-
全/多氟烷基化合物(PFASs),是分子中包含至少一个完全氟化的甲基或亚甲基碳原子(不连接任何氢、氯、溴、碘原子)的化学物质[1]. PFASs具有很强的化学稳定性、表面活性及优良的热稳定性[2 − 5],应用广泛[6 − 7]. PFASs种类达1.2万种以上[8],已在多种环境介质中被检出[9 − 12],可诱导人体产生心脏代谢疾病[13]、内分泌紊乱[14]和肾功能损伤[15]等问题. 因此,需加强对PFASs类化学品的管理.
正辛醇-水分配系数(KOW)是化学品暴露和危害性评价的关键参数[16 − 17]. 由于多数PFASs易在界面聚集[18]、标准品缺乏和分析检测困难等问题,实验获取PFASs的KOW数据非常有限. 有必要发展PFASs的KOW预测方法. 前人针对PFASs,构建了定量构效关系(QSAR)模型用于预测KOW[19 − 20]. 然而,构建QSAR模型所用的数据集都较小,导致模型的预测可靠性低. 发展基于分子模拟手段预测PFASs的KOW方法,是解决PFASs的KOW缺失的一个重要路径.
分子模拟方法,可通过计算PFASs从水相转移到正辛醇相的自由能变(∆GOW),并通过热力学关系式预测其KOW. 基于显式溶剂化模型的分子力学或量子力学方法计算∆GOW[21],对算力的要求高. 隐式溶剂化模型,将溶剂作为均匀连续介质来描述,具有较快的计算速度[22 − 24]. 预测KOW的不同方法的原理及优缺点见表1. 真实溶剂类导体屏蔽(COSMO-RS)模型[25],被成功用于预测3种氟调聚醇的KOW. 相比于COSMO-RS,基于溶质电子密度的溶剂化模型(SMD)[26]明确定义了溶剂效应的非极性部分,可以更好地描述体系的非极性作用. Li等[27]基于SMD模型发展了多氯联苯KOW的预测方法,具有较高的准确性,预测和实测lgKOW的决定系数(R2)为0.905,均方根误差(RMSE)为0.249. 然而,目前尚没有针对PFASs建立基于SMD模型的KOW预测方法.
本研究基于搜集的19个PFASs的lgKOW实测数据,通过SMD模型描述溶剂化效应,从哈特里-福克(HF)自洽场和密度泛函理论(DFT)与不同基组的组合中筛选适合方法,考察了其预测PFASs的lgKOW的准确性,为获取PFASs的lgKOW值提供了一种可靠的方法.
基于SMD模型预测全/多氟烷基化合物的正辛醇-水分配系数
Prediction of octanol-water partition coefficients of per- and polyfluoroalkyl substances based on SMD model
-
摘要: 全/多氟烷基化合物(PFASs)是备受关注的新污染物. 正辛醇-水分配系数(KOW)是评价化学品在环境中分配、迁移和归趋的重要参数,但大多数PFASs缺少KOW的实测值. 发展可靠的KOW预测方法,对填补PFASs的KOW数据缺失具有重要意义. 本研究通过基于溶质电子密度的溶剂化模型(SMD)描述溶剂化效应,以19种PFASs的lgKOW实测值为参照,从哈特里-福克自洽场和密度泛函理论与不同基组的组合中,筛选适于预测PFASs的lgKOW方法. 比较lgKOW实测值与不同方法所得预测值之间的相关系数(r)和均方根误差(RMSE),发现当用B3LYP泛函结合6-31+G(d,p)基组优化几何结构,B3LYP泛函结合MIDI!6D基组计算能量时,预测效果最好(r = 0.980,P < 0.001,RMSE = 0.273). 发现溶剂形成空穴、溶质-溶剂色散作用和溶剂局部结构变化,为PFASs的KOW值的主要影响因素. 本研究为预测PFASs的KOW提供了一种可行的方法.
-
关键词:
- 全/多氟烷基化合物 /
- 正辛醇-水分配系数 /
- 哈特里-福克自洽场 /
- 密度泛函理论 /
- 基于溶质电子密度的溶剂化模型.
