-
PM2.5是我国大气环境的主要污染物之一,不仅能降低道路能见度,还能够直接影响人体健康,近年来受到广泛关注[1]. PM2.5具有较强的承载能力,能够吸附细菌、重金属、有机物质、酸性氧化物等有毒实体[2],尤其是吸附的重金属能够在大气中停留达3—5 d[3]. PM2.5载带金属可能引发哮喘、心血管损伤等一系列疾病[4],由于重金属具有难降解性、生物富集效应、强隐蔽性[5]等特点,导致其对人体具有较强威胁,因此近年来环境中重金属的时空表征、来源解析、健康风险等逐渐成为研究热点. Zhao等[6]对运城市秋冬季PM2.5中重金属元素进行分析,结果表明随着污染程度加深,重金属元素浓度呈上升趋势; 陆平等[7]发现临沂市PM2.5载带金属浓度水平在冬春季最高,春秋季最低,重金属主要来源是燃煤、炼铜混合源; 毒理学研究显示,与PM2.5结合的金属可以聚集在次级脱靶组织(肝、心和脑),若接触或超负荷吸入PM2.5中的重金属会发生功能障碍甚至癌变[8]. 然而现有研究大都集中于某些大中城市的迁移、溯源和暴露机制等,对于大区域PM2.5载带金属研究较少.
空气质量指数(air quality index,AQI)是一种定量描述空气质量状况的无量纲指数[9],作为一个综合性指标,包括了颗粒物和SO2等气态污染物,能够一定程度上反映了区域空气质量现状[10]. 目前,AQI是政府和监测机构向公众表述大气污染程度和健康威胁最常用的方式之一,但不同空气质量条件下大气颗粒物中重金属的污染特征和风险评价还缺乏相应研究.
河南省毗邻河北省、山西省,是中国第一人口大省,也是我国的重要交通枢纽省份,其中郑州、安阳、新乡作为京津冀周边“2+26”城市,是大气污染的重点监测对象. 近年来,由于河南省电力、煤炭、采矿、制造等行业的快速发展,进一步加剧了大气重金属污染[11]. 本研究在2020年12月期间,监测了不同空气质量条件下河南省7个主要城市的PM2.5及其载带重金属浓度,通过富集因子、潜在贡献源、主成分分析和健康风险评估等方法,揭示了空气质量对PM2.5及其载带重金属的浓度特征和健康风险的影响规律,分析了大气重金属污染的主要来源,以期为河南区域大气污染防治政策的制定提供科学依据.
不同空气质量下河南主要城市冬季PM2.5中重金属污染特征、来源解析及健康风险评价
Pollution characterization, source identification and health risk assessment of PM2.5-bound metals in main cities of henan province in winter under different air quality levels
-
摘要: 为研究不同大气污染水平条件下河南区域PM2.5及其载带金属的浓度特征、来源和健康风险,于2020年12月在河南7个主要城市(郑州市、洛阳市、信阳市、安阳市、新乡市、商丘市、许昌市)采集PM2.5样品,测定并分析了元素Cu、Zn、Pb、Se、Mn、Fe、As、Mo、Ni、Cd、Al. 结果表明,PM2.5中的重金属浓度峰值集中在轻度和中度污染空气质量条件,平均浓度顺序Zn>Fe>Al>Mn>Pb>Cu>As>Se>Mo>Cd>Ni. Zn和Fe平均质量浓度分别为118.92 ng·m−3和52.88 ng·m−3,两者之和占重金属总浓度的65.88%. 重金属富集因子变化趋势与浓度变化趋势相同,Cd元素的富集因子最高(>10),表明主要受人为活动影响. 重金属元素的主要污染源为燃烧源和交通源. 健康风险评估显示,所有空气质量条件下均为成年男性的致癌风险最大,儿童的非致癌风险最大. 空气质量条件为优时,Mo对暴露于环境中1 h的成年男性和成年女性具有潜在致癌风险.Abstract: In order to study the concentration characteristics, source and risk assessment of PM2.5 and its carrying metals under different air pollution levels, PM2.5 samples were collected from 7 major cities of Henan province (Zhengzhou, Luoyang, Xinyang, Anyang, Xinxiang, Shangqiu, Xuchang) in December 2020. The elements of Cu, Zn, Pb, Se, Mn, Fe, As, Mo, Ni, Cd, Al in the samples were determined and analyzed. The results showed that the peak concentrations of heavy metals in PM2.5 were principally appeared under middle and moderate polluted air quality conditions. The average of mean mass concentration of metals was Zn>Fe>Al>Mn>Pb>Cu>As>Se>Mo>Cd>Ni. The average concentrations of Zn and Fe were 118.92 ng·m−3 and 52.88 ng·m−3 respectively, accounting for 65.88% of the total concentration of heavy metals. The variation trend of enrichment factors was identical with that