-
全氟化合物(perfluoroalkyl substances,PFASs)是19世纪40年代人工合成的一类具有稳定疏水结构[F(CF2)n]和亲水官能团的持久性有机化合物(POPs),以全氟烷基羧酸(PFCAs)和全氟烷基磺酸(PFSAs)为主[1]. PFASs因其具有理想的疏水疏油、表面活性和热化学稳定性等能力,被广泛应用于制备消防泡沫灭火器(AFFF)、金属电镀材料和防污纺织/炊具等民用或工业生产[2 − 4]. 现有的研究已经证实,PFASs在环境中广泛存在,且具有一定的生物富集能力和生物毒性[5]. 因此,PFOS和PFOA及其相关化合物已相继受到管控,全球开始生产使用毒性较低的短碳链(C≤7)或多氟类PFASs,我国是PFASs的重要生产地[6 − 7].
PFASs污染源分为直接来源和间接来源. 直接来源是指在生产或在日常生活使用的过程中产生的PFASs直接排放到环境中,如用作加工的基于PFAA的铵类等物质(如APFHx,产物为PFHxA)作为生产原料,最终生成全氟烷基类物质,会在大气或水体中有相应排放[8];间接来源是指PFASs前体物通过生物或化学等降解而产生的污染物,如全氟辛烷磺酰氟(PFOSF)和氟化调聚醇(FTOH)等可通过生物降解的转化方式生成PFASs. 与氟化工厂不同,常见的工业园区是由多种工/民用企业组成,聚集了众多工业生产领域综合型园区,且园区总的范围和数量远大于氟化工厂(fluorochemical industrial park,FIP),这使其可能具有与FIP相当的PFASs污染贡献[9],对其环境中的PFASs进行排放规模的预测和风险管控标准的制定亟需科学依据. 基于此,本研究对于少有关注的综合型化工园区及周边表层土壤介质中PFASs的污染特征与空间分布进行研究,并评估了该地区PFBA、PFHpA、PFOS和PFOA对环境和人体的潜在风险,填补了对PFASs非典型污染区域的研究数据空白,以期为该地区PFASs污染的相关管控提供数据支撑.
成都市某工业园区及周围表层土壤中全氟化合物的分布特征与风险评估
Distribution characteristics and risk assessment of perfluoroalkyl substances in surface soils in and around an industrial park in Chengdu
-
摘要: 综合型工业园具有工用和民用生产的双重功能,多领域的生产活动导致产生的污染物混杂且难以全面处理,可能造成更为广泛和严重的影响. 本研究以成都市新津工业园及周围表层土壤环境为对象,分析其13种全氟化合物(PFASs)的浓度水平和空间分布特征. 结果表明,该区域共有12种PFASs被检出,Σ12PFASs含量平均值为104.84 ng·g−1(dw). 在检出的12种PFASs中,含量较高的为PFHpA(平均值为72.99 ng·g−1,占比70%,下同)与PFOA(29.25 ng·g−1,28%)是该地区主要PFASs污染物. 普通克里金插值法(OK)结果显示,PFASs向园区北面方向有递增趋势,浓度偏高,呈现大范围高污染的带状分布特征. 通过差异性和主成分分析,该地区土壤中PFASs污染来源主要为园区内的PFHpA相关工业生产活动通过烟囱进行的扩散排放和大气沉降,其次为日常生活中PFASs的产生和排放. 基于CSOIL模型的风险评估分析表明,该地区PFOA和PFOS风险值较小,但PFHpA人体暴露量较高,需对其持续关注.Abstract: Integrated industrial park has dual functions of industrial and civil production, generating complex pollutants that are difficult to be treated comprehensively and may cause more extensive and serious impacts. Concentration levels and spatial distribution characteristics of 13 PFASs in Xinjin Industrial Park and the surrounding surface soil were studied. In the present study, 12 PFASs were detected with a mean concentration of 104.84 ng·g−1. PFHpA (mean value of 72.99 ng·g−1, 70%) and PFOA (29.25 ng·g−1, 28%) were the main PFASs. The Ordinary Kriging interpolation (OK) results showed that PFASs concentrations increased in the north direction of the park with a broad band distribution. Analysis of variance and principal component indicated that sources of PFASs contamination are mainly diffuse emissions and atmospheric deposition from PFHpA-related industrial production activities followed by the emission of daily use. The risk assessment analysis based on the CSOIL model displayed that the risk values of PFOA and PFOS in the region were at low level, but the human exposure to PFHpA is high and requires continuous attention.
