-
黑碳(Black carbon,BC)是化石燃料和生物质不完全燃烧产生的一种非纯净碳的混合物,广泛存在于大气、土壤、水体(河流、湖泊、海洋)、冰雪等地球环境系统中[1 − 2]. 由于其特殊的物理化学特性,BC在全球气候变化、碳的生物地球化学循环、空气质量和公众健康等诸多方面都扮演着重要的角色[3 − 4],已成为当前国内外气候、环境和健康等研究领域共同关注的焦点[3,5 − 6]. 随着全球能源消耗的不断增加,BC排放量逐年递增,据估算,全球每年化石燃料燃烧排放BC 0.05—0.27 Gt (1 Gt = 1 × 1015 g)[7],生物质燃烧排放BC0.012—0.024 Gt[8]. 燃烧过程中排放的BC颗粒大部分进入土壤,还有一部分经过风力搬运、干湿沉降、地表径流等一系列作用,最终在河流、湖泊、海洋等环境中沉积下来[9 − 10].
湖泊作为具有独特生态、人文价值的地理单元,因碳循环强度高、碳排放总量大,被认为是传统意义上的碳源之一[11 − 12]. 湖泊碳循环不仅影响着全球碳循环,而且是全球气候变化与可持续发展的重要课题[11,13 − 14]. 湖泊中有机碳的主要存在形式为颗粒有机碳(particulate organic carbon,POC)和溶解有机碳(dissolved organic carbon,DOC)[15],而颗粒态黑碳(particulate black carbon,PBC)和溶解态黑碳(dissolved black carbon,DBC)是POC和DOC的重要组成部分[5,16]. 由于BC的化学稳定性,水体中DBC的含量一般相对较低[17 − 18],但是PBC在POC中所占比重则较高. 研究结果表明,太湖水体PBC在POC中所占比重最高可达30.88%[12];长江和黄河水体中PBC/POC约为13%±0.4%和22%±11%[19];在全球18条河流中,PBC/POC约为15.8%±0.9%[20];渤海和黄海PBC/POC约为19.1%±7.0%[21]. 由此可见,陆地水体中PBC的变化对调节POC库十分重要. 河流、湖泊和海洋等陆地水体中PBC的定量及来源研究对于探索BC迁移转化的驱动因素及其对碳循环的影响十分重要. 然而,目前关于湖泊水体PBC的研究报道还十分少见.
鄂东南地区矿产资源丰富,是长江中游著名的“冶金工业走廊”. 该区域工业历史悠久,能源消耗及交通运输排放的大量污染物通过干湿沉降和地表径流进入城市湖泊水体,导致湖泊污染尤为严重. 本研究以鄂东南典型工业城市湖泊——磁湖为研究对象,研究水体中PBC和POC的含量水平及空间分布特征,分析了PBC和POC之间的关系,同时结合黑碳组分特征比值法判断黑碳的可能来源,为研究鄂东南地区湖泊生态系统黑碳碳循环及黑碳对湖泊水环境的潜在影响提供科学依据.
