-
全氟烷基羧酸(perfluoroalkyl carboxylates,PFCAs)是一类合成有机物,被广泛应用于防水织物、生物材料及泡沫灭火剂等[1]. PFCAs在环境介质中被广泛检出,如地表水[2]、地下水[3]、雨水[4]、土壤[5]、大气[6]、沉积物[7]等. 由于具有持久性、生物累积性和高毒性,PFCAs的污染问题已引起广泛关注:3M公司于2000年开始逐步停止使用碳原子数为8的全氟化合物;2006年美国环境保护局将全氟辛烷羧酸(perfluorooctanoic acid,PFOA)列为“可能”或“疑似”致癌物;2019年PFOA及其相关盐类被列入《关于持久性有机污染物的斯德哥尔摩公约》附件A.
随着全氟化合物逐渐被禁用,其他全氟和多氟化合物正在逐渐替代传统的PFOA,如短链PFCAs、氟调醇(fluorotelomer alcohols,FTOHs),全氟醚羧酸(perfluoroether carboxylic acids,PFECAs),氟调酸(fluorotelomer carboxylic acids,FTCAs)等. 其中,FTCAs是一类重要的多氟化合物,也是一类工业品[8]. 研究表明,FTCAs中的6:2 FTCA可作为PFOA的替代加工助剂[9]. 此外,研究发现另一类重要的含氟表面活性剂原料——FTOHs,在微生物作用下[10]及大气环境中[11]均可能转化为FTCAs,我们的前期工作已经发现FTOHs在城市污水处理厂污水污泥中普遍存在[12]. FTCAs被发现在雨水(0.12 ng·L−1)[13]、灰尘(n.d.(未检出)—0.85 ng·m−3,<0.1—26 ng·g−1)[14 − 15]和地表水(n.d.—35.2 ng·L−1)及沉积物(n.d.—23.6 ng·g−1)[16 − 17]等环境介质中存在. 近年来研究发现FTCAs对水蚤[18]、摇蚊幼虫[19]、端足虫[20]等水生生物具有急性毒性效应. 此外FTCAs能够转化为全氟烷基羧酸[21],也可能带来潜在的环境风险.
污水处理厂受纳生活污水及工业废水,部分出水排放进入地表水,是环境中污染物的源和汇. Gallen等[22]调研了2010—2020年澳大利亚某污水处理厂中6:2 FTCA和5:3 FTCA的浓度分布,进水中的平均浓度分别为<LOD(检出限)—100 ng·L−1和3.4—436 ng·L−1;Gremmel等[23]在德国某工业污水处理厂进水中检出FTCAs的浓度为0.98 μg·L−1—4.68 μg·L−1,出水中仍有1.37 μg·L−1—8.92 μg·L−1残留;Eriksson等[24]检测了2015年瑞典3座污水处理厂中5种FTCAs的浓度,进水及二沉池出水中的总浓度分别为0.5—3.5 ng·L−1和<LOD—0.4 ng·L−1. 中国是全氟化合物重要的生产和使用国,但目前FTCAs在中国城市污水处理厂中的分布及排放特征的研究和报道仍非常有限.
本研究调研了中国5个城市9座城市污水处理厂的进水、二沉池出水、三级处理出水及污泥中6种FTCAs和12种PFCAs的浓度分布、去除及排放特征,并利用风险商初步评估了出水中的潜在环境风险. 本研究将为我国城市污水处理厂中微量新污染物的管理提供数据基础.