-
Key words:
- PFASs /
- soil /
- industrial park /
- distribution characteristics /
- risk assessment.
-
表 1 目标物的结构信息和仪器参数设置
Table 1. Structural information of the target and instrument parameter settingst
类型
Type目标物
Objects缩写
Abb.结构式
Structure对应内标
Internal
standard母离子→
子离子(m/z)
Precursor→
Product保留
时间/min
Reservation
time碎裂电压/V
Fragmentor碰撞能/V
Collision
EnergyPFCA-MXB 全氟丁酸 PFBA F(CF2)3COOH MPFBA 213→169 2.91 60 5 全氟戊酸 PFPeA F(CF2)4COOH MPFHxA 263→219/69 4.09 60 5 全氟己酸 PFHxA F(CF2)5COOH MPFHxA 313→269/119 4.76 70 10 全氟庚酸 PFHpA F(CF2)6COOH MPFOA 363→319/169 5.21 70 5 全氟辛酸 PFOA F(CF2)7COOH MPFOA 413→369/169 5.56 80 10 全氟壬酸 PFNA F(CF2)8COOH MPFNA 463→419/219 5.84 80 10 全氟癸酸 PFDA F(CF2)9COOH MPFDA 513→469/269 6.07 90 5 全氟十一酸 PFUnDA F(CF2)10COOH MPFUnDA 563→519/269 6.27 90 10 全氟十二酸 PFDoDA F(CF2)11COOH MPFDoDA 613→569/319 6.44 90 10 PFSA-MXB 全氟丁烷磺酸 PFBS F(CF2)4SO3H MPFHxS 299→99/80 4.25 120 35 全氟己烷磺酸 PFHxS F(CF2)6SO3H MPFHxS 399→99/80 5.23 150 40 全氟辛烷磺酸 PFOS F(CF2)8SO3H MPFOS 499→99/80 5.82 170 50 全氟癸烷磺酸 PFDS F(CF2)10SO3H MPFOS 599→99/80 6.25 190 60 表 2 土壤中PFASs的回收率,方法检出限(MDL)和线性方程
Table 2. Recoveries, method detection limits (MDL) and linear equation of PFASs in soils
类别
Type目标物
Objects回收率/%
Recovery (Avg±SD)检出限/(ng·g−1)
MDL加标2 ng 加标20 ng PFCAs PFBA 71.4±1.6 71.6±1.5 0. 005 PFPeA 82.3±1.2 90.3±3.9 0. 036 PFHxA 76.0±0.3 88.6±1.0 0.008 PFHpA 97.7±1.6 96.3±3.9 0. 002 PFOA 67.1±2.7 82.9±1.1 0. 002 PFNA 69.2±2.9 83.4±1.3 0. 003 PFDA 95.1±5.4 93.9±3.3 0. 020 PFUnDA 70.9±1.3 82.7±0.5 0. 014 PFDoDA 94.0±2.0 88.6±3.7 0. 025 PFSAs PFBS 89.9±1.1 92.6±3.2 0. 005 PFHxS 80.1±7.9 95.5±1.5 0. 041 PFOS 93.4±1.7 95.1±3.5 0. 021 PFDS 90.0±2.2 81.2±4.4 0.029 表 3 研究区域土壤中PFASs的含量和检出率(ng·g−1)
Table 3. Concentration range and detection rate of PFASs in soils of the study area(ng·g−1)
点位
SitePFBA PFPeA PFBS PFHxA PFHpA PFHxS PFOA PFOS PFNA PFDA PFDS PFUnDA PFDoDA Σ12PFASs T1 0.21 nd nd 0.80 137.15 nd 45.34 0.46 0.14 0.10 nd 0.10 0.09 184.39 T2 0.20 nd nd 1.31 165.90 nd 56.87 0.35 0.11 0.09 nd 0.07 nd 225.00 T3 0.19 nd 0.24 0.62 102.06 nd 16.65 nd 0.07 0.08 nd 0.05 0.09 120.05 T4 0.26 nd 0.25 0.97 143.40 nd 51.12 1.08 0.56 0.64 nd 0.43 0.47 199.18 T5 0.27 nd nd 0.76 109.14 nd 18.35 0.41 0.26 0.19 nd 0.12 0.12 129.62 T6 0.21 nd nd 1.15 100.93 nd 12.03 0.24 0.13 0.10 nd 0.08 0.09 114.96 T7 0.11 nd nd 0.71 109.98 nd 13.72 0.28 0.11 0.10 nd 0.07 0.09 125.17 T8 0.44 nd 0.27 1.32 174.42 0.12 62.12 2.34 1.25 0.95 nd 1.13 0.58 244.94 T9 0.49 nd nd 0.26 15.71 nd 24.35 