Abstract: Per- and polyfluoroalkyl substances (PFASs) are emerging pollutants with increasing concern. Octanol-water partition coefficient (KOW) is an important parameter for assessing the distribution, transport and fate of chemicals in the environment. However, most PFASs lack KOW values. It is of significance to develop a reliable method for predicting the KOW values of PFASs and filling the data gap. In this study, using the solvation model based on solute electron density (SMD) to mimic solvation effects and the experimental lgKOW data of 19 PFASs as references, a suitable method for predicting lgKOW values of PFASs was determined by evaluating the combination of Hartree-Fock self-consistent field and density functional theory with different basis-sets. Correlation coefficient (r) and root mean square error (RMSE) were adopted to compare the experimental and calculated lgKOW values from different methods. The optimum prediction results (r = 0.980, P < 0.001, RMSE = 0.273) were achieved using geometric structures optimized by the B3LYP functional with the 6-31+G(d,p) basis-set, and energy calculated using the B3LYP functional with the MIDI!6D basis-set. It was found that solvent cavitation, dispersion between the solute and solvent, and changes in local solvent structures are the main factors affecting the KOW values of PFASs. This study offers a feasible method for predicting the KOW values of PFASs. -
表 1 预测KOW的不同方法的原理及优缺点
Table 1. Principles, advantages and disadvantages of different methods for predicting KOW
预测方法
Prediction methods原理
Principles优点
Advantages缺点
DisadvantagesQSAR模型 相似结构的分子具有相似的性质. 对算力要求低 需要较多的训练数据 显式溶剂化模型 将溶剂分子作为独立的粒子,基于力场描述
溶质-溶剂的相互作用.结果相对准确,可以反映溶质-溶剂的相互作用 计算量大,计算采样复杂 隐式溶剂化模型 忽略溶剂分子的结构和分布,将溶剂描述为
均匀连续介质.与显示溶剂模型相比,计算速度较快 多数模型缺乏溶剂效应的极性与
非极性部分的定义表 2 PFASs的lgKOW实测值
Table 2. Experimental lgKOW values of PFASs
中文名称
Chinese names英文名称
English names缩写
Abbreviation分子式
Molecular formulaCAS号
CAS number实测lgKOW
Experimental lgKOW全氟羧酸 Perfluorocarboxylic acids 全氟丁酸 Perfluorobutanoic acid PFBA C4HF7O2 375-22-4 1.43[30] 全氟戊酸 Perfluoropentanoic acid PFPeA C5HF9O2 2706-90-3 1.98[30] 全氟己酸 Perfluorohexanoic acid PFHxA C6HF11O2 307-24-4 2.51[30] 全氟庚酸 Perfluoroheptanoic acid PFHpA C7HF13O2 375-85-9 3.05[30] 全氟辛酸 Perfluorooctanoic acid PFOA C8HF15O2 335-67-1 3.60[30] 全氟壬酸 Perfluorononanoic acid PFNA C9HF17O2 375-95-1 4.50[31] 全氟癸酸 Perfluorodecanoic acid PFDA C10HF19O2 335-76-2 5.40[31] 全氟磺酸 Perfluorosulfonic acids 全氟辛烷磺酸 Perfluorooctane sulfonic acid PFOS C8HF17O3S 1763-23-1 2.45[32] 全氟烷基磺酰胺 Perfluoroalkane sulfonamides N-(2-羟乙基)-N-甲基全氟辛烷磺酰胺 N-Methyl Perfluorooctane sulfonamidoethanol