-
氟是常见的水体污染物,过量摄入会导致氟中毒,不但会损害人体骨骼和牙齿健康,还可能使人体肾脏受损和甲状腺激素紊乱[1-2]. 氟污染已对全球多个国家造成了严重威胁,全球有超过2亿人处于氟中毒的危险中,我国是氟中毒较为严重的国家之一[3-4]. 由于严重的毒副作用,世界卫生组织(WHO)规定饮用水中的氟离子(F–)浓度不得超过1.5 mg·L−1(ISBN 978-92-4-154995-0),我国《生活饮用水卫生标准》规定水中氟化物不应超过1.0 mg·L−1(GB 5749-2006). 因此,对水体中的F–进行监测和管理是保障水环境安全的重要内容,研究准确、快速、高灵敏度的水体F–检测方法十分必要.
目前F–的检测方法主要包括离子选择电极法、离子色谱法、分子吸收光谱法、比色法和荧光检测法等[5-8]. 其中,荧光检测法因其灵敏度高、检测实时、操作简便等优点,近年来引起了研究者的广泛关注[8-11]. 荧光检测技术的关键是其探针,探针的性能很大程度上决定了方法的检测灵敏度、速度和选择性. 目前可用于F–检测的荧光探针以硅基/硼基/脲基有机合成小分子或聚合物、无机半导体量子点为主[8, 12-15]. 这些探针不但种类较为有限,还存在着合成过程复杂、F–响应时间长、检测限高,以及在水溶液中适用性较差等问题[12-14].
碳量子点是一种新兴的零维荧光碳纳米材料,具有荧光性质可控、稳定性高、水溶性好、合成方法简单、毒性低等优点[16-20],在荧光检测领域显示了巨大的应用潜力. 在环境分析方面,碳量子点已被成功用于检测水体、血液等环境样品中的污染物[21-25]. 但目前关于碳量子点的荧光检测研究主要集中于重金属等阳离子型污染物[21-23],对F–等阴离子型污染物的研究相对较少.
本文以柠檬酸为碳源、尿素为氮源,采用简单的水热法制备了掺氮荧光碳量子点(NCDs),并利用多种表征技术对其结构组成和光学性质进行了表征. NCDs与铝离子(Al3+)作用后会发生荧光淬灭,而F–与Al3+的配位反应可置换出与NCDs结合的Al3+,使NCDs荧光恢复. 利用荧光“开启”效应,建立了F–的快速检测方法,研究了方法的灵敏度、选择性和稳定性,以及其在实际水体样品中的应用性能.
基于氮掺杂碳量子点的水体氟离子选择性荧光开启检测
Rapid and selective “turn-on” fluorescent detection of fluoride ion in aqueous solution using nitrogen-doped carbon quantum dots
-
摘要: 本论文以柠檬酸为碳源、尿素为氮源,通过水热法制备了氮掺杂碳量子点(NCDs),将其作为荧光探针用于检测水体中的氟离子(F–). 利用透射电镜(TEM)、X射线光电子能谱(XPS)、红外光谱(FT-IR)、紫外-可见光谱(UV-vis)、荧光光谱等表征手段分析了NCDs的结构和光谱学性质. 考察了探针检测氟离子的灵敏度、稳定性和选择性,及其在天然水体样品中的适用性. 结果表明,NCDs可在紫外光激发下产生蓝色荧光,且具有较高的荧光量子产率(41%). NCDs富含羧基、羟基等含氧官能团,可与铝离子(Al3+)发生反应,这一过程会导致其荧光淬灭;而F–与Al3+的配位反应可置换出与NCDs结合的Al3+,使NCDs的荧光恢复,产生荧光“开启”效应.NCDs荧光恢复的程度与F–浓度线性正关系(R2 = 0.995),表明该方法可用于定量检测F–. 进一步研究显示,NCDs在检测F–时具有较快的响应时间(约1.0 min)、较宽的线性范围(20—300 μmol·L−1)、较低的检出限(0.65 μmol·L−1)和良好的选择性(水体常见阴阳离子对检测过程的影响低于5%). 此外,NCDs还具有良好的稳定性,在中性到弱碱性环境(pH 6.0—9.0)中均能有效检出F–. 在实际水体分析过程中,NCDs显示了良好的F–加标回收率(88.2%—105.0%)和检测精密度(相对标准偏差低于3.0%),表明其具有较好的应用潜能.Abstract: Nitrogen-doped carbon quantum dots (NCDs) were synthesized by a facile hydrothermal method using citric acid as the carbon source and urea as the nitrogen source, and were applied as a novel “turn-on” fluorescent probe for the detection of fluoride ions (F–) in water. The structural and spectroscopic properties of the NCDs were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), and fluorescence spectroscopy. The sensitivity, stability and selectivity of the NCDs probe to detect F– as well as its applicability in natural water samples were investigated. NCDs showed blue fluorescence emission under ultraviolet light irradiation, and had a high fluorescence quantum yield of 41%. The NCDs can react with aluminium ions (Al3+) via the surface oxygen-containing groups, which would quench the fluorescence emission of NCDs. Due to the strong coordination affinity, F– can compete with NCDs for Al3+ and thus recover the fluorescence of NCDs. There existed a good linear relationship between the recovery ratio