0.46 0.83 0.49 nd 0.65 0.32 43.56 T10 0.51 nd nd nd 20.80 nd 19.86 nd 0.38 nd nd nd nd 41.55 T11 0.33 0.10 0.97 0.12 10.84 nd 11.87 0.15 0.41 0.28 nd 0.17 nd 25.24 T12 0.75 nd nd 0.22 21.94 0.14 47.45 nd 0.34 0.23 nd 0.22 nd 71.29 T13 0.41 nd nd nd 11.91 nd 16.66 nd 0.24 0.22 nd 0.26 nd 29.70 T14 0.43 nd 0.88 0.25 11.45 nd 18.29 0.43 0.62 0.41 nd 0.39 nd 33.15 T15 0.27 nd nd 0.22 24.30 0.13 44.64 0.19 0.22 0.20 nd 0.15 nd 70.32 T16 0.35 nd 0.85 0.17 7.87 nd 8.62 0.25 0.34 0.34 nd 0.31 0.21 19.31 平均值 0.34 0.10 0.58 0.63 72.99 0.13 29.25 0.55 0.38 0.29 nd 0.28 0.23 104.84 检出率/% 100 12.50 37.50 87.50 100 18.80 100 75.00 100 93.80 0 93.80 56.30 — 表 4 各PFASs的相关性矩阵,特征值和贡献率
Table 4. Correlation matrix R for each PFASs, eigenvalues and contribution rates
PFASs PFBA PFHxA PFHpA PFOA PFOS PFNA PFDA PFUnDA PFDoDA 特征值
Eigenvalue方差贡献率/%
Variance
contribution
rate累计贡献率/%
Cumulative
contribution
ratePFBA 1.000 5.106 56.728 56.728 PFHxA −0.496 1.000 2.517 27.969 84.697 PFHpA −0.534* 0.945** 1.000 0.828 9.195 93.891 PFOA 0.140 0.509* 0.556* 1.000 0.223 2.475 96.366 PFOS 0.101 0.599* 0.587* 0.580* 1.000 0.160 1.781 98.148 PFNA 0.482 0.085 0.029 0.335 0.786** 1.000 0.073 0.814 98.962 PFDA 0.279 0.244 0.190 0.421 0.863** 0.908** 1.000 0.041 0.457 99.419 PFUnDA 0.358 0.219 0.156 0.402 0.849** 0.944** 0.953** 1.000 0.034 0.374 99.793 PFDoDA 0.013 0.470 0.464 0.393 0.861** 0.736** 0.852** 0.814** 1.000 0.019 0.207 100.000 注:*P<0.05, **P<0.01. 表 5 CSOIL模型定量计算公式及暴露参数
Table 5. CSOIL model quantitative calculation formula and exposure parameters
暴露途径
Exposure pathways计算公式
Calculation formula参数意义
Parameter暴露参数
Exposure parameters儿童
Children成人
Adults食入土壤颗粒 DI1=AID×ωs×Fa/BW AID:土颗粒食入量,mg·d−1 200 100 ωs:污染物含量,mg·kg−1 Fa:吸收因子 0.5 0.6 BW:人体平均体重,kg 20.76 58.55 吸入土壤颗粒 DI1=ωs×ITSP×Fr×Fa/BW ITSP:土壤颗粒的吸入量,kg·d−1 3.13·10−7 [41] 8.33·10−7 [41] Fr:肺部保持因子 0.75 0.75 DI1=ωs×AEXPi×Fm×DAEi×DAR×TBi×
FRSi×Fa/BWAEXPi:暴露表面皮肤面积,m2 0.05 0.09 Fm:基质因子的皮肤吸收 0.15 0.15 DAEi:皮肤覆盖程度,kg soil·m−2 5.6·10-4 [41] 5.6·10-4 [41] DAR:皮肤吸收速度,h−1 0.01 0.005 TBi:接触土壤暴露时间,h·d−1 9.14 14.9 FRSi:室内土颗粒质量分数 0.8 0.8 环境暴露含量 EDIx=DIx1+DIx2+DIx3 DI为暴露量,ng·(kg·d)−1 EDI为环境暴露量,x表示不同种类的PFAS 表 6 国际管理机构提议的每日预计摄入量健康指导值(ng·(kg·d)−1)
Table 6. Health guidance values for expected daily intake as proposed by international regulatory agencies(ng·(kg·d)−1)
-