氟调酸在我国典型城市污水处理厂中的浓度分布及排放
Occurrence and discharge of fluorotelomer carboxylic acids (FTCAs) in typical municipal WWTPs in China
-
摘要: 氟调酸(fluorotelomer carboxylic acids,FTCAs)是全氟烷基羧酸(perfluoroalkyl carboxylates,PFCAs)的前体物,同时也是替代加工助剂. 本研究应用固相萃取-液相色谱-三重四极杆质谱仪联用的检测分析方法,探究了中国5个城市9座城市污水处理厂进水、二沉池出水、三级处理出水和污泥中6种FTCAs和12种PFCAs的分布及排放特征. FTCAs在城市污水处理厂进水中的浓度为0.52—2.00×103 ng·L−1,受纳工业废水的城市污水处理厂进水中FTCAs的浓度高于其他主要受纳生活污水的城市污水处理厂,表明工业废水的排放会影响城市污水处理厂中FTCAs的浓度水平. 生物处理工艺对FTCAs和PFCAs的去除率分别为43%—93%和−40%—69%. ∑FTCAs在三级处理出水及污泥中的总排放量为13.6 g·d−1,6 : 2 FTCA和8 : 2 FTCA为主要的组成物质. 三级处理出水中FTCAs及PFCAs的风险商分析表明三级处理出水中6 : 2 FTCA、PFHxA、PFOA、PFNA和PFDA可能对鱼类存在潜在风险. 本研究为我国城市污水处理厂中新污染物的管控提供了数据基础.Abstract: Fluorotelomer carboxylic acids (FTCAs) are the precursors and substitutes of perfluoroalkyl carboxylates (PFCAs). In this study, the distribution and discharge characteristics of six FTCAs and twelve PFCAs in influent, secondary effluent, tertiary effluent and sludge samples from nine municipal wastewater treatment plants (WWTPs) in five cities in China were investigated by using the detection and analysis method of solid-phase extraction and liquid chromatography coupled with triple quadrupole mass spectrometry. The total concentrations of FTCAs in the influent from nine municipal WWTPs were 0.52—2.00×103 ng·L−1. The concentrations of FTCAs in the influent from municipal WWTPs receiving industrial wastewater were higher than those from other WWTPs mainly receiving domestic sewage, suggesting the influence of industrial wastewater on the concentration level of FTCAs. The removal efficiencies of FTCAs and PFCAs during biological treatment were 43%—93% and −40%—69%, respectively. The total discharge of FTCAs in the tertiary effluent and sludge was 13.6 g·d−1, 6:2 FTCA and 8:2 FTCA as the predominant components. The risk quotient analysis of FTCAs and PFCAs in the tertiary effluent suggested that 6:2 FTCA, PFHxA, PFOA, PFNA and PFDA in the tertiary effluent may pose potential risks to fish in aquatic environment. This study provides the data basis for the management and control of emerging contaminants in municipal WWTPs in China.
-
表 1 9座城市污水处理厂的运行参数
Table 1. Operational parameters of nine municipal WWTPs
污水处理厂
WWTPs城市
Cities生物处理
工艺
Biological
treatment三级处
理工艺
Tertiary
treatment水力停
留时间/h
HRT污泥停
留时间/d
SRT设计流量/
(m3·d−1)
Treatment capacity服务人口
(×104)
Service
population污泥产量/
(kg·d−1)
Sludge
yield进水组成
Influent
composition采样时间
Sampling timeWWTP-1 无锡 MBR 消毒 20 15 150000 50 120000 生活污水和
30%工业废水2020年8月和12月2021年3月和12月 WWTP-2 天津 多级A/O 混凝沉淀过滤消毒 18 15 200000 NA 60000 生活污水和
部分工业废水2018年6月和11月 WWTP-3 天津 OD 反渗透 NA NA 70000—
80000NA NA 生活污水 2022年3月 WWTP-4 青岛 A/A/O 混凝沉淀过滤紫外 21 13 100000 26 118000 生活污水 2021年3月 WWTP-5 青岛 A/A/O 混凝沉淀过滤消毒 21 19 170000 80 126000 生活污水 2021年3月 WWTP-6 开封 OD 磁混凝消毒 12 12 80000 NA 29000 生活污水 2021年5月 WWTP-7 开封 A/A/O 混凝沉淀过滤消毒 13 17 133000 NA 20000 生活污水 2021年5月 WWTP-8 北京 A/A/O/MBR 反渗透 19 NA 10000 NA 10000 生活污水 2022年6月 WWTP-9 北京 A/A/O/MBR 臭氧 15 NA 45000 25—30 20000 生活污水 2022年6月 NA,数据不可用,data was not available;MBR,膜生物反应器,membrane bioreactor;A/A/O,厌氧-缺氧-好氧工艺,anaerobic-anoxic-oxic;OD,氧化沟工艺,oxidation ditch 表 2 三重四极杆质谱中FTCAs和PFCAs的质谱参数