of heavy metals concentrations. The enrichment factor value of Cd was the highest (>10), indicating Cd was primarily affected by human activities. The main sources of heavy metal elements were combustion sources and traffic sources, respectively. According to the health risk assessment, under all air quality conditions, adult males had the highest risk of cancer, while children had the highest risk of non-cancer. Under good air quality level, Mo had potential carcinogenic risk for adult male and female when exposing to the environment for 1 h.
-
Key words:
- air pollution /
- air quality /
- heavy metals /
- source apportionment /
- human health risks.
-
表 1 呼吸途径的健康暴露参数
Table 1. Health exposure parameters for respiratory pathways
人群
Group呼吸速率/(m3·d−1)
IR体重/kg
BW实际暴露时间/d
EDinh致癌物平均暴露时间/d
AT非致癌物平均暴露时间/d
AT重金属浓度/
(mg·m−3)男性 15.2 70 30×365×1/24 70×365 30×365 — 女性 11.3 60 30×365×1/24 70×365 30×365 — 儿童 8.7 36 18×365×1/24 70×365 18×365 — 表 2 重金属毒理学参数
Table 2. Toxicological parameters of heavy metals
重金属
Heavy metalRfDi / (mg·(kg·d)−1) SF / ((kg·d) ·mg−1) Cu 2×10−3 — Zn 3.01×10−1 — Pb 4.3×10−4 — Mn 1.43×10−5 — Fe 8×10−1 — As — 20.7 Mo — 4.95×10−3 Ni — 1.19 Cd — 8.40 表 3 不同污染水平重金属质量浓度特征
Table 3. Characteristics of heavy metal concentration at different pollution levels
项目
Project优
Excellent良
Good轻度污染
Mild Contamination中度污染
Moderately Polluted均值±标准差
Mean±SD范围
Range均值±标准差
Mean±SD范围
Range均值±标准差
Mean±SD范围
Range均值±标准差
Mean±SD范围
RangePM2.5* 27.78±8.50 20.52—37.48 69.29±14.39 54.48—84.56 113.90±18.29 100.76—131.44 169.45±7.77 160.04—179.08 Cu 5.18±2.93 2.42—11.00 6.10±2.73 2.87—16.50 9.59±4.71 4.20—20.19 8.40±2.66 4.96—11.43 Zn 81.14±68.13 27.16—225.86 69.71±52.48 15.58—177.70 86.60±44.51 42.83—200.15 103.00±31.05 59.14—126.66 Pb 3.66±1.78 1.22—6.70 6.23±4.04 nd—14.37 6.13±3.89 0.95—13.25 13.06±5.85 5.75—13.37 Cd 0.27±0.20 nd—0.51 0.39±0.37 nd—1.50 0.78±0.6 0.03—2.02 0.67±0.45 0.09—0.74 Mn 8.19±4.77 3.29—18.06 10.64±4.22 3.42—18.75 16.16±5.54 7.67—25.75 15.86±7.83 6.72—25.85 Fe 21.82±12.58 7.43—47.54 30.22±12.24 10.00—59.04 42.53±15.34 25.36—77.75 74.96±34.09 34.61—117.97 As 1.20±1.09 0.28—3.41 2.68±1.42 0.93—7.46 5.23±3.02 1.16—12.14 2.87±0.71 1.88—3.43 Mo 1.62±2.17 nd—5.92 1.41±1.72 0.03—6.70 0.87±0.25 0.40—1.25 0.68±0.14 0.50—0.84 Ni 0.31±0.11 0.20—0.52 0.32±0.16 0.16—0.97 0.45±0.15 0.33—0.86 0.49±0.14 0.36—0.69 Al 14.66±10.34 3.09—34.43 25.72±15.74 5.53—60.87 24.06±11.12 11.85±43.98 67.26±39.62 52.38—121.49 nd代表未检出; *表示浓度单位为 μg·m−3, 其他元素的浓度单位为 ng·m−3.