[1] BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541. doi: 10.1002/ieam.258 [2] HUA Z L, YU L, LIU X D, et al. Perfluoroalkyl acids in surface sediments from the Lower Yangtze River: Occurrence, distribution, sources, inventory, and risk assessment[J]. Science of the Total Environment, 2021, 798: 149332. doi: 10.1016/j.scitotenv.2021.149332 [3] FANG S H, LI C, ZHU L Y, et al. Spatiotemporal distribution and isomer profiles of perfluoroalkyl acids in airborne particulate matter in Chengdu City, China[J]. Science of the Total Environment, 2019, 689: 1235-1243. doi: 10.1016/j.scitotenv.2019.06.498 [4] GLÜGE J, SCHERINGER M, COUSINS I T, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS)[J]. Environmental Science Processes & Impacts, 2020, 22(12): 2345-2373. [5] HU X Z, HU D C. Effects of perfluorooctanoate and perfluorooctane sulfonate exposure on hepatoma Hep G2 cells[J]. Archives of Toxicology, 2009, 83(9): 851-861. doi: 10.1007/s00204-009-0441-z [6] CAI M H, ZHAO Z, YANG H Z, et al. Spatial distribution of per- and polyfluoroalkyl compounds in coastal waters from the East to South China Sea[J]. Environmental Pollution, 2012, 161: 162-169. doi: 10.1016/j.envpol.2011.09.045 [7] LI J F, HE J H, NIU Z G, et al. Legacy per- and polyfluoroalkyl substances (PFASs) and alternatives (short-chain analogues, F-53B, GenX and FC-98) in residential soils of China: Present implications of replacing legacy PFASs[J]. Environment International, 2020, 135: 105419. doi: 10.1016/j.envint.2019.105419 [8] WANG Z Y, COUSINS I T, SCHERINGER M, et al. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors[J]. Environment International, 2013, 60: 242-248. doi: 10.1016/j.envint.2013.08.021 [9] 丁达, 宋昕, 刘朝阳, 等. 某化工园区周边土壤中传统和新兴全氟化合物的赋存特征及潜在来源[J]. 土壤, 2021, 53(4): 779-787. DING D, SONG X, LIU Z Y, et al. Occurrence and possible source of legacy and emerging perfluoroalkyl substances in soil near a chemical industrial park[J]. Soils, 2021, 53(4): 779-787 (in Chinese).
[10] 温祥洁, 陈朝辉, 徐维新, 等. 青藏高原东北部地区表层土壤中全氟化合物的分布特征及来源解析[J]. 环境科学, 2022, 43(6): 3253-3261. WEN X J, CHEN Z H, XU W X, et al. Distribution characteristics and source apportionment of perfluoroalkyl substances in surface soils of the northeast Tibetan Plateau[J]. Environmental Science, 2022, 43(6): 3253-3261 (in Chinese).
[11] 谭少军, 刘洋, 朱小婕, 等. 长江上游平原丘陵区农业非点源污染输出特征和驱动机制[J]. 环境科学, 2022, 43(6): 3128-3139. TAN S J, LIU Y, ZHU X J, et al. Output characteristics and driving mechanism of agricultural non-point source (AGNPS) pollutant in plain and valley region of Upper Yangtze River, China[J]. Environmental Science, 2022, 43(6): 3128-3139 (in Chinese).