MeFOSE C11H8F17NO3S 24448-09-7 4.58[33] 氟调聚醇 Fluorotelomer alcohols 2:1 氟调聚醇 2:1 Fluorotelomer alcohol 2:1 FTOH C3H3F5O 422-05-9 1.23[33] 4:2 氟调聚醇 4:2 Fluorotelomer alcohol 4:2 FTOH C6H5F9O 2043-47-2 3.30[34] 6:2 氟调聚醇 6:2 Fluorotelomer alcohol 6:2 FTOH C8H5F13O 647-42-7 4.54[34] 8:2 氟调聚醇 8:2 Fluorotelomer alcohol 8:2 FTOH C10H5F17O 678-39-7 5.58[34] 10:2 氟调聚醇 10:2 Fluorotelomer alcohol 10:2 FTOH C12H5F21O 865-86-1 6.63[34] 其他PFASs other PFASs 恩氟烷 Enflurane — C3H2ClF5O 13838-16-9 2.10[33] 六氟异丙醇 Hexafluoroisopropanol HFIP C3H2F6O 920-66-1 1.66[33] 全氟正戊烷 Perfluoropentane — C5F12 678-26-2 4.40[33] 六氟乙烷 Hexafluoroethane — C2F6 76-16-4 2.00[33] 六氟丙酮 Hexafluoroacetone — C3F6O 684-16-2 1.46[33] 表 3 PFASs的lgKOW预测准确性前10名的计算方法
Table 3. Top 10 calculation methods for prediction accuracy of lgKOW for PFASs
序号
Ordinal number几何优化
Geometry optimization能量计算
Energy calculationr RMSE 1 B3LYP/6-31+G(d,p) B3LYP/MIDI!6D 0.980 0.273 2 B3LYP/cc-pVTZ B3LYP/MIDI!6D 0.980 0.285 3 B3LYP/cc-pVTZ B3LYP/cc-pVTZ 0.979 0.294 4 B3LYP/6-31G(d,p) B3LYP/MIDI!6D 0.978 0.304 5 M062X/6-31+G(d,p) M062X/6-31+G(d,p) 0.978 0.304 6 B3LYP/6-31G(d) B3LYP/MIDI!6D 0.977 0.312 7 B3LYP/6-31+G(d,p) B3LYP/cc-pVTZ 0.977 0.312 8 M062X/6-31+G(d,p) M062X/MIDI!6D 0.977 0.312 9 M062X/6-31+G(d,p) M062X/cc-pVTZ 0.977 0.312 10 B3LYP/6-31G(d,p) B3LYP/cc-pVTZ 0.977 0.312 表 4 B3LYP/MIDI!6D//B3LYP/6-31+G(d,p)方法计算的∆GOW的静电能(
)和非静电能($ {{\Delta }\text{G}}_{\text{ENP}}^{\text{OW}} $ )以及lgKOW$ {{\Delta }\text{G}}_{\text{CDS}}^{\text{OW}} $ Table 4. Electrostatic (
) and non-electrostatic energies ($ {{\Delta }\text{G}}_{\text{ENP}}^{\text{OW}} $ ) of ∆GOW and lgKOW calculated by B3LYP/MIDI!6D//B3LYP/6-31+G(d,p)$ {{\Delta }\text{G}}_{\text{CDS}}^{\text{OW}} $ PFASs名称
PFASs Name∆GOW/
(kcal·mol−1) /$ {{\Delta }\text{G}}_{\text{ENP}}^{\text{OW}} $
(kcal·mol−1) /$ {{\Delta }\text{G}}_{\text{CDS}}^{\text{OW}} $
(kcal·mol−1)lgKOW 预测值
Predicted values残差的绝对值
Absolute values of residuals全氟羧酸 全氟丁酸 −1.70 1.76 −3.46 1.24 0.19 全氟戊酸 −2.98 1.51 −4.49 2.18 0.20 全氟己酸 −3.16 1.77 −4.93 2.32 0.19 全氟庚酸 −4.41 1.57 −5.98 3.23 0.18 全氟辛酸 −5.15 1.60 −6.75 3.78 0.18 全氟壬酸 −5.92 1.58 −7.50 4.34 0.16 全氟癸酸 −6.63 1.61 −8.24 4.86 0.54 全氟磺酸 全氟辛烷磺酸 −3.74 1.61 −5.35 2.74 0.29 全氟烷基磺酰胺 N-(2-羟乙基)-N-甲基全氟辛烷磺酰胺 −4.97 2.48 −7.45 3.65 0.93 氟调聚醇 2:1 氟调聚醇 −1.91 1.49 −3.40 1.40 0.17 4:2 氟调聚醇 −4.02 1.40 −5.42 2.95 0.35 6:2 氟调聚醇 −5.46 1.46 −6.92 4.00 0.54 8:2 氟调聚醇 −6.95 1.50 −8.45 5.10 0.48 10:2 氟调聚醇 −8.37 1.54 −9.91 6.13 0.50 其他类PFASs 恩氟烷 −3.34 0.89 −4.23 2.44 0.34 六氟异丙醇 −2.15 1.35 −3.50 1.57 0.09 全氟正戊烷 −5.35 0.14 −5.49 3.92 0.48 六氟乙烷 −3.20 0.11 −3.31 2.34 0.34 六氟丙酮 −2.64 0.59 −3.23 1.93 0.47 注:残差代表预测值与实测值的差.
