-
为应对日益增长的污水处理需求,我国城镇污水处理厂的规模不断扩大,污泥产量与日俱增. 据统计,2019年我国污水处理量超过2亿m3·d−1,以污泥含水率为80%计算,同年污泥产量超过6000万t[1]. 污泥是污水处理过程中的副产物,既含有重金属、有机污染物、致病微生物、微塑料等对人体健康和生态环境有害的污染物,又有一定的资源化利用价值. 因此,如何科学、高效、安全地对污泥进行处理处置成为污染防治工作的重中之重.
常用的污泥处理技术包括污泥浓缩、污泥脱水、厌氧消化、好氧堆肥、污泥干化等,常见的污泥处置途径包括土地利用、建材利用、卫生填埋、焚烧等[2]. 据统计,目前我国重点流域的污泥处置方式仍以填埋为主,污泥资源化利用率与发达国家相比仍有较大差距[3],处理处置过程中存在一定的安全隐患和二次污染风险. 为实现污泥的减量化、稳定化、无害化和资源化,改变过去“重水轻泥”的治理现象,住建部和国家发改委相继发布了《“十四五”城镇污水处理及资源化利用发展规划》和《关于加快推进城镇环境基础设施建设指导意见》,明确提出:到2025年,我国城市污泥无害化处理率应达到90%以上;到2035年,全面实现污泥无害化处理和污泥资源化利用水平的显著提升.
生物炭是指生物质原料在无氧或限氧条件下通过热解或水热炭化形成的多孔材料,在环境修复特别是水处理领域有着广泛的应用. 污泥中含有丰富的氮元素和金属元素,可制备污泥生物炭基催化材料,应用于过硫酸盐(PS)体系、芬顿/类芬顿体系以及臭氧氧化体系,可实现水体污染物的高效降解(如图1所示),达到 “以废治废”的目的.
污泥生物炭的催化机理及应用研究进展
Mechanism and application for removal of contaminants by sludge-derived biochar catalyst: A review
-
摘要: 污泥衍生的生物炭材料具有丰富的含氮结构和金属元素,可催化过硫酸盐、芬顿、臭氧等体系,实现水体中污染物的有效去除. 系统总结了污泥生物炭的原料种类、制备过程、安全性评价和催化应用,通过探究污泥生物炭作为催化材料的天然性质优势,详细讨论了其在不同体系中的催化机理. 最后,展望了污泥生物炭应用于多种污染物共存体系和真实水环境的未来研究方向,并指出污泥生物炭的稳定性和再生性是制约其发展的重要因素,以期为污泥的资源化利用提供新思路.Abstract: Sludge-derived biochar (SDB) has abundant nitrogenous structures and metal elements that can catalyze persulfate, fenton, and ozone systems to achieve effective removal of pollutants in water. This study provides a systematic overview of the material type, fabrication process, safety assessment, and catalytic application of SDB. By investigating the inherent advantages of SDB as a catalyst, the catalytic mechanism of SDB in different systems was discussed in detail. Finally, the future research directions for the application of SDB in the coexistence system of multiple pollutants and in the real water environment were envisioned, and the stability and renewability of SDB were highlighted as important factors limiting their self-evolution. The objective of this work is to provide new ideas for the utilization of sludge resources.