Table 2. Mass spectrometry parameters of FTCAs and PFCAs in triple quadrupole instrument
物质类别
Compounds物质
Acronym母离子
Parent ion子离子
Daughter ion锥孔电压/V
Cone voltage碰撞能/eV
Collision energy内标
Surrogate standardFTCAs 5:3 FTCA 341 217 15 25 13C2-6:2 FTUCA 237 15 6:2 FTUCA 357 243 12 36 13C2-6:2 FTUCA 293 18 6:2 FTCA 377 243 15 30 13C2-6:2 FTCA 293 20 7:3 FTCA 441 317 25 15 13C2-8:2 FTUCA 337 10 8:2 FTUCA 457 343 10 36 13C2-8:2 FTUCA 393 15 8:2 FTCA 477 343 15 40 13C2-8:2 FTCA 393 25 PFCAs PFBA 213 119 15 17 13C4-PFBA 169 8 PFPeA 263 119 11 17 13C2-PFHxA 219 5 PFHxA 313 119 11 17 13C2-PFHxA 269 7 PFHpA 363 169 12 16 13C4-PFOA 319 6 PFOA 413 169 11 15 13C4-PFOA 369 7 PFNA 463 219 12 14 13C5-PFNA 419 8 PFDA 513 269 14 14 13C2-PFDA 469 8 PFUnDA 563 219 14 16 13C2-PFUnDA 519 10 PFDoDA 613 169 16 10 13C2-PFDoDA 569 18 PFTriDA 663 269 10 20 13C2-PFDoDA 619 10 PFTeDA 713 219 10 20 13C2-PFDoDA 669 10 PFHxDA 813 169 20 30 13C2-PFDoDA 769 15 表 3 9座城市污水处理厂进水、二沉池出水、三级处理出水和污泥中FTCAs及PFCAs的浓度
Table 3. Concentration of PFCAs and FTCAs in influent, secondary effluent, tertiary effluent and sludge samples from nine WWTP municipals in China.
物质
Compounds进水/(ng·L−1, n=13)
Influent二沉池出水/(ng·L−1, n=13)
Secondary effluent范围
Range平均值
Mean中位值
Median检出率/%
Freq范围
Range平均值
Mean中位值
Median检出率/%
Freq5:3 FTCA <0.02—2.63 0.60 <0.02 38 <0.01—1.25 0.13 <0.01 23 6:2 FTUCA <0.01—1.76 0.28 <0.01 46 <0.01—0.82 0.10 0.04 54 6:2 FTCA <0.11—2.00×103 270 7.11 85 <0.07—403 77.0 7.31 77 7:3 FTCA <0.08—9.72 1.83 0.56 92 <0.07—3.17 0.32 <0.07 38 8:2 FTUCA <0.01—30.3 3.66 0.18 77 <0.01—4.32 0.62 0.08 85 8:2 FTCA <0.11—50.3 7.42 0.29 54 <0.07—8.84 1.17 0.11 54 ∑FTCAs 0.52—2.00×103 284 44.0 100 0.23—404 79.4 12.4 100 PFBA <0.10—133 24.1 12.8 92 2.94—57.4 19.8 13.8 100 PFPeA <0.07—6.39 1.41 <0.07 31 <0.06—12.7 5.07 4.52 85 PFHxA <0.01—19.6 6.23 6.37 92 0.77— 18.9 6.27 6.36 100 PFHpA 0.55—5.93 2.66 1.65 100 0.34—6.40 2.88 3.19 100 PFOA 1.42—74.8 27.8 27.3 100 2.65—162 38.6 33.0 100 PFNA 0.35—6.46 2.57 1.91 100 0.28—6.28 2.47 1.84 100 PFDA 0.25—6.89 2.54 1.59 100 0.13—8.18 1.84 1.16 100 PFUnDA <0.02—7.01 1.17 0.31 92 <0.02—3.45 0.61 0.33 85 PFDoDA <0.07—2.47 0.44 0.14 77 <0.04—1.02 0.20 0.16 69 PFTriDA <0.02—0.59 0.17 0.09 62 <0.01—0.67 0.16 0.08 69 PFTeDA <0.03—2.30 0.36 0.13 62 <0.02—4.02 0.41 0.03 54 PFHxDA <0.04—3.81 0.65 0.13 69 <0.02—8.45 0.79 0.06 77 ∑PFCAs 12.4—156 70.1 71.7 100 14.1—172 79.0 89.1 100 物质
Compounds三级处理出水/(ng·L−1, n=13)
Tertiary effluent污泥/(ng·g−1dw, n=12)
Sludge范围
Range平均值
Mean中位值
Median检出率/%
Freq范围
Range平均值
Mean中位值
Median检出率/%
Freq5:3 FTCA <0.01—0.36 0.03 <0.01 8 <0.03—7.72 1.07 <0.03 33 6:2 FTUCA <0.01—0.55 0.09 0.04 54 <0.02—3.54 0.96 0.40 67 6:2 FTCA <0.06—403 77.4 6.87 69 <0.09—4.93 1.26 <0.09 33 7:3 FTCA <0.05—1.08 0.11 <0.05 31 <0.08—3.51 0.89 0.56 83 8:2 FTUCA <0.01—2.03 0.24 0.07 77 <0.01—3.04 1.06 0.55 50 8:2 FTCA <0.06—5.26 0.50 <0.06 46 <0.01—24.9 4.88 2.36 50 ∑FTCAs 0.17—404 78.3 8.92 100 <LOD—33.1 10.1 8.10 83 PFBA 2.48—51.6 18.1 11.8 100 <0.10—4.44 1.14 0.96 58 PFPeA 0—13.08 5.36 4.14 77 <0.07—4.29 0.92 0.42 58 PFHxA 1.05—18.9 5.78 6.29 100 0.83—3.52 2.25 2.25 100 PFHpA 0.23—6.40 2.78 3.17 100 <0.02—2.14 0.63 0.41 75 