Note: residuals represent the difference between predicted values and experimental values.表 5 B3LYP/MIDI!6D//B3LYP/6-31+G(d,p)方法与此前PFASs的lgKOW预测方法的比较
Table 5. Comparison of B3LYP/MIDI!6D//B3LYP/6-31+G(d,p) with previous prediction methods for lgKOW of PFASs
模型/软件
Model/Softwaren r RMSE 参考文献
ReferenceCOSMOthem 3 _ 0.502 Lampic等[54] EPI SuiteTM 3 _ 0.294 Lampic等[54] NICEATM 3 _ 1.133 Lampic等[54] OPERA 3 _ 0.283 Lampic等[54] pp-LFER 3 _ 0.362 Lampic等[54] SPARC 4 _ 0.861 Arp等[55] EPI SuiteTM 4 _ 1.271 Arp等[55] ClogP 4 _ 3.535 Arp等[55] COSMOtherm 4 - 1.659 Arp等[55] pp-LFER 6 _ 0.420 Endo和Goss[20] QSAR 9 0.994 0.155 Kim等[19] SMD 19 0.980 0.273 本研究 注:n代表模型或软件使用的实测数据个数.
Note: n represents the number of experimental data used by model or software.表 6 B3LYP/MIDI!6D//B3LYP/6-31+G(d,p)方法预测的19种PFASs的lgKOW
Table 6. LgKOW values for 19 PFASs predicted by B3LYP/MIDI!6D//B3LYP/6-31+G(d,p)
中文名称
Chinese names英文名称
English names缩写
Abbreviation分子式
Molecular formulaCAS号
CAS number预测值
Predicted lgKOW全氟羧酸 Perfluorocarboxylic acids 全氟十二烷酸 Perfluorododecanoic acid PFDoDA C12HF23O2 307-55-1 5.91 全氟十三酸 Perfluorotridecanoic acid PFTrDA C13HF25O2 72629-94-8 6.46 全氟磺酸 Perfluorosulfonic acids 全氟戊烷磺酸 Perfluoropentane sulfonic acid PFPeS C5HF11O3S 2706-91-4 1.19 全氟己烷磺酸 Perfluorohexane sulfonic acid PFHxS C6HF13O3S 355-46-4 1.69 全氟庚烷磺酸 Perfluoroheptane sulfonic acid PFHpS C7HF15O3S 375-92-8 2.24 全氟壬烷磺酸 Perfluorononane sulfonic acid PFNS C9HF19O3S 68259-12-1 3.33 全氟癸烷磺酸 Perfluorodecane sulfonic acid PFDS C10HF21O3S 335-77-3 3.80 全氟烷基磺酰胺 Perfluoroalkane sulfonamides 全氟辛基磺酰胺 Perfluorooctane sulfonamide FOSA C8H2F17NO2S 754-91-6 3.00 N-甲基全氟辛烷磺酰胺 N-Methyl perfluorooctane sulfonamide MeFOSA C9H4F17NO2S 31506-32-8 3.64 全氟烷基磺酰胺醇 Perfluoroalkane sulfonamidoethanols 全氟辛烷磺酰胺乙醇 Perfluorooctane Sulfonamidoethanol FOSE C10H6F17NO3S 10116-92-4 2.94 N-乙基全氟辛基磺酰胺乙醇 N-Ethyl perfluorooctane sulfonamidoethanol EtFOSE C12H10F17NO3S 1691-99-2 3.96 全氟烷基磺酰胺乙酸 Perfluoroalkane sulfonamido acetic acids 全氟辛烷磺酰胺乙酸 Perfluorooctane sulfonamido acetic acid FOSAA C10H4F17NO4S 2806-24-8 2.23 2-(N-甲基全氟辛烷磺酰氨基)乙酸 N-Methyl perfluorooctane sulfonamido acetic acid MeFOSAA C11H6F17NO4S 2355-31-9 3.34 2-(N-乙基全氟辛烷磺酰氨基)乙酸 N-Ethyl perfluorooctane sulfonamido acetic acid EtFOSAA C12H8F17NO4S 2991-50-6 3.56 氟调聚羧酸 Fluorotelomer carboxylic acids 5:3氟调聚羧酸 5:3 Fluorotelomer carboxylic acid 5:3 FTCA C8H5F11O2 914637-49-3 3.27 6:2氟调聚羧酸 6:2 Fluorotelomer carboxylic acid 6:2 FTCA C8H3F13O2 53826-12-3 3.29 氟调聚磺酸 Fluorotelomer sulfonic acids 4:2氟调聚磺酸 4:2 Fluorotelomer sulfonic acid 4:2 FTSA C6H5F9O3S 757124-72-4 0.93 6:2氟调聚磺酸 6:2 Fluorotelomer sulfonic acid 6:2 FTSA C8H5F13O3S 27619-97-2 1.99 8:2氟调聚磺酸 8:2 Fluorotelomer sulfonic acid 8:2 FTSA C10H5F17O3S 39108-34-4 3.05 -
[1] OECD, Reconciling terminology of the universe of per- and polyfluoroalkyl substances: Recommendations and practical guidance [R]. OECD Series on Risk Management, No. 61, OECD Publishing, Paris, 2021. [2] KISSA E. Toxicology and environmental aspects in fluorinated surfactants and repellents [M]. 