-
表 1 污泥生物炭催化降解水体中污染物的应用
Table 1. Application of sludge derived-biochar catalyst in the degradation of contaminants in water
生物炭
Biochar氧化剂
Oxidation agent污染物
Contaminants去除率/%
Efficiency氧化机理
Oxidation mechanism催化位点
Catalytic sites参考文献
ReferencesBC-Fenton-RM H2O2 4-氯苯酚 100 ·OH Fe0、Fe0.95C0.05、Fe3O4、FeAl2O4 Gan等[72] HNO3 modified-BC H2O2 环丙沙星 93 ·OH C=C、C=O、吡啶N Luo等[73] SBC H2O2 环丙沙星 90 ·OH、·O2− Fe2O3、Fe2P Li等[82] SDBC PMS 磺胺甲噁唑 92.1 ·OH、·SO4−、1O2 Fe物种、OV、C=O、石墨C Wang等[84] SDBC PDS 苯酚 84 ·OH、·SO4−、·O2−、电子转移 PFRs、石墨C、Fe物种 Wu等[51] HSC PMS 磺胺甲噁唑 99.65 ·OH、·SO4−、1O2 C=O Hu等[85] SBC PDS 苯酚 100 ·OH、·SO4−、1O2、·O2− PFRs Wu等[75] MBC PMS 四环素 84 ·OH、·SO4−、1O2、·O2− Fe3O4 Luo等[87] MC600 PDS 2-萘酚 88.7 ·OH、·SO4− Fe物种、C=O、
—OH、—COOHWang等[88] N-BC900 PDS 橙色G 100 1O2、电子转移 C=O、石墨C、含N基团、缺陷结构 Zhu等[90] MS-biochar PDS 四环素 82.24 ·OH、·SO4−、电子转移 石墨C、含N基团、Fe物种 Yu等[12] HS-biochar O3 酮洛芬 99.99 1O2、·O2−、·OH C=O、C=C、
—OHLi等[77] RS−biochar O3 苯酚 99 1O2、·O2−、·OH、电子转移 C=O、—OH、
—COOH、石墨结构、缺陷结构Oh等[91] BC O3 苯酚 95.4 ·O2− C=O Zhang等[92] FeOx/BC O3 阿特拉津 100 ·OH、·O2− FeOx Tian等[94] MnOx/BC O3 阿特拉津 83 ·OH、·O2− MnOx Tian等[94] -
[1] 戴晓虎, 张辰, 章林伟, 等. 碳中和背景下污泥处理处置与资源化发展方向思考 [J]. 给水排水, 2021, 57(3): 1-5. DAI X H, ZHANG C, ZHANG L W, et al. Thoughts on the development direction of sludge treatment and resource recovery under the background of carbon neutrality [J]. Water & Wastewater Engineering, 2021, 57(3): 1-5(in Chinese).
[2] 戴晓虎. 我国污泥处理处置现状及发展趋势 [J]. 科学, 2020, 72(6): 30-34,4. DAI X H. Applications and perspectives of sludge treatment and disposal in China [J]. Science, 2020, 72(6): 30-34,4(in Chinese).
[3] 谭学军, 王磊. 我国重点流域典型污水厂污泥处理处置方式调研与分析 [J]. 中国给水排水, 2022, 38(14): 1-8. TAN X J, WANG L. Investigation and analysis on the treatment and disposal methods of typical sewage treatment plant sludge in China’s key river basins [J]. China Water & Wastewater, 2022, 38(14): 1-8(in Chinese).
[4] 冯逸凡. 市政污泥和工业污泥处置利用技术 [J]. 资源节约与环保, 2020(10): 107-108. FENG Y F. Disposal and utilization technology of municipal sludge and industrial sludge [J]. Resources Economization & Environmental Protection, 2020(10): 107-108(in Chinese).
[5] 牛亚芬, 帖靖玺. 给水污泥处置现状及资源化利用研究 [J]. 科技创新与应用, 2019(2): 76-78,81. NIU Y F, TIE J X. Study on disposal and resource utilization of water-supplied sludge [J]. Technology Innovation and Application, 2019(2): 76-78,81(in Chinese).