nd indicates no detection; * indicates that the concentration unit is μg·m−3, and the concentration unit of other elements is ng·m−3.表 4 重金属元素主成分解析
Table 4. Principal component analysis of heavy metal elements
项目
Project优
Excellent良
Good轻度污染
Mild contamination中度污染
Moderately polluted方差百分比/%
Percentage of variance主载荷元素
Main load element方差百分比/%
Percentage of variance主载荷元素
Main load element方差百分比/%
Percentage of variance主载荷元素
Main load element方差百分比/%
Percentage of variance主载荷元素
Main load element主成分1 56.15 As、Mn 27.04 Zn 47.78 Cd 80.07 Zn 主成分2 27.83 Zn 23.38 Mn 21.91 Mo — — 累积百分比 83.98 — 50.42 — 69.69 — 80.07 — 主要来源 燃烧源 交通源 燃烧源 交通源 表 5 不同污染条件重金属对不同人群的致癌风险值
Table 5. Carcinogenic risk values of heavy metals under different pollution conditions for different populations
污染情况
Contamination condition重金属
Heavy metal人群
Population成年男性(×10−7) 成年女性(×10−7) 儿童(×10−7) 优 As 0.97 0.84 0.64 Mo 12.66 10.98 8.46 Ni 0.01 0.01 0.01 Cd 0.10 0.09 0.06 良 As 2.15 1.86 1.43 Mo 11.03 9.57 7.37 Ni 0.01 0.01 0.01 Cd 0.13 0.11 0.09 轻度污染 As 4.20 3.64 2.80 Mo 6.81 5.91 4.55 Ni 0.02 0.02 0.01 Cd 0.25 0.22 0.17 中度污染 As 2.31 2.00 1.54 Mo 5.36 4.65 3.58 Ni 0.02 0.02 0.02 Cd 0.22 0.19 0.15 表 6 不同污染条件重金属对不同人群的非致癌风险值
Table 6. Non-carcinogenic risk values of heavy metals under different pollution conditions for different populations
污染情况
Contamination condition重金属
Heavy metal人群
Population成年男性(×10−5) 成年女性(×10−5) 儿童(×10−5) 优 Cu 2.34 2.03 2.61 Zn 0.24 0.21 0.27 Pb 7.71 6.69 8.58 Mn 518.27 449.51 576.80 Fe 0.02 0.02 0.03 良 Cu 2.76 2.39 3.07 Zn 0.21 0.18 0.23 Pb 13.12 11.37 14.60 Mn 673.40 584.05 749.45 Fe 0.03 0.03 0.04 轻度污染 Cu 4.34 3.76 4.83 Zn 0.26 0.23 0.29 Pb 12.90 11.19 14.36 Mn 1022.65 886.97 1138.15 Fe 0.05 0.04 0.05 中度污染 Cu 3.80 3.29 4.23 Zn 0.31 0.27 0.34 Pb 27.49 23.84 30.59 Mn 1003.34 870.22 1116.65 Fe 0.08 0.07 0.09 -
[1] LIU J W, CHEN Y J, CAO H B, et al. Burden of typical diseases attributed to the sources of PM2.5-bound toxic metals in Beijing: An integrated approach to source apportionment and QALYs [J]. Environment International, 2019, 131: 105041. doi: 10.1016/j.envint.2019.105041 [2] JIANG N, YIN S S, GUO Y, et al. Characteristics of mass concentration, chemical composition, source apportionment of PM2.5 and PM10 and health risk assessment in the emerging megacity in China [J]. Atmospheric Pollution Research, 2018, 9(2): 309-321. doi: 10.1016/j.apr.2017.07.005 [3] 刘建伟, 晁思宏, 陈艳姣, 等. 