鄂东南湖泊水体中颗粒态黑碳分布特征与来源分析—以磁湖为例
Spatial variation and sources of particulate black carbon in Cihu Lake in Southeast Hubei Province
-
摘要: 在地球水生态系统中,颗粒态黑碳(particulate black carbon,PBC)是颗粒有机碳(particulate organic carbon,POC)的重要组成部分. 采用热光反射法对黄石磁湖POC、PBC及其组分(焦炭和烟炱)的含量水平、空间分布特征及可能来源进行了研究. 结果表明,磁湖水体中POC、PBC、焦炭(char)和烟炱(soot)含量变化范围分别为2899.38—5622.80、235.01—800.08、24.41—310.23、130.09—544.72 μg·L−1,平均含量分别为3903.84、377.25、155.52、272.65 μg·L−1,呈现较大的空间分布差异. PBC/POC的变化范围在6.89%—18.32%之间,平均值为10.92%,说明城市湖泊水体中PBC对POC含量积累的贡献较大. soot/PBC的变化范围为45.92%—89.61%,平均值为63.95%. PBC、char与soot含量和PBC/POC比值的空间变异性与环湖周边区域的道路交通和工业布局有关,且南半湖受交通污染和工业排放的影响更大. PBC与POC、char和soot含量均呈正相关,且PBC与soot的相关系数(r=0.81,P<0.01)高于char(r=0.72,P<0.01),说明磁湖水体中soot对PBC的贡献更大. char/soot比值分析结果表明,磁湖水体中PBC主要受到交通污染源和燃煤等人类活动的影响.Abstract: Particulate black carbon (PBC) is an important component of particulate organic carbon (POC) in the Earth’s aquatic ecosystem. The concentration levels, spatial distribution characteristics, and possible sources of POC, PBC, and their components (char and soot) in Cihu Lake of Huangshi City were investigated by using the thermal optical reflectance (TOR) method. The results showed that the concentrations of POC, PBC, char, and soot in the water bodies of Cihu Lake varied in the ranges of 2899.38—5622.80, 235.01—800.08, 24.41—310.23, and 130.09—544.72 μg·L−1, respectively, with a mean of 3903.84, 377.25, 155.52, 272.65 μg·L−1, respectively, showing significant spatial differences. PBC/POC ranged from 6.89% to 18.32%, with an average value of 10.92%, indicating that the contribution of PBC to the accumulation of POC in Cihu Lake is greater. soot/PBC varied from 45.92% to 89.61%, with a mean value of 63.95%. The spatial variability of PBC, char, and soot concentration and PBC/POC ratio was related to the road traffic and industrial layout in the surrounding area of the lake, and the southern half of the lake was more influenced by traffic pollution and industrial discharge. PBC was positively correlated with POC, char, and soot content, and the correlation coefficient of PBC and soot (r=0.81, P<0.01) was higher than that of char (r=0.72, P<0.01), indicating that soot contributed more to PBC in Cihu Lake. The results of char/soot ratio analysis showed that PBC in the water body of Cihu Lake was mainly influenced by human activities such as traffic pollution and coal combustion.
-
Key words:
- water body /
- particulate organic carbon /
- particulate black carbon /
- distribution /
- sources.
-
图 3 磁湖水体颗粒有机碳(a)、颗粒态黑碳含量(b)和焦炭/烟炱比值(c)的空间分布
Figure 3. Spatial distribution of particulate organic carbon (POC), particulate black carbon (PBC), char, and soot concentrations and char/soot ratios in surface water of Cihu Lake (a) POC concentration; (b) PBC, char, and soot concentration; (3) char/soot ratio.
表 1 磁湖水体中颗粒态黑碳、颗粒有机碳、焦炭和烟炱含量以及焦炭/烟炱比值统计
Table 1. Statistical analysis of particulate black carbon(PBC), particulate organic carbon(POC), char and soot concentrations, and char/soot ration in surface water of Cihu Lake
统计值
StatisticsPBC /(μg·L−1) POC /(μg·L−1) char /(μg·L−1) soot /(μg·L−1) PBC/POC/% char/soot 最大值 800.08 5622.80 310.23 544.72 18.32 1.18 最小值 235.01 2899.38 24.41 130.09 6.89 0.12 中位数 377.25 3727.26 155.52 272.65 10.39 0.67 平均值 427.26 3903.84 157.61 269.65 10.92 0.65 标准偏差 148.35 751.40 88.79 105.10 2.91 0.38 变异系数/% 34.72 19.25 56.34 38.98 26.63 57.93 表 2 不同地区湖泊、江河和海洋水体颗粒态黑碳、颗粒有机碳含量的对比
Table 2. Comparison of the value of particulate black carbon(PBC) and particulate organic carbon(POC) concentration, and PBC/POC in surfacewater of Cihu Lake with those in other study sites
采样地点
Sampling site测量方法
Analytical methodPBC /(μg·L−1) POC /(μg·L−1) (PBC/POC)/% 参考文献
References磁湖 热光反射法 235.01—800.08 (377.25) 2899.38—5622.80(3903.84) 6.89—18.32 (10.92) 本研究 太湖 热光反射法 0.0—700 (300) — 1.28—30.88 (11.62) [24] 西江 重铬酸钾氧化法 180—8170 (1780) 1780—5780(4350) 17—30 (34.2) [26] 长江 热氧化法 — — 13.0 ± 0.9 [28] 黄河 热氧化法 — — 21.8 ± 11.1 [28] 渤海和黄海北部(夏季) 热光反射法 1.4—48.4 (11.6) 36.3—884.1 (216.5) — [25] 渤海和黄海北部(冬季) 热光反射法 6.6—144.3 (39.1) 70.0—1275.8 (316.7) — [25] 沿渤海海湾(2013年) 热光反射法 10.1—111.1 (32.2) — — [27] 沿渤海海湾(2014年) 热光反射法 2.4—48.4 (14.2) — — [27] 注:括号中的数据表示平均值;“—”表示没有无相关数据.
