-
在石油的开采、冶炼和加工中,不可避免地存在由于石油泄漏而带来的土壤污染问题. 石油烃外碳源向土壤的大量输入,引起土壤氮源相对不足是导致土壤微生物活性降低、抑制土著微生物降解石油烃的主要因素. 因此,向污染土壤中加入外氮源进行生物刺激修复可对石油烃降解起到促进作用. 许多研究对利用生物刺激剂修复石油污染土壤进行了详细报道. 所用氮源类型包括无机氮源NH4Cl、KNO3、NH4NO3、(NH4)2SO4,有机氮源尿素和有机肥等[1 − 3]. 研究认为,当土壤C/N比接近10时,土壤微生物的活性最好,对石油烃的去除能力最强[4].
土壤菌群结构多样性和功能菌群活性对于生物技术的实施至关重要. 目前多是利用变性梯度凝胶电泳(denaturing gradient gel electrophoresis, DGGE)、实时定量聚合酶链反应(quantitative real-time polymerase chain reaction, qPCR)、高通量测序(high throughput sequencing)、宏基因组学(metagenomics)等技术对土壤菌群结构和功能代谢基因表达进行研究[5 − 7]. 修复过程中可降解石油烃的功能菌属主要有细菌芽孢杆菌属(Bacillus)、铜绿假单胞菌属(Pseudomonas)、不动细菌属(Acinetobacter)、红球菌属(Rhodococcus)、原小单孢菌属(Promicromonospora),以及真菌的担子菌门(Basidiomycota)和子囊菌门(Ascomycota)等[8 − 10]. 生物刺激修复可较好地保持土壤微生物菌群结构多样性和稳定性,有利于石油烃的持续降解[11 − 12]. 现有研究阐明了石油烃降解功能菌属类别以及土壤菌群稳定性对生物修复的影响作用,但是对于不同功能类群参与石油烃降解的作用强度和利用特征尚不清楚.
磷脂脂肪酸(Phospholipid fatty acids, PLFA)是几乎所有活体细胞膜的主要成分,周转速率极快且随细胞死亡而迅速降解. 不同类群的微生物PLFA组成具有一定差异,因而磷脂脂肪酸可作为生物标识物用以描述微生物类群对不同碳源的利用特征 [13 − 14]. 目前PLFA技术主要用于研究农业上施肥、植物残体及植被种植等因素对土壤微生物群落活性的影响[15 − 17],较少用于研究污染土壤生物修复过程中功能微生物类群对石油烃组分的利用特征.
烷烃是石油烃的重要组分之一,本文以13C-十六烷标记的污染土壤为研究对象,通过向污染土壤中加入硝酸钾和有机肥进行生物刺激修复处理,利用稳定同位素标记-磷脂脂肪酸技术(13C -SIP-PLFA)探究十六烷中碳组分被不同土壤微生物类群的利用情况,本研究可为深入理解石油烃的生物降解代谢过程提供参考.
硝酸钾和有机肥添加对土壤中十六烷的降解效果及微生物类群活性变化研究
Effects of potassium nitrate and organic fertilizer on microbial activity in hexadecane-contaminated soil
-
摘要: 向污染土壤中加入外源氮进行生物刺激修复是目前广为采用的土壤有机污染修复技术. 然而,目前对于修复过程中土壤微生物类群对组分烃的代谢特征尚不清楚. 本文以13C标记的十六烷污染土壤为研究对象,利用稳定同位素标记-磷脂脂肪酸技术(stable isotope labeling-phospholipid fatty acid technology,13C -SIP-PLFA)研究了加入硝酸钾和有机肥对石油污染土壤进行修复时,不同微生物类群对十六烷的利用特征. 结果表明,与自然降解(CC)相比,加入KNO3(CN)和施入有机肥(CY)的处理均可提高土壤中十六烷的去除效率. 修复30 d时,土壤中十六烷的去除率由6.14% (CC)提高至13.6% (CN) 和15.0% (CY). 加入硝酸钾修复使得土壤微生物总量略有降低(总PLFAs由82.8 nmol·g−1(CC)降低至79.7 nmol·g−1(CN)),但被微生物同化为细胞组分的十六烷含量(13C-PLFA)由81.12 ng·g−1(CC)增加至92.84 ng·g−1(CN),硝酸钾生物刺激修复提高了革兰氏阳性菌和真菌对十六烷的同化代谢作用. 加入有机肥修复的土壤中,微生物总量(总PLFAs为99.3 nmol·g−1)和微生物同化代谢十六烷的含量均明显增加(13C-PLFA 为142.67 ng·g−1),土壤中革兰氏阳性菌和放线菌对十六烷的同化代谢作用明显增强. 在不同修复处理的土壤中,可利用十六烷的主要微生物有G+菌i15:0和a15:0、G-菌16:1ω5c和16:1ω7c、真菌18:1ω9c、放线菌16:0(10Me)和Unspecific菌16:00. 结果表明,革兰氏阳性菌是不同修复处理中最主要的十六烷降解菌,两种修复剂对土壤不同微生物类群的代谢激活作用存在差异.Abstract: Biostimulation by adding exogenous nitrogen to the soil is a common application technology for soil organic pollution. However, the metabolic characteristics of soil microbial communities towards the contaminants during the remediation are still not clear. In this study, two stimulants, KNO3 and compost, were applied to 13C-labeled hexadecane-contaminated soil for 30 days of remediation. The removal rates of hexadecane were determined using GC-MS, and the phospholipid fatty acid ( PLFA) contents and the 13C incorporated into PLFA was quantified using 13C -PLFA-SIP technique.Results showed that the removal rates of hexadecane was higher in the KNO3(CN)and compost (CY) amendment soils than that in the natural attenuation(CC). After 30 days of incubations, the removal rates of hexadecane enhanced from 6.14% (CC) to 13.6% (CN) and 15.0% (CY), respectively. Although KNO3 amendment slightly decreased the total microbial biomass (the total PLFAs changed from 82.8 nmol·g−1 in CC to 79.7 nmol·g−1 in CN), the 13C-PLFA increased from 81.12 ng·g−1 to 92.84 ng·g−1. KNO3 amendment improved the hexadecane assimilation utilization by Gram-positive bacteria and fungi. In the compost treated soil (CY), the total PLFAs and 13C-PLFA increased to 99.3 nmol·g−1 and 142.67 ng·g−1, respectively, and the assimilation utilization of hexadecane by Gram-positive bacteria and actinomycetes were significantly enhanced. In the different treatments, the microorganisms that can use hexadecane mainly included gram-positive bacteria i15:0 and a15:0, gram-negative bacteria 16:1ω5c and 16:1ω7c, fungus 18:1ω9c, actinomycetes 16:0 (10Me), and unspecified bacteria 16:00. The results indicated that gram-positive bacteria were the most dominant hydrocarbon-degrading bacteria in the different treatments, and the remediation characterictics of KNO3 or compost addition toward hydrocarbon-polluted soil were different.
-
图 4 不同处理下土壤PLFA单体中13C含量
Figure 4. The amount of 13C-PLFA in microbial monomers PLFA in different treatments (Different lowercase letters represent significant differences in 13C-PLFA content in different time (P<0.05); different uppercase letters represent significant differences in 13C-PLFA content in different treatments at the same period (P<0.05))
表 1 土壤基本性质
Table 1. Basic physicochemical properties of soil
pH 含水率/%
Humanity有机碳/(g·kg−1)
Organic carbon总氮/(mg·kg−1)
Total nitrogen铵氮/(mg·kg−1)
NH4+-N硝氮/(mg·kg−1)
NO3--N全硫/(mg·kg−1)
Total sulfur碳氮比
C/N8.20±0.04 0.12±0.01 17.1±1.27 400.1±12.5 4.11±0.16 4.01±0.15 120.0±8.9 42.5 表 2 实验方案设计
Table 2. Experimental scheme design
编号
Code处理
TreatmentCC 100 g洁净土壤+0.5 g 13C-十六烷 CN 100 g洁净土壤+0.5 g 13C-十六烷+0.3066 g KNO3(C/N=10/1) CY 100 g洁净土壤+ 0.5 g 13C-十六烷+15 g 有机肥(C/N=10/1) 表 3 不同修复处理土壤细菌 /真菌、革兰氏阳性菌 /革兰氏阴性菌PLFA比值的变化
Table 3. The ratios of bacteria to fungi and gram-positive to gram-negative bacteria under different treatments
处理
Treatment细菌/真菌
Bacteria/Fungi革兰氏阳性菌/革兰氏阴性菌
G+/G−0 d 3 d 30 d 0 d 3 d 30 d CC 7.97±0.02aA 7.82±0.03aA 7.97±0.01aA 0.56±0.01aA 0.54±0.03aA 0.55±0.04aA CN 7.49±0.11bA 7.89±0.04aB 7.61±0.05aAB 0.56±0.04aA 0.55±0.02aA 0.53±0.06aA CY 8.35±0.16cA 7.72±0.21aB 7.87±0.07aC 0.60±0.05bA 0.62±0.02bA 0.61±0.04bA 注:小写字母为同一时期不同修复之间差异性, 大写字母表示同一处理不同时期差异性, 字母不同表示差异显著(P<0.05).
