-
重金属废水具有重金属毒性大、稳定性强、难以降解等特性,吸附法是治理重金属废水经济高效的方法之一[1],制备比表面积高、吸附位点丰富、成本低的吸附材料一直是研究的热点,例如活性炭、矿物材料、纳米材料等均为常用的吸附剂[2-5]。这些吸附材料去除水中重金属的作用机制一直是研究难点和热点。 通常利用各种光谱技术,如X射线衍射(XRD)、红外光谱(FTIR)、X射线光电子能谱(XPS)等进行研究[6-7],而基于各机制对重金属总吸附量贡献的研究十分缺乏,仅集中在生物炭吸附重金属方面[8-11]。例如,Wang等[8]较早地研究了Pb(Ⅱ)在花生壳和中药渣生物炭上的吸附机制的贡献,发现Pb(Ⅱ)与矿物组分的共沉淀作用是最主要贡献,占82.6%—85.6%;Su等[12]发现,水滑石/生物炭复合材料吸附水中Pb(Ⅱ)和Cu(Ⅱ)的主要贡献机制为沉淀作用,分别占76.26%和45.0%。张雪[13]研究发现,镁铝水滑石吸附水中Pb(Ⅱ)和Cd(Ⅱ)的主要贡献机制为络合作用,经聚乙二醇插层改性后,降低了络合作用的吸附量,显著提升了沉淀作用的贡献。
二维层状纳米材料因具有比表面积高、电子转移速度快、制备和剥离容易等优势而备受关注[14],水滑石和二硫化钼是其中的典型代表。水滑石,又被称为双金属氢氧化物(LDHs),由无数的带正电的主体层板和层间阴离子组成,具有独特的层状结构和化学组成的可调控性,已被广泛应用于吸附分离领域[15-19]。例如,毛方琪等[18]总结了水滑石在重金属污染土壤/水修复方面的研究进展,论述了材料结构与重金属去除效率之间的内在联系,阐述了水滑石在重金属污染修复领域具有良好的应用潜力以及面临的水滑石绿色化制备、回收再生利用、降低成本等方面的挑战。Shan等[20]采用共沉淀法制备了MgAl-CO3-LDH和磁性Fe3O4/MgAl-CO3-LDH,明确了其吸附水中Cd(Ⅱ)的沉淀、表面络合和表面吸附作用机制。二硫化钼(MoS2)属于一种典型的过渡金属硫化合物,已被应用于重金属吸附领域[21]。 例如,MoS2纳米片对Pb(Ⅱ)的吸附量达740 mg·g−1,且具有选择性[22];在pH = 6时,对Ag(I)的吸附量高达4000 mg·g−1[23]. 但由S–Mo–S组成得的“三明治”状结构,使得MoS2易堆积而导致活性位点密度减少[24],因此制备复合材料是有效解决方法之一。例如,将MoS2纳米片分散到交联纤维素气凝胶中而得到的纳米复合材料对Pb(Ⅱ)具有优异的吸附能力、快速的吸附动力学和很好的选择性,适用于复杂水体中Pb(Ⅱ)的净化[25]。
已有学者成功制备二硫化钼与水滑石的复合材料,并应用于光催化[26-28]、电催化析氧[29]、填料[30]和阻燃剂[31]等方面,但未见应用于去除水中重金属的研究。因此,为了进一步提升二维层状纳米材料吸附性能,并研究对重金属的作用机制及其贡献,本文制备并表征了二硫化钼-水滑石(MoS2-LDH)复合材料,选择Cu(Ⅱ)、Pb(Ⅱ)和Cd(Ⅱ)作为典型重金属,研究了MoS2-LDH的吸附性能,重点进行了吸附机制研究,以期为高效去除重金属的二维层状纳米复合材料的设计合成提供理论支撑,并丰富界面吸附理论。
二硫化钼-水滑石复合材料对水中Cu(Ⅱ)、Pb(Ⅱ)和Cd(Ⅱ)的吸附机制
Adsorption mechanisms of MoS2-LDH composite for aqueous Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ)
-
摘要: 二维层状纳米材料可以有效去除水中的重金属,而吸附机制一直是研究难点和热点。为进一步提升材料性能,明确吸附反应机制,以典型的水滑石和二硫化钼为原料,采用共沉淀法制备镁铝水滑石,然后利用水热法负载二硫化钼,制备了复合材料(MoS2-LDH)。结果表明,MoS2-LDH对水中Cd(Ⅱ)、Pb(Ⅱ)和Cu(Ⅱ)的吸附作用机制包括沉淀、络合、同晶置换和静电吸引作用,其中沉淀作用为主导,贡献率占46.57%—58.32%,其次为络合作用(27.15%—32.08%)和同晶置换作用(10.75%—17.86%),静电吸引的贡献最小(3.33%—4.26%);吸附过程与拟二级动力学方程和Langmuir模型相符,最大吸附量达到48.31、71.33、77.16 mg·g−1。对高效去除重金属的吸附机制的详细研究,可为二维复合材料的设计合成提供理论支撑。Abstract: Two-dimensional layered nanomaterials can remove heavy metals from aqueous solutions by adsorption and the interaction mechanism is the active research focus and difficult issue. In order to increase the adsorption capability and clarify the interaction mechanism, the magnesium-aluminum layered double hydroxide (MgAl-LDH) was prepared using the co-precipitation method, and MoS2 was loaded using the hydrothermal method to obtain the composite of MoS2-LDH. The results indicated that the adsorption mechanisms of MoS2-LDH for aqueous Cd(Ⅱ), Cu(Ⅱ) and Pb(Ⅱ) involved