-
塑料是一种合成的高分子化合物,由于其具有耐用性和成本低廉等优点,被广泛应用于各个行业. 塑料给我们带来极大便利的同时,也产生了大量的塑料垃圾,并对环境造成严重威胁[1]. 进入环境中的塑料受到紫外辐照、机械磨损、生物降解等因素的影响逐步破碎分解成更小的颗粒,当塑料碎片或颗粒的粒径<5 mm 时,一般被称为微塑料(MPs)[2]. 微塑料能够长期存在于环境中并经历光老化、热老化、化学老化与生物老化等作用,其物理化学性质随之发生改变,如表面形貌、官能团、结晶度等[3]. 然而,微塑料在自然过程中老化速率极低,因为环境中的紫外辐射较弱且温度较低,需要很长的时间才能观察到微塑料表面特征发生明显改变,这极大限制了老化微塑料的研究. 因此,研究者开发了实验室加速技术来替代自然老化过程. 目前常用的老化技术包括紫外老化、化学氧化和微生物降解来模拟和加速微塑料的老化过程,以提供对老化微塑料环境行为的认识.
微塑料在淡水、海水、沉积物、土壤与大气等环境中无处不在,并且存在于水生生物、土壤生物与哺乳动物等生物体中,甚至在人体中也检测到微塑料的存在. 由于微塑料粒径较小,更容易被生物所误食并在体内积累,进而对生物体产生多种毒性效应,甚至导致生物体的死亡[4 − 5]. 目前,关于微塑料的毒理学研究主要采用模式化微塑料,但也有数研究报道了光老化MPs对微藻、秀丽线虫与斑马鱼等生物体造成更严重的毒性效应.
本文综述了微塑料的紫外、化学和微生物降解老化等实验室加速老化技术,介绍了老化后微塑料的表面形貌与官能团等的变化及对吸附污染物的影响,并总结了老化微塑料对微藻、线虫、斑马鱼等生物的发育、生殖与神经毒性等效应. 为加深人们对微塑料实验室加速老化技术、老化微塑料的特点及其对生物的毒性效应的理解提供了基础.
微塑料的老化技术、特征及其毒性效应研究进展
Research progress on aging technology, characteristics and toxic effects of microplastics
-
摘要: 环境中的微塑料通常会受到紫外辐照、热辐射、化学氧化、生物降解等环境因素的影响,进而经历光老化、热老化、化学老化、生物老化等过程,并且其物理化学性质均发生一定程度的改变. 环境中微塑料的自然老化过程需要很长的时间,极大限制了对老化微塑料的研究. 本文综述了微塑料的实验室加速老化技术,包括紫外老化、化学老化和生物降解等技术,阐述了老化后微塑料的表面形貌与官能团的变化及对吸附污染物的影响,并总结了老化微塑料对生物的发育毒性、生殖毒性、神经毒性和氧化应激等效应. 本文旨在使人们更了解微塑料实验室加速老化技术及其对生物的潜在风险效应.Abstract: Microplastics(MPs) in the environment are usually affected by environmental factors such as ultraviolet radiation, thermal radiation, chemical oxidation, and biodegradation, and then undergo processes of photoaging, thermal aging, chemical aging, or biological aging. These processes potentially change the physicochemical properties of MPs to some extent. However, the natural aging process of MPs in the environment takes a long time, which greatly restricts the understanding of aging MPs. This paper reviewed the different laboratory- accelerated aging technologies of MPs, including UV aging, chemical aging, and biodegradation, and expounded on the changes in the surface characteristics, functional groups, and their effects on adsorbed pollutants of MPs after aging. We further summarized the effects of aging MPs on developmental toxicity, reproductive toxicity, neurotoxicity, and oxidative stress. This paper aims to provide a better understanding of MPs laboratory accelerated aging techniques and their potential risk effects on organisms.