[12] 李杰, 翟亮, 桑会勇, 等. PM2.5浓度插值中不同空间插值方法对比[J]. 测绘科学, 2016, 41(4): 50-54, 101. LI J, ZHAI L, SANG H Y, et al. Comparison of different spatial interpolation methods for PM2.5[J]. Science of Surveying and Mapping, 2016, 41(4): 50-54, 101 (in Chinese).
[13] BRUSSEAU M L, ANDERSON R H, GUO B. PFAS concentrations in soils: Background levels versus contaminated sites[J]. Science of the Total Environment, 2020, 740: 140017. doi: 10.1016/j.scitotenv.2020.140017 [14] LIU Z Y, LU Y L, SHI Y J, et al. Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China[J]. Environment International, 2017, 106: 37-47. doi: 10.1016/j.envint.2017.05.014 [15] 高燕, 傅建捷, 王亚韡, 等. 全氟化工厂土芯中全氟化合物的分布规律[J]. 环境化学, 2014, 33(10): 1686-1691. doi: 10.7524/j.issn.0254-6108.2014.10.006 GAO Y, FU J J, WANG Y W, et al. Spatial and vertical distribution of perfluoroalkyl substances in soil cores around manufacturing facilities in China[J]. Environmental Chemistry, 2014, 33(10): 1686-1691 (in Chinese). doi: 10.7524/j.issn.0254-6108.2014.10.006
[16] ZHANG G Z, PAN Z K, WU Y M, et al. Distribution of perfluorinated compounds in surface water and soil in partial areas of Shandong Province, China[J]. Soil and Sediment Contamination: an International Journal, 2019, 28(5): 502-512. doi: 10.1080/15320383.2019.1635079 [17] 郑宇, 路国慧, 邵鹏威, 等. 青藏高原东部过渡区水环境中全氟化合物的分布特征[J]. 环境化学, 2020, 39(5): 1192-1201. doi: 10.7524/j.issn.0254-6108.2019081506 ZHENG Y, LU G H, SHAO P W, et al. Level and distribution of perfluorinated compounds in snow and water samples from the transition zone in eastern Qinghai-Tibet[J]. Environmental Chemistry, 2020, 39(5): 1192-1201 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019081506
[18] JIN H B, SHAN G Q, ZHU L Y, et al. Perfluoroalkyl acids including isomers in tree barks from a Chinese fluorochemical manufacturing park: Implication for airborne transportation[J]. Environmental Science & Technology, 2018, 52(4): 2016-2024. [19] ZHAO N, ZHAO M R, LIU W P, et al. Atmospheric particulate represents a source of C8-C12 perfluoroalkyl carboxylates and 10: 2 fluorotelomer alcohol in tree bark[J]. Environmental Pollution, 2021, 273: 116475. doi: 10.1016/j.envpol.2021.116475 [20] 武倩倩, 吴强, 宋帅, 等. 天津市主要河流和土壤中全氟化合物空间分布、来源及风险评价[J]. 环境科学, 2021, 42(8): 3682-3694. WU Q Q, WU Q, SONG S, et al. Distribution, sources, and risk assessment of polyfluoroalkyl substances in main rivers and soils of Tianjin[J]. Environmental Science, 2021, 42(8): 3682-3694 (in Chinese).
[21] 何宗健, 甘甜, 彭希珑, 等. 环鄱阳湖城市污水处理厂污泥中全氟化合物的污染特征[J]. 南昌大学学报(工科版), 2020, 42(2): 103-108. HE Z J, GAN T, PENG X L, et al. Pollution characteristics of perfluorinated compounds in sludge from urban wastewater treatment plants around Poyang Lake[J]. Journal of Nanchang University (Engineering & Technology), 2020, 42(2): 103-108 (in Chinese).