[6] CHOI D, OH J I, LEE J, et al. Valorization of alum sludge via a pyrolysis platform using CO2 as reactive gas medium [J]. Environment International, 2019, 132: 105037. doi: 10.1016/j.envint.2019.105037 [7] RYU J, HAN Y S, CHO D W, et al. Practical application of PAC sludge-valorized biochars to the mitigation of methyl arsenic in wetlands [J]. Chemical Engineering Journal, 2022, 450: 138148. doi: 10.1016/j.cej.2022.138148 [8] ZENG H P, QI W, ZHAI L X, et al. Magnetic biochar synthesized with waterworks sludge and sewage sludge and its potential for methylene blue removal [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105951. doi: 10.1016/j.jece.2021.105951 [9] HU J W, ZHAO L, LUO J M, et al. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives [J]. Journal of Hazardous Materials, 2022, 438: 129437. doi: 10.1016/j.jhazmat.2022.129437 [10] JELLALI S, KHIARI B, USMAN M, et al. Sludge-derived biochars: A review on the influence of synthesis conditions on pollutants removal efficiency from wastewaters [J]. Renewable and Sustainable Energy Reviews, 2021, 144: 111068. doi: 10.1016/j.rser.2021.111068 [11] YU Y L, XU Z B, XU X Y, et al. Synergistic role of bulk carbon and iron minerals inherent in the sludge-derived biochar for As(V) immobilization [J]. Chemical Engineering Journal, 2021, 417: 129183. doi: 10.1016/j.cej.2021.129183 [12] YU J F, TANG L, PANG Y, et al. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism [J]. Chemical Engineering Journal, 2019, 364: 146-159. doi: 10.1016/j.cej.2019.01.163 [13] 崔荣煜, 周天水, 王东田, 等. 国内污泥成分特性的研究进展[J]. 环境科学与技术, 2016, 39(增刊2): 256-261. CUI R Y, ZHOU T S, WANG D T, et al. Research progress of composition and characteristics of sludge in China[J]. Environmental Science & Technology, 2016, 39(Sup 2): 256-261 (in Chinese).
[14] 张安龙, 潘美玲. 造纸污泥的基础性质及资源化利用 [J]. 纸和造纸, 2011, 30(1): 50-53. doi: 10.13472/j.ppm.2011.01.019 ZHANG A L, PAN M L. Basic properties of paper mill sludge and its utilization [J]. Paper and Paper Making, 2011, 30(1): 50-53(in Chinese). doi: 10.13472/j.ppm.2011.01.019
[15] WANG Z J, MIAO R R, NING P, et al. From wastes to functions: A paper mill sludge-based calcium-containing porous biochar adsorbent for phosphorus removal [J]. Journal of Colloid and Interface Science, 2021, 593: 434-446. doi: 10.1016/j.jcis.2021.02.118 [16] MAN X Y, NING X N, ZOU H Y, et al. Removal of polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge by ultrasound combined zero-valent iron/EDTA/Air system [J]. Chemosphere, 2018, 191: 839-847. doi: 10.1016/j.chemosphere.2017.10.043 [17] WANG X D, LI C X, LI Z W, et al. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge [J]. Ecotoxicology and Environmental Safety, 2019, 168: 45-52. doi: 10.1016/j.ecoenv.2018.10.022 [18] CHEN J L, BAI X Y, YUAN Y, et al. Printing and dyeing sludge derived biochar for activation of peroxymonosulfate to remove aqueous organic pollutants: Activation mechanisms and environmental safety assessment [J]. Chemical Engineering Journal, 2022, 446: 136942. doi: 10.1016/j.cej.2022.136942 [19] HU G J, LI J B, ZENG G M. Recent development in the treatment of oily sludge from petroleum industry: A review [J]. Journal of Hazardous Materials, 2013, 261: 470-490. doi: 10.1016/j.jhazmat.2013.07.069 [20] DUAN Y H, GAO N B, SIPRA A T, et al. Characterization of heavy metals and oil components in the products of oily sludge after hydrothermal treatment [J]. Journal of