the precipitation, complexation, isomorphic substitution and electrostatic attraction. The precipitation was the key mechanism and the contribution percentages were 46.57%—58.32%. The surface complexation (27.15%—32.08%) and isomorphic substitution (10.75%—17.86%) were followed by, and the contribution of electrostatic attraction was only 3.33%—4.26%. The adsorption process was in accordance with the pseudo-second-order kinetic equation and Langmuir isotherm model, respectively. The maximum adsorption capacities of MoS2-LDH for Cd(Ⅱ), Pb(Ⅱ) and Cu(Ⅱ) reached 48.31, 71.33 and 77.16 mg·g−1, respectively. In conclusion, the detailed adsorption mechanisms can provide theoretical support for the design and synthesis of two-dimensional composite to efficiently remove aqueous heavy metals.
-
Key words:
- heavy metal wastewater /
- adsorption mechanism /
- precipitation /
- complexation.
-
表 1 MoS2-LDH吸附Cd(Ⅱ)、Pb(Ⅱ)和Cu(Ⅱ)的动力学模型参数
Table 1. Kinetic parameters of Cd(Ⅱ), Pb(Ⅱ) and Cu(Ⅱ) adsorption by MoS2-LDH
拟一级动力学模型
Pseudo-first order kinetic mode拟二级动力学模型
Pseudo-second order kinetics modeqe/ (mg·g−1) k1/min−1 R2 qe/ (mg·g−1) k2/ (mg·min−1·g−1) R2 Cu(Ⅱ) 13.91 0.008 0.854 62.77 0.002 0.999 Pb(Ⅱ) 3.455 0.005 0.545 61.77 0.009 0.999 Cd(Ⅱ) 6.061 0.005 0.782 30.22 0.004 0.999 表 2 MoS2-LDH吸附Cd(Ⅱ)、Pb(Ⅱ)和Cu(Ⅱ)的等温线模型参数
Table 2. Isothermal parameters of Cd(Ⅱ), Pb(Ⅱ) and Cu(Ⅱ) adsorption by MoS2-LDH
Langmuir Freundlich qm/ (mg·g−1) b/ (L·mg−1) R2 kf 1/n R2 Cu(Ⅱ) 77.16 0.214 0.999 1.785 0.753 0.704 Pb(Ⅱ) 71.33 0.363 0.999 1.585 0.848 0.837 Cd(Ⅱ) 48.31 0.100 0.999 1.689 0.748 0.637 表 3 不同水滑石、MoS2材料对Cd(Ⅱ)、Pb(Ⅱ)和Cu(Ⅱ)吸附量的比较
Table 3. Comparison of adsorption capacity of LDH and MoS2-based adsorbents for Cd(Ⅱ), Pb(Ⅱ) and Cu(Ⅱ)
表 4 MoS2-LDH吸附重金属前后的XPS图谱的高反褶积
Table 4. High deconvolution of XPS spectra of MoS2-LDH before and after heavy metal adsorption
C—C/% C—O/% —OH/% 反应前 69.0 23.4 7.6 Cu(II) 84.2 11.3 4.5 Pb(II) 79.5 15.2 5.3 Cd(II) 84.9 10.5 4.6 -
[1] 刘金燕, 刘立华, 薛建荣, 等. 重金属废水吸附处理的研究进展 [J]. 环境化学, 2018, 37(9): 2016-2024. doi: 10.7524/j.issn.0254-6108.2017110105 LIU J Y, LIU L H, XUE J R, et al. Research progress on treatment of heavy metal wastewater by adsorption [J]. Environmental Chemistry, 2018, 37(9): 2016-2024(in Chinese). doi: 10.7524/j.issn.0254-6108.2017110105