-
表 1 不同老化方式对MPs表征的影响
Table 1. Effects of different aging methods on the characterization of various MPs
MPs种类
Types of microplastics老化技术
Aging technology老化表征
Characterization of aging参考文献
ReferencePA 紫外线灯、UVA、340 nm、 20 W 裂缝、凸起、和孔隙,海水和土壤中羰基拉伸 [11] 汞灯 500 W 形成了更多的C—O [37] 氙灯(1500 W)300—400 nm、
65 W·m−2孔隙、表面变得粗糙 [36] UV-C 254 nm 、75 W 白色变为浅褐色,增加了较小尺寸范围颗粒数量 [38] PET 紫外线灯 UVA 340 nm、 20 W 氧化颗粒、裂缝、凸起、褶皱和孔隙,特征羰基拉伸频率区域的峰值强度增加 [11] 500 W水银灯 大孔和裂纹,重量减少,出现与酯键C—O、芳环基团C—H和羰基或酮有关的典型峰 [39] 氙灯(1500 W) 300—400 nm、
65 W·m−2碎裂、孔隙 [36] 周生生物膜降解 出现各种沟槽、孔隙和裂纹,所有峰的强度明显降低. [40] PS 紫外线灯 UVA 340 nm、 20 W 氧化颗粒、裂缝、凸起、褶皱和孔隙,
海水和土壤C—H 平面内弯曲,C—O 拉伸[11] 500 W汞灯 表面生成了更多的含氧官能团 [41] 500 W氙灯 变得粗糙、断裂,形成了羰基,CI值分别从原始PS-MPs的0.030增加到0.034 [42] UVA灯40 W、365 nm 、
120 W·m−2生成含氧官能团,—OH伸缩振动,氧-碳原子比(O/C)比0.186略微增加到0.198 [9] 汞灯 150 W 、297–579 nm C—H键的芳香族和脂肪族伸缩振动,碎裂成更小粒径 [43] H2O2和Fenton试剂 形成表面微裂纹,变得粗糙,观察到C—O、 C—O与 O—C=O新的吸收峰 [23] 芬顿和过硫酸盐 观察到苯乙酮、苯甲醛、乙酸、甲酸CH2COOH、CH2C(O)CH2、σ-内酯/苯甲酸和苯甲酸酐基团吸收峰 [17] 光-芬顿 表面变得粗糙,产生羰基和羟基吸收峰 [26] 过氧单硫酸盐和Fenton试剂 存在C—O、C—O和O—C—O含氧化学基团 [39] PVC 紫外线灯 UVA 340 nm 、20 W 氧化颗粒、裂缝、凸起、褶皱和孔隙,空气和沙子中C—H拉伸,海水 和土壤中C—H和C—O拉伸 [11] 500 W水银灯 裂缝、粗糙,重量减少,CH—Cl的C—H弯曲和弯曲振动 [39] 紫外激活的过硫酸盐 结晶度增加,出现大孔和粗糙表面,产生了许多更小尺寸的颗粒,在1736和3456 cm−1的谱带中发现了C—O和—OH两个新的基团 [44] PE 汞灯 150 W 、297—579 nm CH2在2915 cm−1和2846 cm−1的拉伸振动,碎裂成更小粒径 [13] 汞灯100 W 表面产生裂缝、碎片和气泡,含氧官能团的生成随时间而增加 [10] 氙灯 产生碎片和裂纹,颜色由鲜红色到暗红色红外光谱在1650–1800 cm−1范围内出现羰基吸收带,羰基含量增加 [46] 臭氧、芬顿和热活化过硫酸盐 碎裂和裂纹,变得更加粗糙,纳米红外光谱显示—CH3和—CH2键发生氧化 [21] 芬顿和过硫酸盐 产生裂纹和凹坑,发生碎裂,观察到羧酸、酮、酯和内酯吸收峰 [17] 臭氧 观察到羰基物质吸收峰的形成 [40] 周生生物膜降解 出现各种沟槽、孔隙和裂纹,形成了新的双键结构、叔醇、 O—H基团 [47] 真菌降解 出现C—O键的振动 [47] 微生物群落降解 出现裂纹和凹坑,光谱峰增加 [43] PP 汞灯 150 W 、297—579 nm CH2和CH3的拉伸振动,碎裂成更小粒径 [43] 氙灯 新形成C=O羰基键吸收峰 [48] 钨-卤素灯120 W 表面有裂纹和孔隙,且体积减小,光谱分析确认有羰基和羟基的存在 [49] 1000 W氙弧灯 表面都变得粗糙,产生了缺陷和裂纹,有明显的碎片, O/C由0.009升高至0.081 [50] 500 W汞灯 观察到羰基和羟基的拉伸振动,O/C原子比从0.02±0.014增加到0.14±0.021 [51] 细菌处理 形成了凹坑和裂纹,观察到官能团的拉伸 [50] 周生生物膜降解 出现各种沟槽、孔隙和裂纹,形成叔醇官能团、羰基化合物 [40] -
[1] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. doi: 10.1126/sciadv.1700782 [2] SMITH M, LOVE D C, ROCHMAN C M, et al. Microplastics in seafood and the implications for human health[J]. Current Environmental Health Reports, 2018, 5(3): 375-386. doi: 10.1007/s40572-018-0206-z [3] DONG M T, ZHANG Q Q, XING X L, et al. Raman spectra and surface changes of microplastics weathered under natural environments[J]. Science of the Total Environment, 2020, 739: 139990. doi: 10.1016/j.scitotenv.2020.139990 [4] LI J Y, LIU H H, CHEN J P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection[J]. Water Research, 2018, 137: 362-374. doi: 10.1016/j.watres.2017.12.056 [5] CHEN Y J, LI J N, WANG F H, et al. Adsorption of tetracyclines onto polyethylene microplastics: A combined study of experiment and molecular dynamics simulation[J]. Chemosphere, 2021, 265: 129133. doi: 10.1016/j.chemosphere.2020.129133 [6] 曾祥英, 王姝歆, 程军, 等. 微塑料加速老化及分离过程的实验研究[J]. 环境科学研究, 2022, 35(3): 818-827. doi: 10.13198/j.issn.1001-6929.2021.12.13 ZENG X Y, WANG S X, CHENG J, et al. Laboratory accelerated aging and separation process of microplastics[J]. Research of Environmental Sciences, 2022, 35(3): 818-827 (in Chinese). doi: 10.13198/j.issn.1001-6929.2021.12.13