of NCDs fluorescence and F– concentration (R2 = 0.995), suggesting the possibility of NCDs in F– quantification. The NCDs-based fluorescence method for F– detection exhibited a short response time (approximately 1.0 min), wide linear range (20—300 μmol·L−1), low detection limit (0.65 μmol·L−1), good selectivity (influences of common ions below 5%), and satisfactory stability in environmentally relevant pH range (pH 6.0—9.0). Finally, the proposed method was successfully applied in the analysis of F– in real water samples with high recoveries (88.2%—105.0%) and precision (relative standard deviations lower than 3.0%).
-
Key words:
- nitrogen-doped carbon dots /
- fluoride ion /
- fluorescent detection /
- turn-on
-
图 3 (a)Al3+和(b)F–对NCDs溶液荧光光谱的影响(Ex= 340 nm);(c)不同浓度F–存在下NCDs在Ex = 340 nm/Em = 440 nm处的荧光恢复率;(d)NCDs在Ex = 340 nm/Em = 440 nm处的荧光恢复率与F–的相关关系
Figure 3. Fluorescence spectra of NCDs solution at Ex 340 nm upon the addition of (a) Al3+ and (b) F–; (c) fluorescence recovery efficiency of NCDs at Ex = 340 nm/Em = 440 nm as a function of F– concentration; (d) relationship between fluorescence recovery efficiency of NCDs at Ex = 340 nm/Em = 440 nm and F– concentration
图 4 NCDs的(a)荧光响应速度和(b)荧光稳定性随时间的变化;溶液pH值对NCDs的(c)荧光强度和(d)荧光恢复率的影响(Al3+浓度为100 μmol·L−1,F–浓度为300 μmol·L−1)
Figure 4. Fluorescence intensity of NCDs solution in the presence of Al3+ (100 μmol·L−1) and/or F– (300 μmol·L−1) as a function of (a) incubation time and (b) irradiation time; effect of solution pH on NCDs (c) fluorescence intensity and (d) fluorescence recovery efficiency by F–
图 5 (a)低浓度(50 μmol·L−1)和(c)高浓度(300 μmol·L−1)离子存在下NCDs的荧光恢复率;(b)低浓度(50 μmol·L−1)和(d)高浓度(300 μmol·L−1)干扰离子和F–共存时的NCDs荧光恢复率
Figure 5. Fluorescence recovery efficiency of NCDs in the presence of different ions at (a) low (50 μmol·L−1) and (c) high concentrations (300 μmol·L−1), and in the coexistence of F– and other ions at (b) low (50 μmol·L−1) and (d) high concentrations (300 μmol·L−1)
表 1 文献报道F–荧光检测法的分析性能
Table 1. Analytical performances of reported fluorescence methods for F– detection
探针
Probe检出限/(μmol·L−1)
LOD线性范围/(μmol·L−1)
Linear Range响应时间/min
Response time文献
References基于内部电荷转移的荧光探针 80 500—28000 25 [8] 基于Si—O键断裂的荧光探针 18 0—1000 45 [12] 含有多面体低聚硅氧烷的纳米粒子 10 10—100 1.67 [13] 基于硼酸的荧光碳点 110 0—26700 5.0 [14] 蒽基荧光受体 2.0 2—120 NAa [30] 基于1,1’-联萘基支架的荧光探针 1.86 5.0—45.0 200 [31] 基于壳聚糖凝胶的荧光碳点 6.6 6.6—50.6 2.0 [32] 基于羧酸桥联二铁络合物的
荧光探针6.7 0—30 NAa [33] NCDs 0.65 20—300 1.0 本论文 注:a “NA” 文中未提及. a “NA ” Not available. 表 2 基于NCDs的荧光法对实际水样中F–的检测结果(%, n=3)
Table 2. Analytical results for the determination of F– in real water samples
加标浓度/(μmol·L−1)
Spiked concentration自来水样加标回收率
Tap water recoveries太湖水样加标回收率