北京市不同年龄人群PM2.5载带重金属的健康风险 [J]. 中国环境科学, 2018, 38(4): 1540-1549. doi: 10.3969/j.issn.1000-6923.2018.04.042 LIU J W, CHAO S H, CHEN Y J, et al. Health risk of PM2.5-bound heavy metals for different age population in Beijing, China [J]. China Environmental Science, 2018, 38(4): 1540-1549(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.04.042
[4] RAMÍREZ O, SÁNCHEZ de la CAMPA A M, SÁNCHEZ-RODAS D, et al. Hazardous trace elements in thoracic fraction of airborne particulate matter: Assessment of temporal variations, sources, and health risks in a megacity [J]. Science of the Total Environment, 2020, 710: 136344. doi: 10.1016/j.scitotenv.2019.136344 [5] 罗燃燃, 戴海夏, 张蕴晖, 等. 上海郊区家庭妇女PM2.5重金属组分暴露水平、来源与健康风险 [J]. 环境科学, 2019, 40(12): 5224-5233. LUO R R, DAI H X, ZHANG Y H, et al. Exposure levels, sources, and health risks of heavy metal components of PM2.5 in housewives in rural Shanghai [J]. Environmental Science, 2019, 40(12): 5224-5233(in Chinese).
[6] 赵清, 李杏茹, 王国选, 等. 运城秋冬季大气细粒子化学组成特征及来源解析 [J]. 环境科学, 2021, 42(4): 1626-1635. doi: 10.13227/j.hjkx.202008304 ZHAO Q, LI X R, WANG G X, et al. Chemical composition and source analysis of PM2.5 in Yuncheng, Shanxi Province in autumn and winter [J]. Environmental Science, 2021, 42(4): 1626-1635(in Chinese). doi: 10.13227/j.hjkx.202008304
[7] 陆平, 赵雪艳, 殷宝辉, 等. 临沂市PM2.5和PM10中元素分布特征及来源解析 [J]. 环境科学, 2020, 41(5): 2036-2043. LU P, ZHAO X Y, YIN B H, et al. Distribution characteristics and source apportionment of elements bonded with PM2.5 and PM10 in Linyi [J]. Environmental Science, 2020, 41(5): 2036-2043(in Chinese).
[8] KU T T, ZHANG Y Y, JI X T, et al. PM2.5-bound metal metabolic distribution and coupled lipid abnormality at different developmental windows [J]. Environmental Pollution, 2017, 228: 354-362. doi: 10.1016/j.envpol.2017.05.040 [9] 环境保护部. 环境空气质量指数(AQI)技术规定: HJ 633—2012[S]. 北京: 中国环境科学出版社, 2016. Ministry of Environmental Protection of the People's Republic of China. Technical regulation on ambient air quality index (on trial): HJ 633—2012[S]. Beijing: China Environment Science Press, 2016(in Chinese).
[10] 薛俭, 徐艳. 基于O-U模型的AQI模拟及预测 [J]. 生态经济, 2019, 35(4): 185-192. XUE J, XU Y. The simulation and prediction of AQI based on O-U model [J]. Ecological Economy, 2019, 35(4): 185-192(in Chinese).