Note: The data in parentheses represents the average value; “—” indicates that there is no relevant data. -
[1] MASIELLO C A. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004, 92(1–4): 201-213. [2] BIRD M I, WYNN J G, SAIZ G, et al. The pyrogenic carbon cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 273-298. doi: 10.1146/annurev-earth-060614-105038 [3] 黄智浦, 牛振川, 马皓, 等. 冰雪和降水中黑碳的分布特征与来源研究进展[J]. 环境科学研究, 2020, 33(11): 2605-2612. HUANG Z P, NIU Z C, MA H, et al. Advances of distribution characteristics and sources of black carbon in snow and precipitation[J]. Research of Environmental Sciences, 2020, 33(11): 2605-2612 (in Chinese).
[4] YANG W, GUO L. Abundance, distribution, and isotopic composition of particulate black carbon in the northern Gulf of Mexico[J]. Geophysical Research Letters, 2014, 41(21): 7619-7625. doi: 10.1002/2014GL061912 [5] 方引. 渤黄海黑碳的区域地球化学行为[D]. 北京: 中国科学院大学, 2016. FANG Y. Regional geochemical behavior of black carbon in Bohai and Yellow Seas, China[D]. Beijing: University of Chinese Academy of Sciences, 2016 (in Chinese).
[6] ALI M U, LIN S, YOUSAF B, et al. Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: A review[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(9): 857-896. doi: 10.1080/10643389.2020.1738854 [7] KUHLBUSCH T A J, CRUTZEN P J. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2[J]. Global Biogeochemical Cycles, 1995, 9(4): 491-501. doi: 10.1029/95GB02742 [8] PENNER J E, EDDLEMAN H, NOVAKOV T. Towards the development of a global inventory for black carbon emissions[J]. Atmospheric Environment. Part A. General Topics, 1993, 27(8): 1277-1295. doi: 10.1016/0960-1686(93)90255-W [9] 程广焕, 孙明洋, 罗玲, 等. 黑碳对沉积物中疏水性有机污染物的锁定作用与微生物降解的影响研究进展[J]. 环境化学, 2014, 33(12): 2058-2067. doi: 10.7524/j.issn.0254-6108.2014.12.007 CHENG G H, SUN M Y, LUO L, et al. Locking and biodegradation effects of hydrophobic organic contaminants(HOCs) by black carbon associated with sediments[J]. Environmental Chemistry, 2014, 33(12): 2058-2067 (in Chinese). doi: 10.7524/j.issn.0254-6108.2014.12.007
[10] 曹军骥, 占长林. 黑碳在全球气候和环境系统中的作用及其在相关研究中的意义[J]. 地球科学与环境学报, 2011, 33(2): 177-184. CAO J J, ZHAN C L. Research significance and role of black carbon in the global climate and environmental systems[J]. Journal of Earth Sciences and Environment, 2011, 33(2): 177-184 (in Chinese).