2nd ed. Marcel Dekker: New York, 2001, 97: 456-461. [3] YUE Y, FAN J Q, XIN G Q, et al. Comprehensive understanding of fluoroacetate dehalogenase-catalyzed degradation of fluorocarboxylic acids: A QM/MM approach[J]. Environmental Science & Technology, 2021, 55(14): 9817-9825. [4] YANG X H, LYAKURWA F, XIE H B, et al. Different binding mechanisms of neutral and anionic poly-/ perfluorinated chemicals to human transthyretin revealed by In silico models[J]. Chemosphere, 2017, 182: 574-583. doi: 10.1016/j.chemosphere.2017.05.016 [5] DU Z W, DENG S B, ZHANG S Y, et al. Selective and fast adsorption of perfluorooctanesulfonate from wastewater by magnetic fluorinated vermiculite[J]. Environmental Science & Technology, 2017, 51(14): 8027-8035. [6] SCHAIDER L A, BALAN S A, BLUM A, et al. Fluorinated compounds in U. S. fast food packaging[J]. Environmental Science & Technology Letters, 2017, 4(3): 105-111. [7] XIA C J, DIAMOND M L, PEASLEE G F, et al. Per- and polyfluoroalkyl substances in North American school uniforms[J]. Environmental Science & Technology, 2022, 56(19): 13845-13857. [8] U S EPA. PFAS master list of PFAS substances (Version 2) [DB/OL]. (2021-08-10). [2023-03-09] [9] LIU C, HATTON J, ARNOLD W A, et al. in situ sequestration of perfluoroalkyl substances using polymer-stabilized powdered activated carbon[J]. Environmental Science & Technology, 2020, 54(11): 6929-6936. [10] LAN Z H, YAO Y M, XU J Y, et al. Novel and legacy per- and polyfluoroalkyl substances (PFASs) in a farmland environment: Soil distribution and biomonitoring with plant leaves and locusts[J]. Environmental Pollution, 2020, 263: 114487. doi: 10.1016/j.envpol.2020.114487 [11] TIAN Y, YAO Y M, CHANG S A, et al. Occurrence and phase distribution of neutral and ionizable per- and polyfluoroalkyl substances (PFASs) in the atmosphere and plant leaves around landfills: A case study in Tianjin, China[J]. Environmental Science & Technology, 2018, 52(3): 1301-1310. [12] WANG B, YAO Y M, WANG Y, et al. Per- and polyfluoroalkyl substances in outdoor and indoor dust from mainland China: Contributions of unknown precursors and implications for human exposure[J]. Environmental Science & Technology, 2022, 56(10): 6036-6045. [13] CHEN Z H, YANG T Y, WALKER D I, et al. Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults[J]. Environment International, 2020, 145: 106091. doi: 10.1016/j.envint.2020.106091 [14] DING N, HARLOW S, JOHN F RANDOLPH J Jr, et al. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary[J]. Human Reproduction Update, 2020, 26: 724-752. doi: 10.1093/humupd/dmaa018 [15] BLAKE B E, PINNEY S M, HINES E P, et al. Associations between longitudinal serum perfluoroalkyl substance (PFAS) levels and measures of thyroid hormone, kidney function, and body mass index in the Fernald Community Cohort[J]. Environmental Pollution, 2018, 242: 894-904. doi: 10.1016/j.envpol.2018.07.042 [16] AMÉZQUETA S, SUBIRATS X, FUGUET E, et al. Octanol-water partition constant[M]//Liquid-Phase Extraction. Amsterdam: Elsevier, 2020: 183-208. [17] LI M, LI J, LU Y C, et al. Developing the QSPR model for predicting the storage lipid/water distribution coefficient of organic compounds[J]. Frontiers of Environmental Science & Engineering, 2020, 15(2): 1-8. [18] COSTANZA J, ABRIOLA L M, PENNELL K D. Aqueous film-forming foams exhibit greater interfacial activity than PFOA, PFOS, or FOSA[J]. Environmental Science & Technology, 2020, 54(21): 13590-13597. [19] KIM M, LI L Y, GRACE J R, et al. Selecting reliable physicochemical properties of perfluoroalkyl and polyfluoroalkyl substances (PFASs) based on molecular descriptors[J]. Environmental Pollution, 2015, 196: 462-472. doi: 10.1016/j.envpol.2014.11.008 [20] ENDO S, GOSS K U. Predicting partition coefficients of