[7] WARD C P, ARMSTRONG C J, WALSH A N, et al. Sunlight converts polystyrene to carbon dioxide and dissolved organic carbon[J]. Environmental Science & Technology Letters, 2019, 6(11): 669-674. [8] SONG Y K, HONG S H, JANG M, et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type[J]. Environmental Science & Technology, 2017, 51(8): 4368-4376. [9] WU X Y, CHEN X L, JIANG R F, et al. New insights into the photo-degraded polystyrene microplastic: Effect on the release of volatile organic compounds[J]. Journal of Hazardous Materials, 2022, 431: 128523. doi: 10.1016/j.jhazmat.2022.128523 [10] WANG T, MA Y N, JI R. Aging processes of polyethylene mulch films and preparation of microplastics with environmental characteristics[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(4): 736-740. doi: 10.1007/s00128-020-02975-x [11] GAO L, FU D D, ZHAO J J, et al. Microplastics aged in various environmental media exhibited strong sorption to heavy metals in seawater[J]. Marine Pollution Bulletin, 2021, 169: 112480. doi: 10.1016/j.marpolbul.2021.112480 [12] WU X W, LIU P, SHI H H, et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater[J]. Water Research, 2021, 188: 116456. doi: 10.1016/j.watres.2020.116456 [13] LUO H W, ZHAO Y Y, LI Y, et al. Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids[J]. Science of the Total Environment, 2020, 714: 136862. doi: 10.1016/j.scitotenv.2020.136862 [14] AHMED M B, RAHMAN M S, ALOM J, et al. Microplastic particles in the aquatic environment: A systematic review[J]. Science of the Total Environment, 2021, 775: 145793. doi: 10.1016/j.scitotenv.2021.145793 [15] CHEN R, QI M, ZHANG G H, et al. Comparative experiments on polymer degradation technique of produced water of polymer flooding oilfield[J]. IOP Conference Series: Earth and Environmental Science, 2018, 113: 012208. doi: 10.1088/1755-1315/113/1/012208 [16] TIAN L L, KOLVENBACH B, CORVINI N, et al. Mineralisation of 14C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment[J]. New Biotechnology, 2017, 38: 101-105. doi: 10.1016/j.nbt.2016.07.008 [17] LIU P, QIAN L, WANG H Y, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes[J]. Environmental Science & Technology, 2019, 53(7): 3579-3588. [18] DU H, XIE Y Q, WANG J. Microplastic degradation methods and corresponding degradation mechanism: Research status and future perspectives[J]. Journal of Hazardous Materials, 2021, 418: 126377. doi: 10.1016/j.jhazmat.2021.126377 [19] ZHU K C, JIA H Z, SUN Y J, et al. Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species[J]. Water Research, 2020, 173: 115564. doi: 10.1016/j.watres.2020.115564 [20] SHANG J, CHAI M, ZHU Y F. Solid-phase photocatalytic degradation of polystyrene plastic with TiO2 as photocatalyst[J]. Journal of Solid State Chemistry, 2003, 174(1): 104-110. doi: 10.1016/S0022-4596(03)00183-X [21] LUO H W, ZENG Y F, ZHAO Y Y, et al. Effects of advanced oxidation processes on leachates and properties of microplastics[J]. Journal of Hazardous Materials, 2021, 413: 125342. doi: 10.1016/j.jhazmat.2021.125342 [22] FARINELLI G, MINELLA M, PAZZI M, et al. Natural iron ligands promote a metal-based oxidation mechanism for the Fenton reaction in water environments[J]. Journal of Hazardous Materials, 2020, 393: 122413. doi: 10.1016/j.jhazmat.2020.122413 [23] LANG M F, YU X Q, LIU J H, et al. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics[J]. Science of the Total Environment, 2020, 722: 137762. doi: 10.1016/j.scitotenv.2020.137762 [24] TAGG A S, HARRISON J P, JU-NAM Y, et al. Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater[J]. Chemical Communications (Cambridge, England), 2016, 53(2): 372-375. [25] MIAO F, LIU Y F, GAO M M, et al. Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode[J]. Journal of Hazardous Materials, 2020, 399: 123023. doi: 10.1016/j.jhazmat.2020.123023 [26] LIU P, LU K, LI J L, et al. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates[J]. Journal of Hazardous Materials, 2020, 384: 121193. doi: 10.1016/j.jhazmat.2019.121193 [27] PADERVAND M, LICHTFOUSE E, ROBERT D, et al. Removal of microplastics from the environment. A review[J]. Environmental Chemistry Letters, 2020, 18(3): 807-828. doi: 10.1007/s10311-020-00983-1 [28] NAUENDORF A, KRAUSE S, BIGALKE N K, et al. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments[J]. Marine Pollution Bulletin, 2016, 103(1/2): 168-178. [29] CHEN H B, HUA X, YANG Y, et al. Chronic exposure to UV-aged microplastics induces neurotoxicity by affecting dopamine, glutamate, and serotonin neurotransmission in Caenorhabditis elegans[J]. Journal of Hazardous Materials, 2021, 419: 126482. doi: 10.1016/j.jhazmat.2021.126482 [30] NG E L, HUERTA LWANGA E, ELDRIDGE S M, et al. An overview of microplastic and nanoplastic pollution in agroecosystems[J]. Science of the Total Environment, 2018, 627: 1377-1388. doi: 10.1016/j.scitotenv.2018.01.341 [31] JABLOUNE R, KHALIL M, BEN MOUSSA I E, et al. Enzymatic degradation of p-nitrophenyl esters, polyethylene terephthalate, cutin, and suberin by Sub1, a suberinase encoded by the plant pathogen Streptomyces scabies[J]. Microbes and Environments, 2020, 35((1): ): 19086. [32] HUERTA LWANGA E, THAPA B, YANG X M, et al. Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration[J]. Science of the Total Environment, 2018, 624: 753-757. doi: 10.1016/j.scitotenv.2017.12.144 [33] DENARO R, AULENTA F, CRISAFI F, et al. Marine hydrocarbon-degrading bacteria breakdown poly(ethylene terephthalate) (PET)[J]. Science of the Total Environment, 2020, 749: 141608. doi: 10.1016/j.scitotenv.2020.141608 [34] YOSHIDA S, HIRAGA K, TAKEHANA T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199. doi: 10.1126/science.aad6359 [35] AUTA H S, ABIOYE O P, ARANSIOLA S A, et al. Enhanced microbial degradation of PET and PS microplastics under natural conditions in mangrove environment[J]. Journal of Environmental Management, 2022, 304: 114273. doi: 10.1016/j.jenvman.2021.114273 [36] SKARIYACHAN S, TASKEEN N, KISHORE A P, et al. Novel consortia of Enterobacter and Pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene[J]. Journal of Environmental Management, 2021, 284: 112030. doi: 10.1016/j.jenvman.2021.112030 [37] ZHU K C, JIA H Z, JIANG W J, et al. The first observation of the formation of persistent aminoxyl radicals and reactive nitrogen species on photoirradiated nitrogen-containing microplastics[J]. Environmental Science & Technology, 2022, 56(2): 779-789. [38] KHOSROVYAN A, KAHRU A. Evaluation of the