[2] SHABTAI I A, LYNCH L M, MISHAEL Y G. Designing clay-polymer nanocomposite sorbents for water treatment: A review and meta-analysis of the past decade [J]. Water Research, 2021, 188: 116571. doi: 10.1016/j.watres.2020.116571 [3] XIAO X, CHEN B L, CHEN Z M, et al. Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review [J]. Environmental Science & Technology, 2018, 52(9): 5027-5047. [4] 曾辉平, 翟龙雪, 李冬, 等. 基于铁泥的磁性水处理材料制备及应用进展 [J]. 环境科学, 2022, 43(1): 26-36. ZENG H P, ZHAI L X, LI D, et al. Preparation and application of magnetic water treatment materials based on iron sludge [J]. Environmental Science, 2022, 43(1): 26-36(in Chinese).
[5] 苏欣悦, 丁欣欣, 闫良国. Fe3O4磁性纳米材料的制备及水处理应用进展 [J]. 中国粉体技术, 2020, 26(6): 1-10. SU X Y, DING X X, YAN L G. Research progress of preparation of Fe3O4 magnetic nanomaterials and applications in wastewater treatment [J]. China Powder Science and Technology, 2020, 26(6): 1-10(in Chinese).
[6] ZAERA F. Probing liquid/solid interfaces at the molecular level [J]. Chemical Reviews, 2012, 112(5): 2920-2986. doi: 10.1021/cr2002068 [7] 李伟, 罗磊, 张淑贞. 应用先进光谱技术研究无机离子的环境界面化学 [J]. 化学进展, 2011, 23(12): 2576-2587. LI W, LUO L, ZHANG S Z. Towards A molecular scale understanding of the chemistry of inorganic ions at environmental interfaces: Application of spectroscopic techniques [J]. Progress in Chemistry, 2011, 23(12): 2576-2587(in Chinese).
[8] WANG Z Y, LIU G C, ZHENG H, et al. Investigating the mechanisms of biochar's removal of lead from solution [J]. Bioresource Technology, 2015, 177: 308-317. doi: 10.1016/j.biortech.2014.11.077 [9] GAO L Y, DENG J H, HUANG G F, et al. Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge [J]. Bioresource Technology, 2019, 272: 114-122. doi: 10.1016/j.biortech.2018.09.138 [10] XIAO J, HU R, CHEN G C. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II) [J]. Journal of Hazardous Materials, 2020, 387: 121980. doi: 10.1016/j.jhazmat.2019.121980 [11] TIAN Y, LI J B, WHITCOMBE T W, et al. Application of oily sludge-derived char for lead and cadmium removal from aqueous solution [J]. Chemical Engineering Journal, 2020, 384: 123386. doi: 10.1016/j.cej.2019.123386 [12] SU X Y, CHEN Y, LI Y F, et al. Enhanced adsorption of aqueous Pb(Ⅱ) and Cu(Ⅱ) by biochar loaded with layered double hydroxide: Crucial role of mineral precipitation [J]. Journal of Molecular Liquids, 2022, 357: 119083. doi: 10.1016/j.molliq.2022.119083 [13] 张雪. 插层镁铝水滑石对水中重金属的吸附性能与机理研究[D]. 济南: 济南大学, 2021. ZHANG X. Study on adsorption performance and mechanisms of intercalated MgAl-layered double hydroxide for heavy metals from water[D]. Jinan: University of Jinan, 2021(in Chinese).