[22] LIN Y, JIANG J J, RODENBURG L A, et al. Perfluoroalkyl substances in sediments from the Bering Sea to the western Arctic: Source and pathway analysis[J]. Environment International, 2020, 139: 105699. doi: 10.1016/j.envint.2020.105699 [23] 曾士宜, 杨鸿波, 彭洁, 等. 贵州草海湖泊表层水与沉积物中全氟化合物的污染特征及风险评估[J]. 环境化学, 2021, 40(4): 1193-1205. doi: 10.7524/j.issn.0254-6108.2020072404 ZENG S Y, YANG H B, PENG J, et al. Pollution characteristics and risk assessment of perfluorinated compounds in surface water and sediments of Caohai Lake of Guizhou Province[J]. Environmental Chemistry, 2021, 40(4): 1193-1205 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020072404
[24] NA S T, HAI R T, WANG X H, et al. Trends and levels of perfluorinated compounds in soil and sediment surrounding a cluster of metal plating industries[J]. Soil and Sediment Contamination: An International Journal, 2021, 30(4): 423-435. doi: 10.1080/15320383.2020.1863908 [25] FANG S H, SHA B, YIN H L, et al. Environment occurrence of perfluoroalkyl acids and associated human health risks near a major fluorochemical manufacturing park in southwest of China[J]. Journal of Hazardous Materials, 2020, 396: 122617. doi: 10.1016/j.jhazmat.2020.122617 [26] 孙慧, 郭治兴, 郭颖, 等. 广东省土壤Cd含量空间分布预测[J]. 环境科学, 2017, 38(5): 2111-2124. SUN H, GUO Z X, GUO Y, et al. Prediction of distribution of soil Cd concentrations in Guangdong Province, China[J]. Environmental Science, 2017, 38(5): 2111-2124 (in Chinese).
[27] 王菲, 吴泉源, 吕建树, 等. 山东省典型金矿区土壤重金属空间特征分析与环境风险评估[J]. 环境科学, 2016, 37(8): 3144-3150. WANG F, WU Q Y, LÜ J S, et al. Spatial characteristics and environmental risk of heavy metals in typical gold mining area of Shandong Province[J]. Environmental Science, 2016, 37(8): 3144-3150 (in Chinese).
[28] 白一茹, 张兴, 赵云鹏, 等. 基于GIS和受体模型的枸杞地土壤重金属空间分布特征及来源解析[J]. 环境科学, 2019, 40(6): 2885-2894. BAI Y R, ZHANG X, ZHAO Y P, et al. Spatial distribution characteristics and source apportionment of soil heavy metals in Chinese wolfberry land based on GIS and the receptor model[J]. Environmental Science, 2019, 40(6): 2885-2894 (in Chinese).
[29] 叶冬芬, 叶桥龙, 罗玮琛. 基于高斯扩散模型的化工危险品泄露区域计算及其实现[J]. 计算机与应用化学, 2012, 29(2): 195-199. doi: 10.3969/j.issn.1001-4160.2012.02.016 YE D F, YE Q L, LUO W C. A calculation approach and implementation of hazard chemical substance based on Gaussian diffusion model[J]. Computers and Applied Chemistry, 2012, 29(2): 195-199 (in Chinese). doi: 10.3969/j.issn.1001-4160.2012.02.016
[30] 倪健, 王占益. 基于高斯模型的城市大气污染物溯源模拟[J]. 电脑知识与技术, 2021, 17(29): 8-11. NI J, WANG Z Y. Simulation of air pollution dispersion in Handan city based on Gaussian model[J]. Computer Knowledge and Technology, 2021, 17(29): 8-11 (in Chinese).
[31] SINI J F, ANQUETIN S, MESTAYER P G. Pollutant dispersion and thermal effects in urban street canyons[J]. Atmospheric Environment, 1996, 30(15): 2659-2677. doi: 10.1016/1352-2310(95)00321-5 [32] 周广峰, 刘欣. 主成分分析法在水环境质量评价中的应用进展[J]. 环境科学导刊, 2011, 30(1): 75-78. doi: 10.3969/j.issn.1673-9655.2011.01.021 ZHOU G F, LIU X. Progress of principal component analysis method in water quality assessment[J]. Environmental Science Survey, 2011, 30(1): 75-78 (in Chinese). doi: 10.3969/j.issn.1673-9655.2011.01.021
[33] 于林松, 万方, 范海印, 等. 姜湖贡米产地土壤重金属空间分布、源解析及生态风险评价[J]. 环境科学, 2022, 43(8): 4199-4211. YU L S, WAN F, FAN H Y, et al. Spatial distribution, source apportionment, and ecological risk assessment of soil heavy metals in jianghugongmi producing area, Shandong Province[J]. Environmental Science, 2022, 43(8): 4199-4211 (in Chinese).