[11] 姚程, 王谦, 姜霞, 等. 湖泊生态系统碳汇特征及其潜在碳中和价值研究[J]. 生态学报, 2023, 43(3): 893-909. YAO C, WANG Q, JIANG X, et al. Review of lake ecosystem’s characteristics of carbon sink and potential value on carbon neutrality[J]. Acta Ecologica Sinica, 2023, 43(3): 893-909 (in Chinese).
[12] HUANG C, MENG L, HE Y, et al. Spatial variation of particulate black carbon, and its sources in a large eutrophic urban lake in China[J]. Science of The Total Environment, 2022, 803: 150057. doi: 10.1016/j.scitotenv.2021.150057 [13] 郝盛吞, 周爱锋, 张晓楠, 等. 湖泊沉积有机碳埋藏效率及其影响要素研究进展[J]. 地球环境学报, 2017, 8(4): 292-306. doi: 10.7515/JEE201704002 HAO S, ZHOU A F, ZHANG X N, et al. Progress of research on the burial efficiency of organic carbon and its influencing factors in lacustrine sediments[J]. Journal of Earth Environment, 2017, 8(4): 292-306 (in Chinese). doi: 10.7515/JEE201704002
[14] TRANVIK L J, DOWNING J A, COTNER J B, et al. Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnology and Oceanography, 2009, 54(6): 2298-2314. doi: 10.4319/lo.2009.54.6_part_2.2298 [15] 段巍岩, 黄昌. 河流湖泊碳循环研究进展[J]. 中国环境科学, 2021, 41(8): 3792-3807. doi: 10.3969/j.issn.1000-6923.2021.08.037 DUAN W Y, HUANG C. Research progress on the carbon cycle of rivers and lakes[J]. China Environmental Science, 2021, 41(8): 3792-3807 (in Chinese). doi: 10.3969/j.issn.1000-6923.2021.08.037
[16] 魏晨辉, 付翯云, 瞿晓磊, 等. 溶解态黑碳的环境过程研究[J]. 化学进展, 2017, 29(9): 1042-1052. WEI C H, FU H Y, QU X L, et al. Environmental processes of dissolved black carbon[J]. Progress in Chemistry, 2017, 29(9): 1042-1052 (in Chinese).
[17] DING Y, YAMASHITA Y, JONES J, et al. Dissolved black carbon in boreal forest and glacial rivers of central Alaska: assessment of biomass burning versus anthropogenic sources[J]. Biogeochemistry, 2015, 123(1): 15-25. [18] KARTHIK V, BHASKAR B V, RAMACHANDRAN S, et al. Black carbon flux in terrestrial and aquatic environments of Kodaikanal in the Western Ghats, South India: Estimation, source identification, and implication[J]. Science of The Total Environment, 2023, 854: 158647. doi: 10.1016/j.scitotenv.2022.158647 [19] WANG X, XU C, DRUFFEL E M, et al. Two black carbon pools transported by the Changjiang and Huanghe Rivers in China[J]. Global Biogeochemical Cycles, 2016, 30(12): 1778-1790. doi: 10.1002/2016GB005509 [20] COPPOLA A I, WIEDEMEIER D B, GALY V, et al. Global-scale evidence for the refractory nature of riverine black carbon[J]. Nature Geoscience, 2018, 11(8): 584-588. doi: 10.1038/s41561-018-0159-8 [21] FANG Y, CHEN Y, TIAN C, et al. Cycling and budgets of organic and black carbon in coastal Bohai Sea, China: impacts of natural and anthropogenic perturbations[J]. Global Biogeochemical Cycles, 2018, 32(6): 971-986. doi: 10.1029/2017GB005863 [22] CHOW J C, WATSON J G, CHEN L W, et al. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database[J]. Journal of the Air & Waste Management Association, 2007, 57(9): 1014-1023. [23] HAN Y, CAO J, CHOW J C, et al. Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC[J]. Chemosphere, 2007, 69(4): 569-574. doi: 10.1016/j.chemosphere.2007.03.024 [24] MENG L, HUANG C, HE Y, et al. Stable carbon isotopes trace the effect of fossil fuels on fractions of particulate black carbon in a large urban lake in China[J]. Journal of Environmental Management, 2022, 318: 115528. doi: 10.1016/j.jenvman.2022.115528 [25] FANG Y, CHEN Y, HUANG G, et al. Particulate and dissolved black carbon in coastal China seas: spatiotemporal variations, dynamics, and potential implications[J]. Environmental Science & Technology, 2021, 55(1): 788-796. [26] LIU J, HAN G. Tracing riverine particulate black carbon sources in Xijiang River Basin: insight from stable isotopic composition and Bayesian mixing model[J]. Water Research, 2021, 194: 116932. doi: 10.1016/j.watres.2021.116932 [27] FANG Y, HUANG G, CHEN Y, et al. Particulate and dissolved black carbon in Bohai and Laizhou Bays, China: distributions, sources, and contrasts under two distinct fluvial hydrological regimes[J]. Frontiers in Earth Science, 2021, 9: 697728. doi: 10.3389/feart.2021.697728 [28] XU C, XUE Y, QI Y, et al. Quantities and fluxes of dissolved and particulate black carbon in the Changjiang and Huanghe Rivers, China[J]. Estuaries and Coasts, 2016, 39(6): 1617-1625. doi: 10.1007/s12237-016-0122-0 [29] HUANG C, LU L, LI Y, et al. Anthropogenic-driven alterations in black carbon sequestration and the structure in a deep plateau lake[J]. Environmental Science & Technology, 2021, 55(9): 6467-6475. [30] REISSER M, PURVES R S, SCHMIDT M W I, et al. Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks[J]. Frontiers in Earth Science, 2016, 4: 80. [31] GÓRKA M, KOSZTOWNIAK E, LEWANDOWSKA A U, et al. Carbon isotope compositions and TC/OC/EC levels in atmospheric PM10 from Lower Silesia (SW Poland): Spatial variations, seasonality, sources and implications[J]. Atmospheric Pollution Research, 2020, 11(7): 1099-1114. doi: 10.1016/j.apr.2020.04.003 [32] FANG Z, YANG W, CHEN M, et al. Abundance and sinking of particulate black carbon in the western Arctic and Subarctic Oceans[J]. Scientific Reports, 2016, 6: 29959. doi: 10.1038/srep29959 [33] ZHAN C, ZHANG J, CAO J, et al. Characteristics and sources of black carbon in atmospheric dustfall particles from Huangshi, China[J]. Aerosol and Air Quality Research, 2016, 16(9): 2096-2106. doi: 10.4209/aaqr.2015.09.0562 [34] FANG Y, CHEN Y, LIN T, et al. Spatiotemporal trends of elemental carbon and char/soot ratios in five sediment cores from Eastern China marginal seas: indicators of anthropogenic activities and transport patterns[J]. Environmental Science & Technology, 2018, 52(17): 9704-9712. [35] DENG X, MAO L, WU Y, et al. Distribution and source of black carbon in coastal river sediments around Haizhou Bay, Eastern China: implications for anthropogenic inputs[J]. Environmental Science and Pollution Research, 2023, 30(8): 21092-21103. [36] 耿悦, 吕喜玺, 于瑞宏, 等. 乌梁素海悬浮颗粒物和沉积物有机碳同位素特征及来源[J]. 湖泊科学, 2021, 33(6): 1753-1765. doi: 10.18307/2021.0612 GENG Y, LV X X, YU R H, et al. Isotopic characteristics and sources of organic carbon in suspended particulates and sediments in Lake Wuliangsuhai[J]. Journal of Lake Sciences, 2021, 33(6): 1753-1765 (in Chinese). doi: 10.18307/2021.0612