potential toxicity of UV-weathered virgin polyamide microplastics to non-biting midge Chironomus riparius[J]. Environmental Pollution, 2021, 287: 117334. doi: 10.1016/j.envpol.2021.117334 [39] DING L, YU X Q, GUO X T, et al. The photodegradation processes and mechanisms of polyvinyl chloride and polyethylene terephthalate microplastic in aquatic environments: Important role of clay minerals[J]. Water Research, 2022, 208: 117879. doi: 10.1016/j.watres.2021.117879 [40] SHABBIR S, FAHEEM M, ALI N, et al. Periphytic biofilm: An innovative approach for biodegradation of microplastics[J]. Science of the Total Environment, 2020, 717: 137064. doi: 10.1016/j.scitotenv.2020.137064 [41] WANG H Y, LIU P, WANG M J, et al. Enhanced phototransformation of atorvastatin by polystyrene microplastics: Critical role of aging[J]. Journal of Hazardous Materials, 2021, 408: 124756. doi: 10.1016/j.jhazmat.2020.124756 [42] YU X Q, XU Y B, LANG M F, et al. New insights on metal ions accelerating the aging behavior of polystyrene microplastics: Effects of different excess reactive oxygen species[J]. Science of the Total Environment, 2022, 821: 153457. doi: 10.1016/j.scitotenv.2022.153457 [43] SORASAN C, EDO C, GONZÁLEZ-PLEITER M, et al. Ageing and fragmentation of marine microplastics[J]. Science of the Total Environment, 2022, 827: 154438. doi: 10.1016/j.scitotenv.2022.154438 [44] OUYANG Z Z, LI S X, ZHAO M Y, et al. The aging behavior of polyvinyl chloride microplastics promoted by UV-activated persulfate process[J]. Journal of Hazardous Materials, 2022, 424: 127461. doi: 10.1016/j.jhazmat.2021.127461 [45] ZHANG J Q, GAO D L, LI Q H, et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella[J]. Science of the Total Environment, 2020, 704: 135931. doi: 10.1016/j.scitotenv.2019.135931 [46] MIRANDA M N, SAMPAIO M J, TAVARES P B, et al. Aging assessment of microplastics (LDPE, PET and uPVC) under urban environment stressors[J]. Science of the Total Environment, 2021, 796: 148914. doi: 10.1016/j.scitotenv.2021.148914 [47] PAÇO A, DUARTE K, da COSTA J P, et al. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum[J]. Science of the Total Environment, 2017, 586: 10-15. doi: 10.1016/j.scitotenv.2017.02.017 [48] LUO H W, XIANG Y H, LI Y, et al. Photocatalytic aging process of Nano-TiO2 coated polypropylene microplastics: Combining atomic force microscopy and infrared spectroscopy (AFM-IR) for nanoscale chemical characterization[J]. Journal of Hazardous Materials, 2021, 404: 124159. doi: 10.1016/j.jhazmat.2020.124159 [49] UHEIDA A, MEJÍA H G, ABDEL-REHIM M, et al. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system[J]. Journal of Hazardous Materials, 2021, 406: 124299. doi: 10.1016/j.jhazmat.2020.124299 [50] RANA A K, THAKUR M K, SAINI A K, et al. Recent developments in microbial degradation of polypropylene: Integrated approaches towards a sustainable environment[J]. Science of the Total Environment, 2022, 826: 154056. doi: 10.1016/j.scitotenv.2022.154056 [51] LIU P, WU X W, PENG J B, et al. Critical effect of iron red pigment on photoaging behavior of polypropylene microplastics in artificial seawater[J]. Journal of Hazardous Materials, 2021, 404: 124209. doi: 10.1016/j.jhazmat.2020.124209 [52] LIU X M, SUN P P, QU G J, et al. Insight into the characteristics and sorption behaviors of aged polystyrene microplastics through three type of accelerated oxidation processes[J]. Journal of Hazardous Materials, 2021, 407: 124836. doi: 10.1016/j.jhazmat.2020.124836 [53] FAN X L, MA Z X, ZOU Y F, et al. Investigation on the adsorption and desorption behaviors of heavy metals by tire wear particles with or without UV ageing processes[J]. Environmental Research, 2021, 195: 110858. doi: 10.1016/j.envres.2021.110858 [54] WANG Q J, WANGJIN X X, ZHANG Y, et al. The toxicity of virgin and UV-aged PVC microplastics on the growth of freshwater algae Chlamydomonas reinhardtii[J]. Science of the Total Environment, 2020, 749: 141603. doi: 10.1016/j.scitotenv.2020.141603 [55] LIU B, JIANG Q X, QIU Z H, et al. Process analysis of microplastic degradation using activated PMS and Fenton reagents[J]. Chemosphere, 2022, 298: 134220. doi: 10.1016/j.chemosphere.2022.134220 [56] TURNER A, HOLMES L A. Adsorption of trace metals by microplastic pellets in fresh water[J]. Environmental Chemistry, 2015, 12(5): 600. doi: 10.1071/EN14143 [57] GALLOWAY T S, LEWIS C N. Marine microplastics spell big problems for future generations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2331-2333. [58] DING L, MAO R F, MA S R, et al. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants[J]. Water Research, 2020, 174: 115634. doi: 10.1016/j.watres.2020.115634 [59] MO Q M, YANG X J, WANG J J, et al. Adsorption mechanism of two pesticides on polyethylene and polypropylene microplastics: DFT calculations and particle size effects[J]. Environmental Pollution, 2021, 291: 118120. doi: 10.1016/j.envpol.2021.118120 [60] FAN T Y, ZHAO J, CHEN Y X, et al. Coexistence and adsorption properties of heavy metals by polypropylene microplastics[J]. Adsorption Science & Technology, 2021(2): 1-12. [61] WANG T, YU C C, CHU Q, et al. Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films[J]. Chemosphere, 2020, 244: 125491. doi: 10.1016/j.chemosphere.2019.125491 [62] LIANG S J, XU S X, WANG C, et al. Enhanced alteration of poly(vinyl chloride) microplastics by hydrated electrons derived from indole-3-acetic acid assisted by a common cationic surfactant[J]. Water Research, 2021, 191: 116797. doi: 10.1016/j.watres.2020.116797 [63] PRIYANKA M, SARAVANAKUMAR M P. New insights on aging mechanism of microplastics using PARAFAC analysis: Impact on 4-nitrophenol removal via Statistical Physics Interpretation[J]. Science of the Total Environment, 2022, 807: 150819. doi: 10.1016/j.scitotenv.2021.150819 [64] WANG Y, WANG X J, LI Y, et al. Effects of exposure of polyethylene microplastics to air, water and soil on their adsorption behaviors for copper and tetracycline[J]. Chemical Engineering Journal, 2021, 404: 126412. doi: 10.1016/j.cej.2020.126412 [65] WANG C, XIAN Z Y, JIN X, et al. Photo-aging of polyvinyl chloride microplastic in the presence of natural organic acids[J]. Water Research, 2020, 183: 116082. doi: 10.1016/j.watres.2020.116082 [66] WANG C, LIANG S J, BAI L H, et al. Structure-dependent surface catalytic degradation of cephalosporin antibiotics on the aged polyvinyl chloride microplastics[J]. Water Research, 2021, 206: 117732. doi: 10.1016/j.watres.2021.117732 [67] KONG F X, XU X, XUE Y G, et al. Investigation of the adsorption of sulfamethoxazole by degradable microplastics artificially aged by chemical oxidation[J]. Archives of Environmental Contamination and Toxicology, 2021, 81(1): 155-165. doi: 10.1007/s00244-021-00856-w [68] FU D D, ZHANG Q J, FAN Z Q, et al. Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris[J]. Aquatic Toxicology, 2019, 216: 105319. doi: 10.1016/j.aquatox.2019.105319 [69] WANG Z Z, FU D D, GAO L, et al. Aged microplastics decrease the bioavailability of coexisting heavy metals to microalga Chlorella vulgaris[J]. Ecotoxicology and Environmental Safety, 2021, 217: 112199. doi: 10.1016/j.ecoenv.2021.112199 [70] ZHANG X L, XIA M L, SU X J, et al. Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis[J]. Journal of Hazardous Materials, 2021, 413: 125321. doi: 10.1016/j.jhazmat.2021.125321 [71] ZOU W, XIA M L, JIANG K, et al. Photo-oxidative degradation mitigated the developmental toxicity of polyamide microplastics to zebrafish larvae by modulating macrophage-triggered proinflammatory responses and apoptosis[J]. Environmental Science & Technology, 2020, 54(21): 13888-13898. [72] WANG X, ZHENG H, ZHAO J, et al. Photodegradation elevated the toxicity of polystyrene microplastics to grouper ( Epinephelus moara) through disrupting hepatic lipid homeostasis[J]. Environmental Science & Technology, 2020, 54(10): 6202-6212. [73] JIANG X F, CHEN H, LIAO Y C, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 2019, 250: 831-838. doi: 10.1016/j.envpol.2019.04.055 [74] CHEN H B, YANG Y, WANG C, et al. Reproductive toxicity of UV-photodegraded polystyrene microplastics induced by DNA damage-dependent cell apoptosis in Caenorhabditis elegans[J]. Science of the Total Environment, 2022, 811: 152350. doi: 10.1016/j.scitotenv.2021.152350 [75] SCHÜR C, WEIL C, BAUM M, et al. Incubation in wastewater reduces the multigenerational effects of microplastics in Daphnia magna[J]. Environmental Science & Technology, 2021, 55(4): 2491-2499. [76] KALČÍKOVÁ G, SKALAR T, MAROLT G, et al. An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms[J]. Water Research, 2020, 175: 115644. doi: 10.1016/j.watres.2020.115644 [77] WANG Z S, DONG H, WANG Y, et al. Effects of microplastics and their adsorption of cadmium as vectors on the cladoceran Moina monogolica Daday: Implications for plastic-ingesting organisms[J]. Journal of Hazardous Materials, 2020, 400: 123239. doi: 10.1016/j.jhazmat.2020.123239 [78] GUIMARÃES A T B, CHARLIE-SILVA I, MALAFAIA G. Toxic effects of naturally-aged microplastics on zebrafish juveniles: A more realistic approach to plastic pollution in freshwater ecosystems[J]. Journal of Hazardous Materials, 2021, 407: 124833. doi: 10.1016/j.jhazmat.2020.124833 [79] MURALI K, KENESEI K, LI Y, et al. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells[J]. Nanoscale, 2015, 7(9): 4199-4210. doi: 10.1039/C4NR06849A [80] HUANG Y J, DING J N, ZHANG G S, et al. Interactive effects of microplastics and selected pharmaceuticals on red tilapia: Role of microplastic aging[J]. Science of the Total Environment, 2021, 752: 142256. doi: 10.1016/j.scitotenv.2020.142256