Different lowercase letters indicated significant differences among different treatments (P<0.05); different uppercase letters represent significant differences in different remediation periods in the same treatments(P<0.05) -
[1] SAFDARI M S, KARIMINIA H R. Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil[J]. Journal of Hazardous Materials, 2018, 342: 270-278. doi: 10.1016/j.jhazmat.2017.08.044 [2] NIKOLOPOULOU M, PASADAKIS N, NORF H, et al. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids[J]. Marine Pollution Bulletin, 2013, 77(1/2): 37-44. [3] WU M L, WU J L, ZHANG X H, et al. Effect of bioaugmentation and biostimulation on hydrocarbon degradation and microbial community composition in petroleum-contaminated loessal soil[J]. Chemosphere, 2019, 237: 124456. doi: 10.1016/j.chemosphere.2019.124456 [4] VARJANI S, UPASANI V N. Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil[J]. Journal of Environmental Management, 2019, 245: 358-366. [5] BAO Y J, XU Z X, LI Y, et al. High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism[J]. Journal of Environmental Sciences, 2017, 56: 25-35. doi: 10.1016/j.jes.2016.08.022 [6] IQBAL A, MUKHERJEE M, RASHID J, et al. Development of plant-microbe phytoremediation system for petroleum hydrocarbon degradation: An insight from alkb gene expression and phytotoxicity analysis[J]. Science of the Total Environment, 2019, 671: 696-704. doi: 10.1016/j.scitotenv.2019.03.331 [7] TARTAGLIA M, SCIARRILLO, ZUZOLO D, et al. Exploring an enhanced rhizospheric phenomenon for pluricontaminated soil remediation: Insights from tripartite metatranscriptome analyses[J]. Journal of Hazardous Materials, 2022, 428: 128246. doi: 10.1016/j.jhazmat.2022.128246 [8] 吴蔓莉, 陈凯丽, 叶茜琼, 等. 堆肥-生物强化对重度石油污染土壤的修复作用[J]. 环境科学, 2017, 38(10): 4412-4419. WU M L, CHEN K L, YE X Q, et al. Remediation of petroleum-contaminated soil using a bioaugmented compost technique[J]. Environmental Science, 2017, 38(10): 4412-4419(in Chinese).
[9] LI Q Q, LI J B, JIANG L F, et al. Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil[J]. Journal of Hazardous Materials, 2021, 403: 123895. doi: 10.1016/j.jhazmat.2020.123895 [10] AMBUST S, DAS A J, KUMAR R. Bioremediation of petroleum contaminated soil through biosurfactant and Pseudomonas sp. SA3 amended design treatments[J]. Current Research in Microbial Sciences, 2021, 2: 100031. doi: 10.1016/j.crmicr.2021.100031 [11] LI Q, HUANG Y, WEN D, et al. Application of alkyl polyglycosides for enhanced bioremediation of petroleum hydrocarbon-contaminated soil using Sphingomonas changbaiensis and Pseudomonas stutzeri[J]. Science of the Total Environment, 2020, 719: 137456. doi: 10.1016/j.scitotenv.2020.137456 [12] 祁燕云, 吴蔓莉, 祝长成, 等. 基于高通量测序分析的生物修复石油污染土壤菌群结构变化[J]. 环境科学, 2019, 40(2): 869-875. QI Y Y, WU M L, ZHU C C, et al. Microbial community structure shift during bioremediation of petroleum contaminated soil using high throughput sequencing[J]. Environmental Science, 2019, 40(2): 869-875(in Chinese).
[13] 高士杰, 王春梅, 王鹏, 等. 多形态多水平氮添加对温带森林土壤根系呼吸和微生物呼吸的影响[J]. 环境化学, 2020, 39(6): 1568-1577. doi: 10.7524/j.issn.0254-6108.2020021202 GAO S J, WANG C M, WANG P, et al. Effects of multi-form and multi-level nitrogen addition on root respiration and microbial respiration in temperate forest soil[J]. Environmental Chemistry, 2020, 39(6): 1568-1577(in Chinese). doi: 10.7524/j.issn.0254-6108.2020021202
[14] 任慧琴, 赵念席, 陈磊, 等. 土壤微生物群落结构分析中磷脂脂肪酸法和温和碱性甲酯化法的比较及定量优化[J]. 环境化学, 2014, 33(5): 760-764. doi: 10.7524/j.issn.0254-6108.2014.05.008 REN H Q, ZHAO N X, CHEN L, et al. Comparison of phospholipid fatty acid method and mild alkaline methylesterefication method in characterizing soil microbial communities and quantitative optimization[J]. Environmental Chemistry, 2014, 33(5): 760-764(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.05.008
[15] 陈展, 王效科, 尚鹤. 13CO2示踪臭氧胁迫对水稻土壤微生物的影响[J]. 环境科学, 2014, 35(10): 3911-3917. CHEN Z, WANG X K, SHANG H. Ozone effects on soil microbial community of rice investigated by 13C isotope labeling[J]. Environmental Science, 2014, 35(10): 3911-3917(in Chinese).