[14] ZHOU J Y, LIN Z Y, REN H Y, et al. Layered intercalation materials [J]. Advanced Materials, 2021, 33(25): 2004557. doi: 10.1002/adma.202004557 [15] LAIPAN M W, YU J F, ZHU R L, et al. Functionalized layered double hydroxides for innovative applications [J]. Materials Horizons, 2020, 7(3): 715-745. doi: 10.1039/C9MH01494B [16] 吕维扬, 孙继安, 姚玉元, 等. 层状双金属氢氧化物的控制合成及其在水处理中的应用 [J]. 化学进展, 2020, 32(12): 2049-2063. LV W Y, SUN J A, YAO Y Y, et al. Morphology control of layered double hydroxide and its application in water remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063(in Chinese).
[17] 张爽, 丁欣欣, 闫良国. 改性水滑石类材料的制备及其吸附性能研究进展 [J]. 中国粉体技术, 2021, 27(1): 1-10. ZHANG S, DING X X, YAN L G. Research progress on preparation and adsorption properties of modified layered double hydroxides [J]. China Powder Science and Technology, 2021, 27(1): 1-10(in Chinese).
[18] 毛方琪, 郝培培, 孔祥贵, 等. 双金属复合氢氧化物在重金属污染土壤/水修复方面的研究进展 [J]. 中国科学:化学, 2021, 51(5): 493-508. doi: 10.1360/SSC-2020-0123 MAO F Q, HAO P P, KONG X G, et al. Layered double hydroxides as amendment for remediation of heavy metal ions in water and soil [J]. Scientia Sinica Chimica, 2021, 51(5): 493-508(in Chinese). doi: 10.1360/SSC-2020-0123
[19] XIE Y Y, YUAN X Z, WU Z B, et al. Adsorption behavior and mechanism of Mg/Fe layered double hydroxide with Fe3O4-carbon spheres on the removal of Pb(II) and Cu(II) [J]. Journal of Colloid and Interface Science, 2019, 536: 440-455. doi: 10.1016/j.jcis.2018.10.066 [20] SHAN R R, YAN L G, YANG K, et al. Adsorption of Cd(II) by Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies [J]. Journal of Hazardous Materials, 2015, 299: 42-49. doi: 10.1016/j.jhazmat.2015.06.003 [21] LIU C, WANG Q M, JIA F F, et al. Adsorption of heavy metals on molybdenum disulfide in water: A critical review [J]. Journal of Molecular Liquids, 2019, 292: 111390. doi: 10.1016/j.molliq.2019.111390 [22] WANG Z Y, TU Q S, SIM A, et al. Superselective removal of lead from water by two-dimensional MoS2 nanosheets and layer-stacked membranes [J]. Environmental Science & Technology, 2020, 54(19): 12602-12611. [23] WANG Z Y, SIM A, URBAN J J, et al. Removal and recovery of heavy metal ions by two-dimensional MoS2 nanosheets: Performance and mechanisms [J]. Environmental Science & Technology, 2018, 52(17): 9741-9748. [24] LEE Y H, ZHANG X Q, ZHANG W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition [J]. Advanced Materials, 2012, 24(17): 2320-2325. doi: 10.1002/adma.201104798 [25] QIU S J, WANG X, ZHANG Q R, et al. Development of MoS2/cellulose aerogels nanocomposite with superior application capability for selective lead(II) capture [J]. Separation and Purification Technology, 2022, 284: 120275. doi: 10.1016/j.seppur.2021.120275 [26] YANG F, CAO Z F, WANG J, et al. In situ self-assembly of molybdenum disulfide/Mg-Al layered double hydroxide composite for enhanced photocatalytic activity [J]. Journal of Alloys and Compounds, 2019, 817: 153308. [27] CHEN S, YANG F, CAO Z F, et al. Enhanced photocatalytic activity of molybdenum disulfide by compositing ZnAl-LDH [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 586: 124140. [28] 李红艳. 基于生物模板的LDHs/钼系微纳复合光催化剂的制备及其性能研究[D]. 济南: 济南大学, 2017. LI H Y. Preparation of LDHs/molybdenum-based micro/nano composite photocatalyst based on biological template and its properties[D]. Jinan : University of Jinan, 2017(in Chinese).