polyfluorinated and organosilicon compounds using polyparameter linear free energy relationships (PP-LFERs)[J]. Environmental Science & Technology, 2014, 48(5): 2776-2784. [21] STEINMANN S N, SAUTET P, MICHEL C. Solvation free energies for periodic surfaces: Comparison of implicit and explicit solvation models[J]. Physical Chemistry Chemical Physics, 2016, 18(46): 31850-31861. doi: 10.1039/C6CP04094B [22] NEDYALKOVA M A, MADURGA S, TOBISZEWSKI M, et al. Calculating the partition coefficients of organic solvents in octanol/water and octanol/air[J]. Journal of Chemical Information and Modeling, 2019, 59(5): 2257-2263. doi: 10.1021/acs.jcim.9b00212 [23] GUAN D, LUI R, MATTHEWS S. LogP prediction performance with the SMD solvation model and the M06 density functional family for SAMPL6 blind prediction challenge molecules[J]. Journal of Computer-Aided Molecular Design, 2020, 34(5): 511-522. doi: 10.1007/s10822-020-00278-1 [24] KUNDI V, HO J. Predicting octanol–water partition coefficients: Are quantum mechanical implicit solvent models better than empirical fragment-based methods?[J]. The Journal of Physical Chemistry B, 2019, 123(31): 6810-6822. doi: 10.1021/acs.jpcb.9b04061 [25] KLAMT A. The COSMO and COSMO-RS solvation models[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8(1): e1338. [26] MARENICH A V, CRAMER C J, TRUHLAR D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396. doi: 10.1021/jp810292n [27] LI W R, SONG G B, ZHANG J, et al. Estimation of octanol-water partition coefficients of PCBs based on the solvation free energy[J]. Computational and Theoretical Chemistry, 2021, 1202: 113324. doi: 10.1016/j.comptc.2021.113324 [28] ITRC. Per- and polyfluoroalkyl substances technical and regulatory guidance [EB/OL]. [2023-04-09]. [29] DING G H, PEIJNENBURG W J G M. Physicochemical properties and aquatic toxicity of poly- and perfluorinated compounds[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(6): 598-678. doi: 10.1080/10643389.2011.627016 [30] IWAI H, TSUDA N. Ecotox findings for ammonium perfluorohexanoate [EB/OL]. (2011-06-07). [2023-03-09] [31] KELLY B C, IKONOMOU M G, BLAIR J D, et al. Perfluoroalkyl contaminants in an Arctic marine food web: Trophic magnification and wildlife exposure[J]. Environmental Science & Technology, 2009, 43(11): 4037-4043. [32] JING P, RODGERS P J, AMEMIYA S. High lipophilicity of perfluoroalkyl carboxylate and sulfonate: Implications for their membrane permeability[J]. Journal of the American Chemical Society, 2009, 131(6): 2290-2296. doi: 10.1021/ja807961s [33] WILLIAMS A J, GRULKE C M, EDWARDS J, et al. The CompTox Chemistry Dashboard: A community data resource for environmental chemistry[J]. Journal of Cheminformatics, 2017, 9(1): 1-27. doi: 10.1186/s13321-016-0187-6 [34] CARMOSINI N, LEE L S. Partitioning of fluorotelomer alcohols to octanol and different sources of dissolved organic carbon[J]. Environmental Science & Technology, 2008, 42(17): 6559-6565. [35] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09, Revision D. 01 [CP]. Gaussian, Inc. , Wallingford CT, 2013. [36] DENNINGTON R, KEITH T, MILLAM J. GaussView, Version 6 [CP]. Semichem Inc. , Shawnee Mission, KS, 2016. [37] LEVINE I N. Quantum chemistry [M]. 