Taihu Lake water recoveries荧光法 离子色谱法 荧光法 离子色谱法 20 88.2 ± 2.24 111.7 ± 0.76 88.5 ± 2.66 111.9 ± 1.27 40 92.1 ± 2.63 98.5 ± 2.06 94.7 ± 2.01 107.2 ± 1.93 60 95.7 ± 2.67 94.0 ± 0.33 105.0 ± 1.97 99.9 ± 1.75 80 96.9 ± 1.90 92.0 ± 1.21 97.3 ± 2.20 94.7 ± 0.25 100 101.6 ± 1.58 91.4 ± 1.13 103.7 ± 2.01 91.5 ± 1.05 -
[1] AOBA T, FEJERSKOV O. Dental fluorosis: Chemistry and biology [J]. Critical Reviews in Oral Biology and Medicine:an Official Publication of the American Association of Oral Biologists, 2002, 13(2): 155-170. doi: 10.1177/154411130201300206 [2] AK S, BHATNAGAR M, VIG K, et al. Excess fluoride ingestion and thyroid hormone derangements in children living in Delhi, India [J]. Fluoride, 2005, 38(2): 98-108. [3] AYOOB S, GUPTA A K. Fluoride in drinking water: A review on the status and stress effects [J]. Critical Reviews in Environmental Science and Technology, 2006, 36(6): 433-487. doi: 10.1080/10643380600678112 [4] 刘东生, 陈庆沐, 余志成, 袁芷云. 我国地方性氟病的地球化学问题 [J]. 地球化学, 1980, 9(1): 13-22. doi: 10.3321/j.issn:0379-1726.1980.01.002 LIU D S, CHEN Q M, YU Z C, et al. Geochemical environment problems concerning the endemic fluorine disease in China [J]. Geochimica, 1980, 9(1): 13-22(in Chinese). doi: 10.3321/j.issn:0379-1726.1980.01.002
[5] DAY J K, BRESNER C, COOMBS N D, et al. Colorimetric fluoride ion sensing by polyborylated ferrocenes: Structural influences on thermodynamics and kinetics [J]. Inorganic Chemistry, 2008, 47(3): 793-804. doi: 10.1021/ic701494p [6] MORÉS S, MONTEIRO G C, SANTOS F D S, et al. Determination of fluorine in tea using high-resolution molecular absorption spectrometry with electrothermal vaporization of the calcium mono-fluoride CaF [J]. Talanta, 2011, 85(5): 2681-2685. doi: 10.1016/j.talanta.2011.08.044 [7] LI Y H, DUAN Y, ZHENG J, et al. Self-assembly of graphene oxide with a silyl-appended spiropyran dye for rapid and sensitive colorimetric detection of fluoride ions [J]. Analytical Chemistry, 2013, 85(23): 11456-11463. doi: 10.1021/ac402592c [8] ZHU B C, YUAN F, LI R X, et al. A highly selective colorimetric and ratiometric fluorescent chemodosimeter for imaging fluoride ions in living cells [J]. Chemical Communications, 2011, 47(25): 7098-7100. doi: 10.1039/c1cc11308a [9] ZHOU Y, ZHANG J F, YOON J. Fluorescence and colorimetric chemosensors for fluoride-ion detection [J]. Chemical Reviews, 2014, 114(10): 5511-5571. doi: 10.1021/cr400352m [10] LIU W, DAI X, BAI Z L, et al. Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal-organic framework equipped with abundant lewis basic sites: A combined batch, X-ray absorption spectroscopy, and first principles simulation investigation [J]. Environmental Science & Technology, 2017, 51(7): 3911-3921. [11] LIU W, DAI X, WANG Y, et al. Ratiometric monitoring of thorium contamination in natural water using a dual-emission luminescent europium organic framework [J]. Environmental science & technology, 2018, 53(1): 332-341. [12] CHENG X H, JIA H, FENG J, et al. “Reactive” probe for fluoride: “Turn-on” fluorescent sensing in aqueous solution and bioimaging in living cells [J]. Sensors and Actuators B:Chemical, 2014, 199: 54-61. doi: 10.1016/j.snb.2014.03.054 [13] DU F F, BAO Y Y, LIU B, et al. POSS-containing red fluorescent nanoparticles for rapid detection of aqueous fluoride ions [J]. Chemical Communications, 2013, 49(41): 4631-4633. doi: 10.1039/c3cc40810h [14] SHAMSIPUR M, SAFAVI A, MOHAMMADPOUR Z, et al. Fluorescent carbon nanodots for optical detection of fluoride ion in aqueous media [J]. Sensors and Actuators B:Chemical, 2015, 221: 1554-1560. doi: 10.1016/j.snb.2015.07.096 [15] LIU J B, YANG X H, WANG K M, et al. A switchable fluorescent quantum dot probe based on aggregation/disaggregation mechanism [J]. Chemical Communications, 2011, 47(3): 935-937. doi: 10.1039/C0CC03993D [16] SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J]. Journal of the American Chemical Society, 2006, 128(24): 7756-7757. doi: 10.1021/ja062677d [17] ZHU S J, SONG Y B, ZHAO X H, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective [J]. Nano Research, 2015, 8(2): 355-381. doi: 10.1007/s12274-014-0644-3 [18] ZHANG Y Q, MA D K, ZHUANG Y, et al. One-pot synthesis of N-doped carbon dots with tunable luminescence properties [J]. Journal of Materials Chemistry, 2012, 22(33): 16714-16718. doi: 10.1039/c2jm32973e [19] HU C, LI M Y, QIU J S, et al. Design and fabrication of carbon dots for energy conversion and storage [J]. Chemical Society Reviews, 2019, 48(8): 2315-2337. doi: 10.1039/C8CS00750K [20] 傅鹏, 周丽华, 唐连凤, 等. 碳量子点的制备及其在能源与环境领域应用进展 [J]. 应用化学, 2016, 33(7): 742-755. doi: 10.11944/j.issn.1000-0518.2016.07.150393 FU P, ZHOU L H, TANG L F, et al. Progress in preparation of carbon quantum dots and its application in the fields of energy and environment [J]. Chinese Journal of Applied Chemistry, 2016, 33(7): 742-755(in Chinese). doi: 10.11944/j.issn.1000-0518.2016.07.150393
[21] PENG D, ZHANG L, LIANG R P, et al. Rapid detection of mercury ions based on nitrogen-doped graphene quantum dots accelerating formation of Manganese porphyrin [J]. ACS Sensors, 2018, 3(5): 1040-1047. doi: 10.1021/acssensors.8b00203 [22] LIU H, LI R S, ZHOU J, et al. Branched polyethylenimine-functionalized carbon dots as sensitive and selective fluorescent probes for N-acetylcysteine via an off-on mechanism [J]. Analyst, 2017, 142(22): 4221-4227. doi: 10.1039/C7AN01136A [23] ZHENG M, XIE Z G, QU D, et al. On-off-on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect [J]. ACS Applied Materials & Interfaces, 2013, 5(24): 13242-13247. [24] CHEN B B, LIU M