[16] 邓少虹, 郑小东, 毛婉琼, 等. 稻田与旱地土壤中真菌和细菌对秸秆碳的利用特征[J]. 环境科学, 2022, 43(2): 1069-1076. DENG S H, ZHENG X D, MAO W Q, et al. Characteristics of microbial utilization for crop residue-derived C in paddy and upland soils[J]. Environmental Science, 2022, 43(2): 1069-1076(in Chinese).
[17] 王伟华, 刘毅, 唐海明, 等. 长期施肥对稻田土壤微生物量、群落结构和活性的影响[J]. 环境科学, 2018, 39(1): 430-437. WANG W H, LIU Y, TANG H M, et al. Effects of long-term fertilization regimes on microbial biomass, community structure and activity in a paddy soil[J]. Environmental Science, 2018, 39(1): 430-437(in Chinese).
[18] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. BAO S D. Soil and agricultural chemistry analysis[M]. 3rd edition. Beijing: Chinese Agriculture Press, 2000(in Chinese).
[19] 许殷瑞. 陕北采油区土壤微生物群落结构及对石油烃组分的利用机制[D]. 西安: 西安建筑科技大学, 2021. XU Y R. Soil microbial community structure and utilization mechanism of petroleum hydrocarbon components in oil production area of northern Shaanxi[D]. Xi'an: Xi'an University of Architecture and Technology, 2021(in Chinese).
[20] LIU L, ESTIARTE M, BENGTSON P, et al. Drought legacies on soil respiration and microbial community in a Mediterranean forest soil under different soil moisture and carbon inputs[J]. Geoderma, 2022, 405: 115425. doi: 10.1016/j.geoderma.2021.115425 [21] MAIR J, SCHINNER F, MARGESIN R. A feasibility study on the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site: Effects of temperature and biostimulation[J]. Cold Regions Science and Technology, 2013, 96: 122-128. doi: 10.1016/j.coldregions.2013.07.006 [22] GAO Y C, DU J, BAHAR M M, et al. Metagenomics analysis identifies nitrogen metabolic pathway in bioremediation of diesel contaminated soil[J]. Chemosphere, 2021, 271: 129566. doi: 10.1016/j.chemosphere.2021.129566 [23] 刘春柱, 侯萌, 张晴, 等. 长期施入不同量有机肥对农田黑土土壤养分、产量的影响[J]. 中国农学通报, 2017, 33(8): 68-71. LIU C Z, HOU M, ZHANG Q, et al. Effect of long-term application of different amounts of organic fertilizer on black soil nutrients and yield[J]. Chinese Agricultural Science Bulletin, 2017, 33(8): 68-71(in Chinese).
[24] VENTORINO V, PASCALE A, FAGNANO M, et al. Soil tillage and compost amendment promote bioremediation and biofertility of polluted area[J]. Journal of Cleaner Production, 2019, 239: 118087. doi: 10.1016/j.jclepro.2019.118087 [25] WU M L, GUO X Q, WU J L, et al. Effect of compost amendment and bioaugmentation on PAH degradation and microbial community shifting in petroleum-contaminated soil[J]. Chemosphere, 2020, 256: 126998. doi: 10.1016/j.chemosphere.2020.126998 [26] ZHANG D C, MORTELMAIER C, MARGESIN R. Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil[J]. Science of the Total Environment, 2012, 421/422: 184-196. doi: 10.1016/j.scitotenv.2012.01.043 [27] MARGESIN R, HÄMMERLE M, TSCHERKO D. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: Effects of hydrocarbon concentration, fertilizers, and incubation time[J]. Microbial Ecology, 2007, 53(2): 259-269. doi: 10.1007/s00248-006-9136-7 [28] ATLAS R M, BARTHA R. Microbial ecology: Fundamentals and applications[M]. Pearson Education India, 1998. [29] 顾夏生, 胡洪营, 王慧等. 水处理生物学[M]. 北京: 中国建筑工业出版社, 2010. GU X S, HU H Y, WANG H, et al. Biology for water and wastewater treatment[M]. Beijing: China Architecture & Building Press, 2010(in Chinese).
[30] LAMONACA F, PIZZUTI G, ARCURI N, et al. Monitoring of environmental parameters and pollution by fungal spores in the National Gallery of Cosenza: A case of study[J]. Measurement, 2014, 47: 1001-1007. doi: 10.1016/j.measurement.2013.09.014 [31] 吴蔓莉, 祁燕云, 祝长成, 等. 堆肥对土壤中石油烃的去除及微生物群落的影响[J]. 中国环境科学, 2018, 38(8): 3042-3048. doi: 10.3969/j.issn.1000-6923.2018.08.033 WU M L, QI Y Y, ZHU C C, et al. Influence of compost amendment on hydrocarbon degradation and microbial communities in petroleum contaminated soil[J]. China Environmental Science, 2018, 38(8): 3042-3048(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.08.033