3rd ed. New Jersey: Allyn and Bacon, Inc. , 1983: 11-20. [38] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry, 1994, 98(45): 11623-11627. doi: 10.1021/j100096a001 [39] ZHAO Y, SCHULTZ N E, TRUHLAR D G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions[J]. Journal of Chemical Theory and Computation, 2006, 2(2): 364-382. doi: 10.1021/ct0502763 [40] ZHAO Y, TRUHLAR D. Density functionals with broad applicability in chemistry[J]. Accounts of Chemical Research, 2008, 41(2): 157-167. doi: 10.1021/ar700111a [41] PETERSSON G A, BENNETT A, TENSFELDT T G, et al. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements[J]. The Journal of Chemical Physics, 1988, 89(4): 2193-2218. doi: 10.1063/1.455064 [42] PETERSSON G A, AL-LAHAM M A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms[J]. The Journal of Chemical Physics, 1991, 94(9): 6081-6090. doi: 10.1063/1.460447 [43] CLARK T, CHANDRASEKHAR J, SPITZNAGEL G W, et al. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F[J]. Journal of Computational Chemistry, 1983, 4(3): 294-301. doi: 10.1002/jcc.540040303 [44] KENDALL R A, DUNNING T H Jr, HARRISON R J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions[J]. The Journal of Chemical Physics, 1992, 96(9): 6796-6806. doi: 10.1063/1.462569 [45] EASTON R E, GIESEN D J, WELCH A, et al. The MIDI!basis set for quantum mechanical calculations of molecular geometries and partial charges[J]. Theoretica Chimica Acta, 1996, 93(5): 281-301. doi: 10.1007/BF01127507 [46] HO J, KLAMT A, COOTE M L. Comment on the correct use of continuum solvent models[J]. The Journal of Physical Chemistry A, 2010, 114(51): 13442-13444. doi: 10.1021/jp107136j [47] TIRADO-RIVES J, JORGENSEN W L. Performance of B3LYP density functional methods for a large set of organic molecules[J]. Journal of Chemical Theory and Computation, 2008, 4(2): 297-306. doi: 10.1021/ct700248k [48] HOHENSTEIN E G, CHILL S T, SHERRILL C D. Assessment of the performance of the M05–2X and M06–2X exchange-correlation functionals for noncovalent interactions in biomolecules[J]. Journal of Chemical Theory and Computation, 2008, 4(12): 1996-2000. doi: 10.1021/ct800308k [49] TENTSCHER P R, AREY J S. Geometries and vibrational frequencies of small radicals: Performance of coupled cluster and more approximate methods[J]. Journal of Chemical Theory and Computation, 2012, 8(6): 2165-2179. doi: 10.1021/ct300194x [50] KRAFFT M P, RIESS J G. Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability—Part one[J]. Chemosphere, 2015, 129: 4-19. doi: 10.1016/j.chemosphere.2014.08.039 [51] LI W R, DING G H, GAO H, et al. Prediction of octanol-air partition coefficients for PCBs at different ambient temperatures based on the solvation free energy and the dimer ratio[J]. Chemosphere, 2020, 242: 125246. doi: 10.1016/j.chemosphere.2019.125246 [52] HWANG J, DIAL B E, LI P, et al. How important are dispersion interactions to the strength of aromatic stacking interactions in solution?[J]. Chemical Science, 2015, 6(7): 4358-4364. doi: 10.1039/C5SC01370D [53] BHHATARAI B, GRAMATICA P. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals[J]. Environmental Science & Technology, 2011, 45(19): 8120-8128. [54] LAMPIC A, PARNIS J M. Property estimation of per- and polyfluoroalkyl substances: A comparative assessment of estimation methods[J]. Environmental Toxicology and Chemistry, 2020, 39(4): 775-786. doi: 10.1002/etc.4681 [55] ARP H P H, NIEDERER C, GOSS K U. Predicting the partitioning behavior of various highly fluorinated compounds[J]. Environmental Science & Technology, 2006, 40(23): 7298-7304.