[11] AN Z S, HUANG R J, ZHANG R Y, et al. Severe haze in Northern China: A synergy of anthropogenic emissions and atmospheric processes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(18): 8657-8666. doi: 10.1073/pnas.1900125116 [12] CHEN Y C, CHIANG H C, HSU C Y, et al. Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: Seasonal variation, source apportionment and cancer risk assessment [J]. Environmental Pollution, 2016, 218: 372-382. doi: 10.1016/j.envpol.2016.07.016 [13] 中华人民共和国环境保护部. 空气和废气颗粒物中铅等金属元素的测定 电感耦合等离子体质谱法: HJ 657—2013[S]. 北京: 中国环境科学出版社, 2013. Ministry of Environmental Protection of the People's Republic of China. Ambient air and stationary source emission - Determination of metals in ambient particulate matter - Inductively coupled plasma/mass spectrometry (ICP-MS): HJ 657—2013[S]. Beijing: China Environment Science Press, 2013(in Chinese).
[14] LIU H J, TIAN H Z, ZHANG K, et al. Seasonal variation, formation mechanisms and potential sources of PM2.5 in two typical cities in the Central Plains Urban Agglomeration, China [J]. Science of the Total Environment, 2019, 657: 657-670. doi: 10.1016/j.scitotenv.2018.12.068 [15] BUCK C S, AGUILAR-ISLAS A, MARSAY C, et al. Trace element concentrations, elemental ratios, and enrichment factors observed in aerosol samples collected during the US GEOTRACES eastern Pacific Ocean transect (GP16) [J]. Chemical Geology, 2019, 511: 212-224. doi: 10.1016/j.chemgeo.2019.01.002 [16] 吴红璇, 史常青, 张艳, 等. 乌海市煤矿区及周边春季降尘污染特征及来源分析 [J]. 环境科学, 2020, 41(3): 1167-1175. WU H X, SHI C Q, ZHANG Y, et al. Characteristics and source apportionment of dustfall pollution in the coal mine area and surrounding areas of Wuhai City in spring [J]. Environmental Science, 2020, 41(3): 1167-1175(in Chinese).
[17] NAYEBARE S R, ABURIZAIZA O S, SIDDIQUE A, et al. Ambient air quality in the holy city of Makkah: A source apportionment with elemental enrichment factors (EFs) and factor analysis (PMF) [J]. Environmental Pollution, 2018, 243: 1791-1801. doi: 10.1016/j.envpol.2018.09.086 [18] 邵丰收, 周皓韵. 河南省主要元素的土壤环境背景值 [J]. 河南农业, 1998(10): 29. SHAO F S, ZHOU H Y. Soil environmental background values of main elements in Henan Province [J]. Agriculture of Henan, 1998(10): 29(in Chinese).
[19] 王雁, 高兴艾, 裴坤宁, 等. 基于多站混合受体模型的临汾市PM2.5潜在源分析 [J]. 中国环境科学, 2022, 42(3): 1032-1039. WANG Y, GAO X G, PEI K N, et al. Analysis of potential sources of PM2.5 in Linfen based on multi-site hybrid receptor model [J]. China Environmental Science, 2022, 42(3): 1032-1039(in Chinese).
[20] 翁佳烽, 梁晓媛, 邓开强, 等. 不同季节肇庆市PM2.5和O3污染特征及潜在源区分析 [J]. 环境科学研究, 2021, 34(6): 1306-1317. WENG J F, LIANG X Y, DENG K Q, et al. Characteristics and potential sources of PM2.5 and O3 in different seasons in Zhaoqing City [J]. Research of Environmental Sciences, 2021, 34(6): 1306-1317(in Chinese).
[21] 王琰玮, 王媛, 张增凯, 等. 不同季节天津市PM2.5与O3潜在源区及传输路径分析 [J]. 环境科学研究, 2022, 35(3): 673-682. WANG Y W, WANG Y, ZHANG Z K, et al. Analysis of potential source areas and transport pathways of PM2.5 and O3 in Tianjin by season [J]. Research of Environmental Sciences, 2022, 35(3): 673-682(in Chinese).