[29] WEI Y H, LI G S, WANG J H, et al. Self-assembled nanohybrid from opposite charged sheets: Alternate stacking of CoAl-LDH and MoS2 [J]. Chinese Journal of Structural Chemistry, 2018, 37(7): 1093-1101. [30] LI X Y, GUO M, Bandyopadhyay P, et al. Two-dimensional materials modified layered double hydroxides: A series of fillers for improving gas barrier and permselectivity of poly (vinyl alcohol) [J]. Composites Part B:Engineering, 2020, 207: 108568. [31] ZHOU K Q, GAO R, QIAN X D. Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): Towards reducing fire hazards of epoxy [J]. Journal of Hazardous Materials, 2017, 338: 343-355. doi: 10.1016/j.jhazmat.2017.05.046 [32] SU X Y, GUO Y X, YAN L G, et al. MoS2 nanosheets vertically aligned on biochar as a robust peroxymonosulfate activator for removal of tetracycline [J]. Separation and Purification Technology, 2022, 282: 120118. doi: 10.1016/j.seppur.2021.120118 [33] HO Y S, MCKAY G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents [J]. Process Safety and Environmental Protection, 1998, 76(4): 332-340. doi: 10.1205/095758298529696 [34] ZHANG X, YAN L G, LI J, et al. Adsorption of heavy metals by l-cysteine intercalated layered double hydroxide: Kinetic, isothermal and mechanistic studies [J]. Journal of Colloid and Interface Science, 2020, 562: 149-158. doi: 10.1016/j.jcis.2019.12.028 [35] GONZÁLEZ M A, PAVLOVIC I, BARRIGA C. Cu(II), Pb(II) and Cd(II) sorption on different layered double hydroxides. A kinetic and thermodynamic study and competing factors [J]. Chemical Engineering Journal, 2015, 269: 221-228. doi: 10.1016/j.cej.2015.01.094 [36] ZHU S D, ASIM KHAN M, WANG F Y, et al. Rapid removal of toxic metals Cu2+ and Pb2+ by amino trimethylene phosphonic acid intercalated layered double hydroxide: A combined experimental and DFT study [J]. Chemical Engineering Journal, 2020, 392: 123711. doi: 10.1016/j.cej.2019.123711 [37] AGHAGOLI M J, BEYKI M H, SHEMIRANI F. Facile synthesis of Fe3O4/MoS2 nanohybrid for solid phase extraction of Ag(I) and Pb(II): Kinetic, isotherm and thermodynamic studies [J]. International Journal of Environmental Analytical Chemistry, 2017, 97(14/15): 1328-1351. [38] LIU C, ZENG S L, YANG B Q, et al. Simultaneous removal of Hg2+, Pb2+ and Cd2+ from aqueous solutions on multifunctional MoS2 [J]. Journal of Molecular Liquids, 2019, 296: 111987. doi: 10.1016/j.molliq.2019.111987 [39] LUO J M, FU K X, SUN M, et al. Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2 [J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38789-38797. [40] YUAN W Q, KUANG J Z, YU M M, et al. Facile preparation of MoS2@Kaolin composite by one-step hydrothermal method for efficient removal of Pb(II) [J]. Journal of Hazardous Materials, 2021, 405: 124261. doi: 10.1016/j.jhazmat.2020.124261 [41] KUMAR N, FOSSO-KANKEU E, RAY S S. Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems [J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19141-19155. [42] ZHANG L, HE X, ZHOU Q X, et al. Fabrication of 1T-MoS2 nanosheets and the high-efficiency removal of toxic metals in aquatic systems: Performance and mechanisms [J]. Chemical Engineering Journal, 2020, 386: 123996. doi: 10.1016/j.cej.2019.123996 [43] DENG Y Y, HUANG S, LAIRD D A, et al. Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems [J]. Chemosphere, 2019, 218: 308-318. doi: 10.1016/j.chemosphere.2018.11.081 [44] KOSTENKO L S, TOMASHCHUK I I, KOVALCHUK T V, et al. Bentonites with grafted aminogroups: Synthesis, protolytic properties and assessing Cu(II), Cd(II) and Pb(II) adsorption capacity [J]. Applied Clay Science, 2019, 172: 49-56. doi: 10.1016/j.clay.2019.02.009 [45] WU J W, WANG T, ZHANG Y S, et al. The distribution of Pb(II)/Cd(II) adsorption mechanisms on biochars from aqueous solution: Considering the increased oxygen functional groups by HCl treatment [J]. Bioresource Technology, 2019, 291: 121859. doi: 10.1016/j.biortech.2019.121859 [46] ZHANG C, SHAN B Q, TANG W Z, et al. Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere [J]. Bioresource Technology, 2017, 238: 352-360. doi: 10.1016/j.biortech.2017.04.051