L, ZHAN L, et al. Terbium (III) modified fluorescent carbon dots for highly selective and sensitive ratiometry of stringent [J]. Analytical chemistry, 2018, 90(6): 4003-4009. doi: 10.1021/acs.analchem.7b05149 [25] ZHANG Z, ZHANG D, SHI C, et al. 3, 4-Hydroxypyridinone-modified carbon quantum dot as a highly sensitive and selective fluorescent probe for the rapid detection of uranyl ions [J]. Environmental Science:Nano, 2019, 6(5): 1457-1465. doi: 10.1039/C9EN00148D [26] TANG L, JI R, LI X, et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots [J]. ACS nano, 2014, 8(6): 6312-6320. doi: 10.1021/nn501796r [27] LI H, KONG W, LIU J, et al. Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection [J]. Carbon, 2015, 91: 66-75. doi: 10.1016/j.carbon.2015.04.032 [28] QU D, ZHENG M, ZHANG L G, et al. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots [J]. Scientific Reports, 2014, 4: 5294. doi: 10.1038/srep05294 [29] LI L B, YU B, YOU T. Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (Ⅱ) ions [J]. Biosensors and Bioelectronics, 2015, 74: 263-269. doi: 10.1016/j.bios.2015.06.050 [30] HUANG W W, LIN H, CAI Z, et al. A novel anthracene-based receptor: Highly sensitive fluorescent and colorimetric receptor for fluoride [J]. Talanta, 2010, 81(3): 967-971. doi: 10.1016/j.talanta.2010.01.045 [31] DONG M, PENG Y, DONG Y M, et al. A selective, colorimetric, and fluorescent chemodosimeter for relay recognition of fluoride and cyanide anions based on 1, 1'-binaphthyl scaffold [J]. Organic Letters, 2012, 14(1): 130-133. doi: 10.1021/ol202926e [32] BARUAH U, GOGOI N, MAJUMDAR G, et al. β-Cyclodextrin and calix[4]arene-25, 26, 27, 28-tetrol capped carbon dots for selective and sensitive detection of fluoride [J]. Carbohydrate Polymers, 2015, 117: 377-383. doi: 10.1016/j.carbpol.2014.09.083 [33] ZHOU Y H, DONG X L, ZHANG Y X, et al. Highly selective fluorescence sensors for the fluoride anion based on carboxylate-bridged diiron complexes [J]. Dalton Transactions, 2016, 45(16): 6839-6846. doi: 10.1039/C5DT03801D [34] WANG H, WANG Y, GUO J, et al. A new chemosensor for Ga3+ detection by fluorescent nitrogen-doped graphitic carbon dots [J]. RSC Advances, 2015, 5(17): 13036-13041. doi: 10.1039/C4RA15431B [35] SHI L H, WANG Q, ZHANG C, et al. Tricolor emission carbon dots for label-free ratiometric fluorescent and colorimetric recognition of Al3+ and pyrophosphate ion and cellular imaging [J]. Sensors and Actuators B:Chemical, 2021, 345: 130375. doi: 10.1016/j.snb.2021.130375 [36] LIU C S, SHIH K, GAO Y X, et al. Dechlorinating transformation of propachlor through nucleophilic substitution by dithionite on the surface of alumina [J]. Journal of Soils and Sediments, 2012, 12(5): 724-733. doi: 10.1007/s11368-012-0506-0