[22] USEPA. EPA/600/ P - 95/002Fa. Exposure factors handbook [S]. Washington DC: USEPA, 1997. [23] GAO Y, GUO X Y, JI H B, et al. Potential threat of heavy metals and PAHs in PM2.5 in different urban functional areas of Beijing [J]. Atmospheric Research, 2016, 178/179: 6-16. doi: 10.1016/j.atmosres.2016.03.015 [24] USEPA. Regional screening levels (RSLs)-Resident ambient air table (TR=1E-06, HQ=1) [EB/OL]. [2020-6-15]. [25] 田春晖, 杨若杼, 古丽扎尔·依力哈木, 等. 南京市大气降尘重金属污染水平及风险评价 [J]. 环境科学, 2018, 39(7): 3118-3125. doi: 10.13227/j.hjkx.201709120 TIAN C H, YANG R Z, GULIZHAER Y, et al. Pollution levels and risk assessment of heavy metals from atmospheric deposition in Nanjing [J]. Environmental Science, 2018, 39(7): 3118-3125(in Chinese). doi: 10.13227/j.hjkx.201709120
[26] ROHRA H, TIWARI R, KHANDELWAL N, et al. Mass distribution and health risk assessment of size segregated particulate in varied indoor microenvironments of Agra, India - A case study [J]. Urban Climate, 2018, 24: 139-152. doi: 10.1016/j.uclim.2018.01.002 [27] 李友平, 刘慧芳, 周洪, 等. 成都市PM2.5中有毒重金属污染特征及健康风险评价 [J]. 中国环境科学, 2015, 35(7): 2225-2232. LI Y P, LIU H F, ZHOU H, et al. Contamination characteristics and health risk assessment of toxic heavy metals in PM2.5 in Chengdu [J]. China Environmental Science, 2015, 35(7): 2225-2232(in Chinese).
[28] 陆喜红, 吴丽娟, 任兰, 等. 南京市PM2.5中重金属污染特征分析及健康风险评价 [J]. 四川环境, 2016, 35(6): 115-119. LU X H, WU L J, REN L, et al. Pollution characteristics analysis and health risk assessment of heavy metals in PM2.5 in Nanjing [J]. Sichuan Environment, 2016, 35(6): 115-119(in Chinese).
[29] 姜杰, 李瑞园, 丘红梅, 等. 深圳大气PM2.5中重金属污染特征及健康风险评价 [J]. 实用预防医学, 2019, 26(7): 781-785. JIANG J, LI R Y, QIU H M, et al. Pollution characteristics and health risk assessment of heavy metals in ambient PM2.5 in Shenzhen [J]. Practical Preventive Medicine, 2019, 26(7): 781-785(in Chinese).
[30] EPA. Integrated risk information system (IRIS) [EB/OL] [2020-6-15]. [31] LIU T T, GONG S L, HE J J, et al. Attributions of meteorological and emission factors to the 2015 winter severe haze pollution episodes in China's Jing-Jin-Ji area [J]. Atmospheric Chemistry and Physics, 2017, 17(4): 2971-2980. doi: 10.5194/acp-17-2971-2017 [32] 刘桓嘉, 贾梦珂, 刘永丽, 等. 新乡市大气PM2.5载带金属元素季节分布、来源特征与健康风险 [J]. 环境科学, 2021, 42(9): 4140-4150. LIU H J, JIA M K, LIU Y L, et al. Seasonal variation, source identification, and health risk of PM2.5-bound metals in Xinxiang [J]. Environmental Science, 2021, 42(9): 4140-4150(in Chinese).
[33] 曲光辉, 孙俊苹, 王申博, 等. 郑州市大气PM2.5中重金属的污染特征、来源及健康风险评估: 基于高分辨数据 [J]. 环境科学, 2022, 43(4): 1706-1715. QU G H, SUN J P, WANG S B, et al. Pollution characterization, source identification, and health risks of atmospheric particle-bound heavy metals in PM2.5 in Zhengzhou City: Based on high-resolution data [J]. Environmental Science, 2022, 43(4): 1706-1715(in Chinese).