Hazardous Materials, 2022, 424: 127293. doi: 10.1016/j.jhazmat.2021.127293 [21] WU Q Y, ZHANG Y, CUI M H, et al. Pyrolyzing pharmaceutical sludge to biochar as an efficient adsorbent for deep removal of fluoroquinolone antibiotics from pharmaceutical wastewater: Performance and mechanism [J]. Journal of Hazardous Materials, 2022, 426: 127798. doi: 10.1016/j.jhazmat.2021.127798 [22] GAO N B, QUAN C, LIU B L, et al. Continuous pyrolysis of sewage sludge in a screw-feeding reactor: Products characterization and ecological risk assessment of heavy metals [J]. Energy & Fuels, 2017, 31(5): 5063-5072. [23] 赵迎新, 麻泽浩, 杨知凡, 等. 污泥生物炭催化高级氧化过程进展 [J]. 化工进展, 2021, 40(7): 3984-3994. doi: 10.16085/j.issn.1000-6613.2020-1658 ZHAO Y X, MA Z H, YANG Z F, et al. Progress of advanced oxidation process catalyzed by sludge biochar [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3984-3994(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1658
[24] CHAO C G, CHIANG H L, CHEN C Y. Pyrolytic kinetics of sludge from a petrochemical factory wastewater treatment plant–– a transition state theory approach [J]. Chemosphere, 2002, 49(4): 431-437. doi: 10.1016/S0045-6535(02)00280-1 [25] SINGH S, KUMAR V, DHANJAL D S, et al. A sustainable paradigm of sewage sludge biochar: Valorization, opportunities, challenges and future prospects [J]. Journal of Cleaner Production, 2020, 269: 122259. doi: 10.1016/j.jclepro.2020.122259 [26] ZHANG X, ZHAO B W, LIU H, et al. Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars [J]. Environmental Technology & Innovation, 2022, 26: 102288. [27] GOPINATH A, DIVYAPRIYA G, SRIVASTAVA V, et al. Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment [J]. Environmental Research, 2021, 194: 110656. doi: 10.1016/j.envres.2020.110656 [28] SUN C, CHEN T, HUANG Q X, et al. Activation of persulfate by CO2-activated biochar for improved phenolic pollutant degradation: Performance and mechanism [J]. Chemical Engineering Journal, 2020, 380: 122519. doi: 10.1016/j.cej.2019.122519 [29] YU W C, LIAN F, CUI G N, et al. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution [J]. Chemosphere, 2018, 193: 8-16. doi: 10.1016/j.chemosphere.2017.10.134 [30] LIAN F, CUI G N, LIU Z Q, et al. One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity [J]. Journal of Environmental Management, 2016, 176: 61-68. doi: 10.1016/j.jenvman.2016.03.043 [31] ZAKER A, CHEN Z, WANG X L, et al. Microwave-assisted pyrolysis of sewage sludge: A review [J]. Fuel Processing Technology, 2019, 187: 84-104. doi: 10.1016/j.fuproc.2018.12.011 [32] LI J, DAI J J, LIU G Q, et al. Biochar from microwave pyrolysis of biomass: A review [J]. Biomass and Bioenergy, 2016, 94: 228-244. doi: 10.1016/j.biombioe.2016.09.010 [33] LIN F, YUAN N N, WU Y G, et al. Evolution of heavy metals leachability and speciation in residues of sewage sludge treated by microwave assisted pyrolysis[J]. Applied Mechanics and Materials, 2012, 178/179/180/181: 833-837. [34] WANG X D, LI C X, ZHANG B, et al. Migration and risk assessment of heavy metals in sewage sludge during hydrothermal treatment combined with pyrolysis [J]. Bioresource Technology, 2016, 221: 560-567. doi: 10.1016/j.biortech.2016.09.069 [35] CHEN Y D, WANG R P, DUAN X G, et al. Production, properties, and catalytic applications of sludge derived biochar for environmental remediation [J]. Water Research, 2020, 187: 116390. doi: 10.1016/j.watres.2020.116390 [36] ALIPOUR