[37] 吴晓东, 马晓婵, 蒋北寒, 等. 黄石市磁湖水体溶解性有机物的时空分布特征[J]. 生态与农村环境学报, 2020, 36(10): 1276-1284. doi: 10.19741/j.issn.1673-4831.2020.0215 WU X D, MA X C, JIANG B H, et al. Temporal and spatial distribution characteristics of dissolved organic matter in Cihu Lake of Huangshi City[J]. Journal of Ecology and Rural Environment, 2020, 36(10): 1276-1284 (in Chinese). doi: 10.19741/j.issn.1673-4831.2020.0215
[38] 何伟, 白泽琳, 李一龙, 等. 水生生态系统中溶解性有机质表生行为与环境效应研究[J]. 中国科学: 地球科学, 2016, 46(3): 341-355. doi: 10.1360/N072015-00119 HE W, BAI Z L, LI Y L, et al. Advances in environmental behaviors and effects of dissolved organic matter in aquatic ecosystems[J]. Scientia Sinica (Terrae), 2016, 46(3): 341-355 (in Chinese). doi: 10.1360/N072015-00119
[39] 陶世鑫, 刘蓬, 刘琳, 等. 磁湖叶绿素a的时空变化特征及其影响因子分析[J]. 湖北大学学报(自然科学版), 2022, 44(6): 774-779. TAO S X, LIU P, LIU L, et al. Spatiotemporal characteristics of chlorophyll-a and its environmental factors in Cihu Lake[J]. Journal of Hubei University (Natural Science), 2022, 44(6): 774-779 (in Chinese).
[40] DUBAY S G, FULDNER C C. Bird specimens track 135 years of atmospheric black carbon and environmental policy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(43): 11321-11326. [41] HAN Y M, MARLON J R, CAO J J, et al. Holocene linkages between char, soot, biomass burning and climate from Lake Daihai, China[J]. Global Biogeochemical Cycles, 2012, 26(4): 2011GB004197. doi: 10.1029/2011GB004197 [42] CONG Z, KANG S, GAO S, et al. Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record[J]. Environmental Science & Technology, 2013, 47(6): 2579-2586. [43] CAO J J, WU F, CHOW J C, et al. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China[J]. Atmospheric Chemistry and Physics, 2005, 5(11): 3127-3137. doi: 10.5194/acp-5-3127-2005 [44] HAN Y M, CAO J J, LEE S C, et al. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi'an, China[J]. Atmospheric Chemistry and Physics, 2010, 10(2): 595-607. doi: 10.5194/acp-10-595-2010 [45] 占长林, 万的军, 王平, 等. 典型工业城市土壤黑碳含量、分布特征及来源分析: 以黄石市为例[J]. 土壤, 2017, 49(2): 350-357. ZHAN C L, WAN D J, WANG P, et al. Concentration, distribution and potential sources of black carbon in soils from a typical industrial city—a case study of Huangshi, China[J]. Soils, 2017, 49(2): 350-357 (in Chinese).
[46] HAN Y M, LEE S C, CAO J J, et al. Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China[J]. Atmospheric Environment, 2009, 43(38): 6066-6073. doi: 10.1016/j.atmosenv.2009.08.018 [47] HAN Y M, PETEET D M, ARIMOTO R, et al. Climate and fuel controls on North American paleofires: smoldering to flaming in the late-glacial-Holocene transition[J]. Scientific Reports, 2016, 6: 20719. doi: 10.1038/srep20719 [48] CHOW J C, WATSON J G, KUHNS H, et al. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study[J]. Chemosphere, 2004, 54(2): 185-208. doi: 10.1016/j.chemosphere.2003.07.004 [49] CAO J J, LEE S C, HO K F, et al. Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong[J]. Aerosol and Air Quality Research, 2006, 6(2): 106-122. doi: 10.4209/aaqr.2006.06.0001 [50] CAO G, ZHANG X, ZHENG F. Inventory of black carbon and organic carbon emissions from China[J]. Atmospheric Environment, 2006, 40(34): 6516-6527. doi: 10.1016/j.atmosenv.2006.05.070