[34] SOFOWOTE U M, HEALY R M, SU Y, et al. Sources, variability and parameterizations of intra-city factors obtained from dispersion-normalized multi-time resolution factor analyses of PM2.5 in an urban environment [J]. Science of the Total Environment, 2021, 761: 143225. doi: 10.1016/j.scitotenv.2020.143225 [35] WANG H B, TIAN M, CHEN Y, et al. Seasonal characteristics, formation mechanisms and source origins of PM2.5 in two megacities in Sichuan Basin, China [J]. Atmospheric Chemistry and Physics, 2018, 18(2): 865-881. doi: 10.5194/acp-18-865-2018 [36] 陈衍婷, 杜文娇, 陈进生, 等. 海西城市群PM2.5中重金属元素的污染特征及健康风险评价 [J]. 环境科学, 2017, 38(2): 429-437. CHEN Y T, DU W J, CHEN J S, et al. Pollution characteristics of heavy metals in PM2.5 and their human health risks among the coastal city group along western Taiwan Straits region, China [J]. Environmental Science, 2017, 38(2): 429-437(in Chinese).
[37] HSU L C, HUANG C Y, CHUANG Y H, et al. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries [J]. Scientific Reports, 2016, 6: 34250. doi: 10.1038/srep34250 [38] TU X P, LU Y, YAO R S, et al. Air quality in Ningbo and transport trajectory characteristics of primary pollutants in autumn and winter [J]. Atmosphere, 2019, 10(3): 120. doi: 10.3390/atmos10030120 [39] HAO T Y, CAI Z Y, CHEN S C, et al. Transport pathways and potential source regions of PM2.5 on the west coast of Bohai Bay during 2009–2018 [J]. Atmosphere, 2019, 10(6): 345. doi: 10.3390/atmos10060345 [40] 刘威杰, 胡天鹏, 毛瑶, 等. 汾渭平原临汾市2019年春节期间大气污染特征与来源解析 [J]. 环境科学, 2021, 42(11): 5122-5130. LIU W J, HU T P, MAO Y, et al. Characteristics and origin analysis of air pollution during the spring festival in Linfen, Fenwei plain [J]. Environmental Science, 2021, 42(11): 5122-5130(in Chinese).
[41] GAO Y, JI H B. Microscopic morphology and seasonal variation of health effect arising from heavy metals in PM2.5 and PM10: One-year measurement in a densely populated area of urban Beijing [J]. Atmospheric Research, 2018, 212: 213-226. doi: 10.1016/j.atmosres.2018.04.027 [42] 黄文, 王胜利. 兰州市采暖期和非采暖期大气降尘重金属的分布特征及来源 [J]. 环境科学, 2022, 43(2): 597-607. HUANG W, WANG S L. Distribution characteristics and sources of heavy metals in atmospheric deposition during heating and non-heating period in Lanzhou [J]. Environmental Science, 2022, 43(2): 597-607(in Chinese).
[43] 肖凯, 任学昌, 陈仁华, 等. 典型西北钢铁城市冬季大气颗粒物重金属来源解析及健康风险评价: 以嘉峪关为例 [J]. 环境化学, 2022, 41(5): 1649-1660. doi: 10.7524/j.issn.0254-6108.2021010704 XIAO K, REN X C, CHEN R H, et al. Source analysis and health risk assessment of heavy metals in air particulates of typical northwest steel cities in winter: A case study in Jiayuguan [J]. Environmental Chemistry, 2022, 41(5): 1649-1660(in Chinese). doi: 10.7524/j.issn.0254-6108.2021010704
[44] 樊馨瑶, 卢新卫, 刘慧敏, 等. 西安市高校校园地表灰尘重金属污染来源解析 [J]. 环境科学, 2020, 41(8): 3556-3562. FAN X Y, LU X W, LIU H M, et al. Pollution and source analysis of heavy metal in surface dust from Xi'an university campuses [J]. Environmental Science, 2020, 41(8): 3556-3562(in Chinese).
[45] 李萍, 薛粟尹, 王胜利, 等. 兰州市大气降尘重金属污染评价及健康风险评价 [J]. 环境科学, 2014, 35(3): 1021-1028. LI P, XUE S Y, WANG S L, et al. Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Lanzhou [J]. Environmental Science, 2014, 35(3): 1021-1028(in Chinese).