M, ASADI H, CHEN C R, et al. Bioavailability and eco-toxicity of heavy metals in chars produced from municipal sewage sludge decreased during pyrolysis and hydrothermal carbonization [J]. Ecological Engineering, 2021, 162: 106173. doi: 10.1016/j.ecoleng.2021.106173 [37] IHSANULLAH I, KHAN M T, ZUBAIR M, et al. Removal of pharmaceuticals from water using sewage sludge-derived biochar: A review [J]. Chemosphere, 2022, 289: 133196. doi: 10.1016/j.chemosphere.2021.133196 [38] MIAN M M, LIU G J, FU B. Conversion of sewage sludge into environmental catalyst and microbial fuel cell electrode material: A review [J]. Science of the Total Environment, 2019, 666: 525-539. doi: 10.1016/j.scitotenv.2019.02.200 [39] TOMCZYK A, SOKOŁOWSKA Z, BOGUTA P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects [J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(1): 191-215. doi: 10.1007/s11157-020-09523-3 [40] RANGABHASHIYAM S, LINS P V D S, OLIVEIRA L M T M, et al. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review [J]. Environmental Pollution, 2022, 293: 118581. doi: 10.1016/j.envpol.2021.118581 [41] ZHANG J, JIN J W, WANG M Y, et al. Co-pyrolysis of sewage sludge and rice husk/bamboo sawdust for biochar with high aromaticity and low metal mobility [J]. Environmental Research, 2020, 191: 110034. doi: 10.1016/j.envres.2020.110034 [42] QIU J J, HOU H J, LIANG S, et al. Hierarchically porous biochar preparation and simultaneous nutrient recovery from sewage sludge via three steps of alkali-activated pyrolysis, water leaching and acid leaching [J]. Resources, Conservation and Recycling, 2022, 176: 105953. doi: 10.1016/j.resconrec.2021.105953 [43] ENAIME G, BAÇAOUI A, YAACOUBI A, et al. Biochar for wastewater treatment—Conversion technologies and applications [J]. Applied Sciences, 2020, 10(10): 3492. doi: 10.3390/app10103492 [44] WANG S Z, WANG J L. Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater [J]. Chemical Engineering Journal, 2019, 356: 350-358. doi: 10.1016/j.cej.2018.09.062 [45] WEN G, PAN Z H, MA J, et al. Reuse of sewage sludge as a catalyst in ozonation–Efficiency for the removal of oxalic acid and the control of bromate formation [J]. Journal of Hazardous Materials, 2012, 239/240: 381-388. doi: 10.1016/j.jhazmat.2012.09.016 [46] WANG X D, CHI Q Q, LIU X J, et al. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge [J]. Chemosphere, 2019, 216: 698-706. doi: 10.1016/j.chemosphere.2018.10.189 [47] VIJAYARAGHAVAN K. The importance of mineral ingredients in biochar production, properties and applications [J]. Critical Reviews in Environmental Science and Technology, 2021, 51(2): 113-139. doi: 10.1080/10643389.2020.1716654 [48] ZHANG R Y, ZHENG X X, ZHANG D Q, et al. Insight into the roles of endogenous minerals in the activation of persulfate by graphitized biochar for tetracycline removal [J]. Science of the Total Environment, 2021, 768: 144281. doi: 10.1016/j.scitotenv.2020.144281 [49] LIANG J, XU X Y, ZHONG Q J, et al. Roles of the mineral constituents in sludge-derived biochar in persulfate activation for phenol degradation [J]. Journal of Hazardous Materials, 2020, 398: 122861. doi: 10.1016/j.jhazmat.2020.122861 [50] LENG L J, XU S Y, LIU R F, et al. Nitrogen containing functional groups of biochar: An overview [J]. Bioresource Technology, 2020, 298: 122286. doi: 10.1016/j.biortech.2019.122286 [51] WU W, ZHU S S, HUANG X C, et al. Mechanisms of persulfate activation on biochar derived from two different sludges: Dominance of their intrinsic compositions [J]. Journal of Hazardous Materials, 2021, 408: 124454. doi: 10.1016/j.jhazmat.2020.124454 [52] WANG J, LIAO Z W, IFTHIKAR J, et al. Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process [J]. Chemosphere, 2017, 185: 754-763. doi: 10.1016/j.chemosphere.2017.07.084 [53] NIDHEESH P V, GOPINATH A, RANJITH N, et al. Potential role of biochar in advanced oxidation processes: A sustainable approach [J]. Chemical Engineering Journal, 2021, 405: 126582. doi: 10.1016/j.cej.2020.126582 [54] FANG G D, GAO J, LIU C, et al. Key role of persistent free radicals in hydrogen peroxide activation by biochar: Implications to organic contaminant degradation [J]. Environmental Science & Technology, 2014, 48(3): 1902-1910. [55] YANG J, PIGNATELLO J J, PAN B, et al. Degradation of p-nitrophenol by lignin and cellulose chars: H2O2-mediated reaction and direct reaction with the char [J]. Environmental Science & Technology, 2017, 51(16): 8972-8980. [56] 韩林, 陈宝梁. 环境持久性自由基的产生机理及环境化学行为 [J]. 化学进展, 2017, 29(9): 1008-1020. doi: 10.7536/PC170566 HAN L, CHEN B L. Generation mechanism and fate behaviors of environmental persistent free radicals [J]. Progress in Chemistry, 2017, 29(9): 1008-1020(in Chinese). doi: 10.7536/PC170566
[57] ZHANG Y Z, XU M Q, LIANG S X, et al. Mechanism of persulfate activation by biochar for the catalytic degradation of antibiotics: Synergistic effects of environmentally persistent free radicals and the defective structure of biochar [J]. Science of the Total Environment, 2021, 794: 148707. doi: 10.1016/j.scitotenv.2021.148707 [58] 阮秀秀, 杜巍萌, 郭凡可, 等. 环境持久性自由基的环境化学行为 [J]. 环境化学, 2018, 37(8): 1780-1788. doi: 10.7524/j.issn.0254-6108.2017123002 RUAN X X, DU W M, GUO F K, et al. Environmental and chemical behaviors of environmental persistent free radicals [J]. Environmental Chemistry, 2018, 37(8): 1780-1788(in Chinese). doi: 10.7524/j.issn.0254-6108.2017123002
[59] JIN J W, LI Y N, ZHANG J Y, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge [J]. Journal of Hazardous Materials, 2016, 320: 417-426. doi: 10.1016/j.jhazmat.2016.08.050 [60] PHOUNGTHONG K, ZHANG H, SHAO L M, et al. Leaching characteristics and phytotoxic effects of sewage sludge biochar [J]. Journal of Material Cycles and Waste Management, 2018, 20(4): 2089-2099. doi: 10.1007/s10163-018-0763-0 [61] CUI Z L, XU G R, ORMECI B, et al. Transformation and stabilization of heavy metals during pyrolysis of organic and inorganic-dominated sewage sludges and their mechanisms [J]. Waste Management, 2022, 150: 57-65. doi: 10.1016/j.wasman.2022.06.023 [62] JIN J W, WANG M Y, CAO Y C, et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals [J]. Bioresource Technology, 2017, 228: 218-226. doi: 10.1016/j.biortech.2016.12.103 [63] TONG S R, ZHANG S P, YIN H X, et al. Study on co-hydrothermal treatment combined with pyrolysis of rice straw/sewage sludge: Biochar properties and heavy metals behavior [J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105074. doi: 10.1016/j.jaap.2021.105074 [64] ZIELIŃSKA A, OLESZCZUK P. Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars [J]. Chemosphere, 2016, 153: 68-74. doi: 10.1016/j.chemosphere.2016.02.118 [65] RAJ A, YADAV A, ARYA S, et al. Preparation, characterization and agri applications of biochar produced by pyrolysis of sewage sludge at different temperatures [J]. Science of the Total Environment, 2021, 795: 148722. doi: 10.1016/j.scitotenv.2021.148722 [66] TASCA A L, VITOLO S, GORI R, et al. Hydrothermal carbonization of digested sewage sludge: The fate of heavy metals, PAHs, PCBs, dioxins and pesticides [J]. Chemosphere, 2022, 307: 135997. doi: 10.1016/j.chemosphere.2022.135997 [67] WANG F, YIN Z Y, LIU Y R, et al. Changes and release risk of typical pharmaceuticals and personal care products in sewage sludge during hydrothermal carbonization process [J]. Chemosphere, 2021, 284: 131313. doi: 10.1016/j.chemosphere.2021.131313 [68] COLLIVIGNARELLI M C, CARNEVALE MIINO M, CACCAMO F M, et al. Microplastics in sewage sludge: A known but underrated pathway in wastewater treatment plants [J]. Sustainability, 2021, 13(22): 12591. doi: 10.3390/su132212591 [69] NI B J, ZHU Z R, LI W H, et al. Microplastics mitigation in sewage sludge through pyrolysis: The role of pyrolysis temperature [J]. Environmental Science & Technology Letters, 2020, 7(12): 961-967. [70] XU Z J, BAI X. Microplastic degradation in sewage sludge by hydrothermal carbonization: Efficiency and mechanisms [J]. Chemosphere, 2022, 297: 134203. doi: 10.1016/j.chemosphere.2022.134203 [71] JI J Q, YUAN X Z, ZHAO Y L, et al. Mechanistic insights of removing pollutant in adsorption and advanced oxidation processes by sludge biochar [J]. Journal of Hazardous Materials, 2022, 430: 128375. doi: 10.1016/j.jhazmat.2022.128375 [72] GAN Q, HOU H J, LIANG S, et al. Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol [J]. Science of the Total Environment, 2020, 725: 138299. doi: 10.1016/j.scitotenv.2020.138299 [73] LUO K, YANG Q, PANG Y, et al. Unveiling the mechanism of biochar-activated hydrogen peroxide on the degradation of ciprofloxacin [J]. Chemical Engineering Journal, 2019, 374: 520-530. doi: 10.1016/j.cej.2019.05.204 [74] DUAN X G, SUN H Q, WANG S B. Metal-free carbocatalysis in advanced oxidation reactions [J]. Accounts of Chemical Research, 2018, 51(3): 678-687. doi: 10.1021/acs.accounts.7b00535 [75] WU W, ZHU S S, HUANG X C, et al. Determination of instinct components of biomass on the generation of persistent free radicals (PFRs) as critical redox sites in pyrogenic chars for persulfate activation [J]. Environmental Science & Technology, 2021, 55(11): 7690-7701. [76] FANG G D, LIU C, GAO J, et al. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation [J]. Environmental Science & Technology, 2015, 49(9): 5645-5653. [77] LI H Q, LIU S J, QIU S W, et al. Catalytic ozonation oxidation of ketoprofen by peanut shell-based biochar: Effects of the pyrolysis temperatures [J]. Environmental Technology, 2022, 43(6): 848-860. doi: 10.1080/09593330.2020.1807610 [78] DUAN X G, SUN H Q, SHAO Z P, et al. Nonradical reactions in environmental remediation processes: Uncertainty and challenges [J]. Applied Catalysis B:Environmental, 2018, 224: 973-982. doi: 10.1016/j.apcatb.2017.11.051 [79] CHENG X, GUO H G, ZHANG Y L, et al. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes [J]. Water Research, 2017, 113: 80-88. doi: 10.1016/j.watres.2017.02.016 [80] WAN Z H, SUN Y Q, TSANG D C W, et al. Customised fabrication of nitrogen-doped biochar for environmental and energy applications [J]. Chemical Engineering Journal, 2020, 401: 126136. doi: 10.1016/j.cej.2020.126136 [81] MIAN M M, LIU G J. Activation of peroxymonosulfate by chemically modified sludge biochar for the removal of organic pollutants: Understanding the role of active sites and mechanism [J]. Chemical Engineering Journal, 2020, 392: 123681. doi: 10.1016/j.cej.2019.123681 [82] LI J, PAN L J, YU G W, et al. The synthesis of heterogeneous Fenton-like catalyst using sewage sludge biochar and its application for ciprofloxacin degradation [J]. Science of the Total Environment, 2019, 654: 1284-1292. doi: 10.1016/j.scitotenv.2018.11.013 [83] HUANG Y F, HUANG Y Y, CHIUEH P T, et al. Heterogeneous Fenton oxidation of trichloroethylene catalyzed by sewage sludge biochar: Experimental study and life cycle assessment [J]. Chemosphere, 2020, 249: 126139. doi: 10.1016/j.chemosphere.2020.126139 [84] WANG J, SHEN M, WANG H L, et al. Red mud modified sludge biochar for the activation of peroxymonosulfate: Singlet oxygen dominated mechanism and toxicity prediction [J]. Science of the Total Environment, 2020, 740: 140388. doi: 10.1016/j.scitotenv.2020.140388 [85] HU W R, TAN J T, PAN G H, et al. Direct conversion of wet sewage sludge to carbon catalyst for sulfamethoxazole degradation through peroxymonosulfate activation [J]. Science of the Total Environment, 2020, 728: 138853. doi: 10.1016/j.scitotenv.2020.138853 [86] WANG S Z, WANG J L. Nitrogen doping sludge-derived biochar to activate peroxymonosulfate for degradation of sulfamethoxazole: Modulation of degradation mechanism by calcination temperature [J]. Journal of Hazardous Materials, 2021, 418: 126309. doi: 10.1016/j.jhazmat.2021.126309 [87] LUO X W, SHEN M X, LIU J H, et al. Resource utilization of piggery sludge to prepare recyclable magnetic biochar for highly efficient degradation of tetracycline through peroxymonosulfate activation [J]. Journal of Cleaner Production, 2021, 294: 126372. doi: 10.1016/j.jclepro.2021.126372 [88] WANG X P, GU L, ZHOU P, et al. Pyrolytic temperature dependent conversion of sewage sludge to carbon catalyst and their performance in persulfate degradation of 2-Naphthol [J]. Chemical Engineering Journal, 2017, 324: 203-215. doi: 10.1016/j.cej.2017.04.101 [89] CHEN Y D, BAI S W, LI R X, et al. Magnetic biochar catalysts from anaerobic digested sludge: Production, application and environment impact [J]. Environment International, 2019, 126: 302-308. doi: 10.1016/j.envint.2019.02.032 [90] ZHU S S, HUANG X C, MA F, et al. Catalytic removal of aqueous contaminants on N-doped graphitic biochars: Inherent roles of adsorption and nonradical mechanisms [J]. Environmental Science & Technology, 2018, 52(15): 8649-8658. [91] OH S Y, NGUYEN T H A. Ozonation of phenol in the presence of biochar and carbonaceous materials: The effect of surface functional groups and graphitic structure on the formation of reactive oxygen species [J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107386. doi: 10.1016/j.jece.2022.107386 [92] ZHANG F Z, WU K Y, ZHOU H T, et al. Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater [J]. Journal of Environmental Management, 2018, 224: 376-386. doi: 10.1016/j.jenvman.2018.07.038 [93] BABAR M, MUNIR H M S, NAWAZ A, et al. Comparative study of ozonation and ozonation catalyzed by Fe-loaded biochar as catalyst to remove methylene blue from aqueous solution [J]. Chemosphere, 2022, 307: 135738. doi: 10.1016/j.chemosphere.2022.135738 [94] TIAN S Q, QI J Y, WANG Y P, et al. Heterogeneous catalytic ozonation of atrazine with Mn-loaded and Fe-loaded biochar [J]. Water Research, 2021, 193: 116860. doi: 10.1016/j.watres.2021.116860