, 王珂, 于琪, 等. 长江中游近岸表层沉积物重金属污染特征分析及风险评估 [J]. 环境科学学报, 2021, 41(11): 4625-4636. GUO J, WANG K, YU Q, et al. Pollution characteristics of the heavy metals and their potential ecological risk assessment in nearshore sediments of the middle reaches of the Yangtze River [J]. Acta Scientiae Circumstantiae, 2021, 41(11): 4625-4636(in Chinese).
[16] 沈宸宇, 闫钰, 于瑞莲, 等. APCS-MLR结合PMF模型解析厦门杏林湾近郊流域沉积物金属来源 [J]. 环境科学, 2022, 43(5): 2476-2488. doi: 10.13227/j.hjkx.202108337 SHEN C Y, YAN Y, YU R L, et al. APCS-MLR combined with PMF model to analyze the source of metals in sediment of xinglin bay suburban watershed, Xiamen [J]. Environmental Science, 2022, 43(5): 2476-2488(in Chinese). doi: 10.13227/j.hjkx.202108337
[17] 陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展 [J]. 农业环境科学学报, 2019, 38(10): 2219-2238. CHEN Y L, WENG L P, MA J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils [J]. Journal of Agro-Environment Science, 2019, 38(10): 2219-2238(in Chinese).
[18] 熊鑫玉, 杨丽原, 刘友春, 等. 鲁西北典型入海河流表层沉积物中重金属分布特征与风险评价 [J]. 济南大学学报(自然科学版), 2022, 36(2): 213-220. XIONG X Y, YANG L Y, LIU Y C, et al. Distribution characteristics and risk assessment of heavy metals in surface sediments of typical rivers flowing into sea in northwestern Shandong Province [J]. Journal of University of Jinan (Science and Technology), 2022, 36(2): 213-220(in Chinese).
[19] SALIM I, SAJJAD R U, PAULE-MERCADO M C, et al. Comparison of two receptor models PCA-MLR and PMF for source identification and apportionment of pollution carried by runoff from catchment and sub-watershed areas with mixed land cover in South Korea [J]. The Science of the Total Environment, 2019, 663: 764-775. doi: 10.1016/j.scitotenv.2019.01.377 [20] 中华人民共和国环境保护部. 土壤和沉积物 金属元素总量的消解 微波消解法: HJ 832—2017[S]. 北京: 中国环境出版社, 2017. Ministry of Environmental Protection of the People's Republic of China. Soil and sediment - Digestion of total metal elements - Microwave assisted acid digestion method: HJ 832—2017[S]. Beijing: China Environmental Science Press, 2017(in Chinese).
[21] SUTHERLAND R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii [J]. Environmental Geology, 2000, 39(6): 611-627. doi: 10.1007/s002540050473 [22] 杜展鹏, 王明净, 严长安, 等. 基于绝对主成分-多元线性回归的滇池污染源解析 [J]. 环境科学学报, 2020, 40(3): 1130-1137. DU Z P, WANG M J, YAN C A, et al. Pollution source apportionment of Lake Dianchi based on absolute principal component score-multiple linear regression [J]. Acta Scientiae Circumstantiae, 2020, 40(3): 1130-1137(in Chinese).
[23] 费蕾蕾. 闪电活动对近地面大气中氮氧化物、臭氧及颗粒物的影响[D]. 北京: 中国科学院大学, 2017. FEI L L. Effects of lightning activity on nitrogen oxides, ozone and particulate matter in the near-surface atmosphere[D]. Beijing: University of Chinese Academy of Sciences, 2017 (in Chinese).
[24] YAN B, XU D M, CHEN T, et al. Leachability characteristic of heavy metals and associated health risk study in typical copper mining-impacted sediments [J]. Chemosphere, 2020, 239: 124748. doi: 10.1016/j.chemosphere.2019.124748 [25] PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values [J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203 [26] ANGELIDIS M O, ALOUPI M. Metals in sediments of Rhodes harbour, Greece[J]. Marine Pollution Bulletin, 1995, 31(4/5/6/7/8/9/10/11/12): 273-276. [27] MULLER G. Index of geoaccumulation in sediments of the Rhine River [J]. GeoJournal, 1969, 2: 108-118. [28] 李军, 李旭, 李开明, 等. 黄河兰州段城市河道表层沉积物重金属空间分布特征及来源解析[J]. 环境科学, 2023, 44(5): 2562-2573. LI J, LI X, LI K M, et al. Spatial Distribution Characteristics and Source Analysis of Heavy Metals in Urban River Surface Sediments from the Lanzhou Reach of the Yellow River[J]. Environmental Science , 2023, 44(5): 2562-2573(in Chinese).
[29] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [30] 阳金希, 张彦峰, 祝凌燕. 中国七大水系沉积物中典型重金属生态风险评估 [J]. 环境科学研究, 2017, 30(3): 423-432. doi: 10.13198/j.issn.1001-6929.2017.01.61 YANG J X, ZHANG Y F, ZHU L Y. Pollution and risk assessment of typical heavy metals in river sediments of seven major watersheds in China [J]. Research of Environmental Sciences, 2017, 30(3): 423-432(in Chinese). doi: 10.13198/j.issn.1001-6929.2017.01.61
[31] MACDONALD D D, CARR R S, CALDER F D, et al. Development and evaluation of sediment quality guidelines for Florida coastal waters [J]. Ecotoxicology, 1996, 5(4): 253-278. doi: 10.1007/BF00118995