[34] 陈志凡, 化艳旭, 徐薇, 等. 基于正定矩阵因子分析模型的城郊农田重金属污染源解析[J]. 环境科学学报, 2020, 40(1): 276-283. doi: 10.13671/j.hjkxxb.2019.0380 CHEN Z F, HUA Y X, XU W, et al. Analysis of heavy metal pollution sources in suburban farmland based on positive definite matrix factor model[J]. Acta Scientiae Circumstantiae, 2020, 40(1): 276-283 (in Chinese). doi: 10.13671/j.hjkxxb.2019.0380
[35] SUN R, WU M H, TANG L, et al. Perfluorinated compounds in surface waters of Shanghai, China: Source analysis and risk assessment[J]. Ecotoxicology and Environmental Safety, 2018, 149: 88-95. doi: 10.1016/j.ecoenv.2017.11.012 [36] 刘宝林, 张鸿, 谢刘伟, 等. 东江流域表层土中全氟化合物的空间分布及来源解析[J]. 地球与环境, 2015, 43(3): 302-307. LIU B L, ZHANG H, XIE L W, et al. Spatial distribution and source of perfluorinated compounds in surface soils around the Dongjiang River[J]. Earth and Environment, 2015, 43(3): 302-307 (in Chinese).
[37] LIU W X, HE W, QIN N, et al. Temporal-spatial distributions and ecological risks of perfluoroalkyl acids (PFAAs) in the surface water from the fifth-largest freshwater lake in China (Lake Chaohu)[J]. Environmental Pollution, 2015, 200: 24-34. doi: 10.1016/j.envpol.2015.01.028 [38] OECD Guideline for the testing of chemicals, Section 1: adsorption-desorption using a batch equilibrium method [R]. Organization for Economic Co-operation and Development, 2000. [39] ZHONG H F, ZHENG M G, LIANG Y, et al. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in sediments from the East China Sea and the Yellow Sea: Occurrence, source apportionment and environmental risk assessment[J]. Chemosphere, 2021, 282: 131042. doi: 10.1016/j.chemosphere.2021.131042 [40] 王宗爽, 段小丽, 刘平, 等. 环境健康风险评价中我国居民暴露参数探讨[J]. 环境科学研究, 2009, 22(10): 1164-1170. WANG Z S, DUAN X L, LIU P, et al. Human exposure factors of Chinese people in environmental health risk assessment[J]. Research of Environmental Sciences, 2009, 22(10): 1164-1170 (in Chinese).
[41] BRAND E, OTTE P F, LIJZEN J P A, et al. CSOIL 2000 an exposure model for human risk assesment of soil contamination. A model description[R]. Bilthoven: National Institute of Public Health and the Environmen, 2007. [42] 宋从波, 刘茂, 姜珊珊, 等. 基于CSOIL模型的村镇土壤重金属人体暴露风险评估[J]. 安全与环境学报, 2014, 14(1): 248-252. SONG C B, LIU M, JIANG S S, et al. Assessment research on the human exposure risk to heavy metal pollutants from the soil in rural areas based on CSOIL[J]. Journal of Safety and Environment, 2014, 14(1): 248-252 (in Chinese).
[43] KNUTSEN H K, ALEXANDER J, et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food[J]. EFSA Journal, 2018, 16(12): 5194. [44] Food Standards Australia and New Zealand. Hazard assessment report - perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS) [R]. 2017. [45] Danish Environmental Protection Agency. Perfluoroalkylated substances: PFOA, PFOS and PFOSA. evaluation of health hazards and proposal of a health-based quality criterion for drinking water, soil and ground water [R]. 2015. [46] Minnesota Department of Health. Toxicological summary for: Perfluorooctanoate[R]. Minnesota, USA: Minnesota Department of Health, 2018a. [47] Minnesota Department of Health. Toxicological summary for: Perfluorobutanoate [R]. Minnesota, USA: Minnesota Department of Health, 2018b. [48] Minnesota Department of Health. Toxicological summary for: Perfluorooctane sulfonate [R]. Minnesota, USA: Minnesota Department of Health, 2019. [49] USEPA. Technical fact sheet – perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) [R]. United States Environmental Protection Agency, 2017.