PFOA 1.40—71.1 28.8 24.6 100 4.85—30.3 13.8 9.06 100 PFNA 0.11—6.28 2.20 1.28 100 <0.05—2.47 1.26 1.19 92 PFDA <0.01—8.18 1.69 0.74 92 0.88—7.75 3.60 2.15 100 PFUnDA <0.01—3.45 0.46 0.21 77 0.49—7.88 2.79 1.10 100 PFDoDA <0.04—1.02 0.22 0.13 62 <0.07—4.25 1.86 2.00 92 PFTriDA <0.01—0.64 0.17 0.08 69 <0.04—2.40 1.18 1.15 83 PFTeDA <0.02—0.72 0.20 0.08 69 <0.07—1.23 0.31 0.17 67 PFHxDA <0.01—1.32 0.28 0.06 77 <0.07—0.83 0.21 0.11 75 ∑PFCAs 7.25—126 66.1 81.4 100 11.2—53.9 29.9 29.1 100 -
[1] LEHMLER H J. Synthesis of environmentally relevant fluorinated surfactants—a review[J]. Chemosphere, 2005, 58(11): 1471-1496. doi: 10.1016/j.chemosphere.2004.11.078 [2] WANG S Q, DING G H, LIU Y H, et al. Legacy and emerging persistent organic pollutants in the marginal seas of China: Occurrence and phase partitioning[J]. The Science of the Total Environment, 2022, 827: 154274. doi: 10.1016/j.scitotenv.2022.154274 [3] ZHOU J, LI S J, LIANG X X, et al. First report on the sources, vertical distribution and human health risks of legacy and novel per- and polyfluoroalkyl substances in groundwater from the Loess Plateau, China[J]. Journal of Hazardous Materials, 2021, 404: 124134. doi: 10.1016/j.jhazmat.2020.124134 [4] HAN T Z, GAO L Y, CHEN J H, et al. Spatiotemporal variations, sources and health risk assessment of perfluoroalkyl substances in a temperate bay adjacent to metropolis, North China[J]. Environmental Pollution, 2020, 265(Pt A): 115011. [5] MA D H, ZHONG H F, LV J T, et al. Levels, distributions, and sources of legacy and novel per- and perfluoroalkyl substances (PFAS) in the topsoil of Tianjin, China[J]. Journal of Environmental Sciences, 2022, 112: 71-81. doi: 10.1016/j.jes.2021.04.029 [6] WANG S Q, LIN X P, LI Q, et al. Neutral and ionizable per-and polyfluoroalkyl substances in the urban atmosphere: Occurrence, sources and transport[J]. Science of the Total Environment, 2022, 823: 153794. doi: 10.1016/j.scitotenv.2022.153794 [7] LI F S, SUN H W, HAO Z N, et al. Perfluorinated compounds in Haihe River and Dagu drainage canal in Tianjin, China[J]. Chemosphere, 2011, 84(2): 265-271. doi: 10.1016/j.chemosphere.2011.03.060 [8] Krafft M P, Riess J G. Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability—part one [J]. Chemosphere, 2015, 129: 4-19. doi: 10.1016/j.chemosphere.2014.08.039 [9] SHI G H, CUI Q Q, PAN Y T, et al. 6: 2 fluorotelomer carboxylic acid (6: 2 FTCA) exposure induces developmental toxicity and inhibits the formation of erythrocytes during zebrafish embryogenesis[J]. Aquatic Toxicology, 2017, 190: 53-61. doi: 10.1016/j.aquatox.2017.06.023 [10] WANG N, SZOSTEK B, BUCK R C, et al. Fluorotelomer alcohol biodegradation-direct evidence that perfluorinated carbon chains breakdown[J]. Environmental Science & Technology, 2005, 39(19): 7516-7528. [11] ELLIS D A, MARTIN J W, de SILVA A O, et al. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids[J]. Environmental Science & Technology, 2004, 38(12): 3316-3321. [12] CHEN H R, PENG H, YANG M, et al. Detection, occurrence, and fate of fluorotelomer alcohols in municipal wastewater treatment plants[J]. Environmental Science & Technology, 2017, 51(16): 8953-8961. [13] LOEWEN M, HALLDORSON T, WANG F Y, et al. Fluorotelomer carboxylic acids and PFOS in rainwater from an urban center in Canada[J]. Environmental Science & Technology, 2005, 39(9): 2944-2951. [14] ERIKSSON U, KÄRRMAN A. World-wide indoor exposure to polyfluoroalkyl phosphate esters (PAPs) and other PFASs in household dust[J]. Environmental Science & Technology, 2015, 49(24): 14503-14511. [15] ZHAO Z, YUE L X, QIAO H Q, et al. Perfluoroalkyl acids in dust on residential indoor/outdoor window glass in Chinese Cities: Occurrence, composition, and toddler exposure[J]. Environmental Science and Pollution Research, 2022, 29(10): 13881-13892. doi: 10.1007/s11356-021-16653-w [16] ZHAO Z, CHENG X H, HUA X, et al. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers[J]. Environmental Pollution, 2020, 263(Pt A): 114391. [17] 李琦路, 程相会, 赵祯, 等. 黄河中游(渭南—郑州段)全/多氟烷基化合物的分布及通量[J]. 环境科学, 2019, 40(1): 228-238. doi: 10.13227/j.hjkx.201805240 LI Q L, CHENG X H, ZHAO Z, et al. Distribution and fluxes of perfluoroalkyl and polyfluoroalkyl substances in the middle reaches of the Yellow River(Weinan-Zhengzhou section)[J]. Environmental Science, 2019, 40(1): 228-238 (in Chinese). doi: 10.13227/j.hjkx.201805240
[18] PHILLIPS M M, DINGLASAN-PANLILIO M J A, MABURY S A, et al. Fluorotelomer acids are more toxic than perfluorinated acids[J]. Environmental Science & Technology, 2007, 41(20): 7159-7163. [19] PHILLIPS M M, DINGLASAN-PANLILIO M J A, MABURY S A, et al. Chronic toxicity of fluorotelomer acids to Daphnia magna and Chironomus dilutus[J]. Environmental Toxicology and Chemistry, 2010, 29(5): 1123-1131. [20] MITCHELL R J, MYERS A L, MABURY S A, et al. Toxicity of fluorotelomer carboxylic acids to the algae Pseudokirchneriella subcapitata and Chlorella vulgaris, and the amphipod Hyalella azteca[J]. Ecotoxicology and Environmental Safety, 2011, 74(8): 2260-2267. doi: 10.1016/j.ecoenv.2011.07.034 [21] LEE H, D'EON J, MABURY S A. Biodegradation of polyfluoroalkyl phosphates as a source of perfluorinated acids to the environment[J]. Environmental Science & Technology, 2010, 44(9): 3305-3310. [22] GALLEN C, BIGNERT A, TAUCARE G, et al. Temporal trends of perfluoroalkyl substances in an Australian wastewater treatment plant: A ten-year retrospective investigation[J]. Science of the Total Environment, 2022, 804: 150211. doi: 10.1016/j.scitotenv.2021.150211 [23] GREMMEL C, FRÖMEL T, KNEPPER T P. HPLC–MS/MS methods for the determination of 52 perfluoroalkyl and polyfluoroalkyl substances in aqueous samples[J]. Analytical and Bioanalytical Chemistry, 2017, 409(6): 1643-1655. doi: 10.1007/s00216-016-0110-z [24] ERIKSSON U, HAGLUND P, KÄRRMAN A. Contribution of precursor compounds to the release of per- and polyfluoroalkyl substances (PFASs) from waste water treatment plants (WWTPs)[J]. Journal of Environmental Sciences, 2017, 61: 80-90. doi: 10.1016/j.jes.2017.05.004 [25] MA C M, PENG H, CHEN H R, et al. Long-term trends of fluorotelomer alcohols in a wastewater treatment plant impacted by textile manufacturing industry[J]. Chemosphere, 2022, 299: 134442. doi: 10.1016/j.chemosphere.2022.134442 [26] 杨琳, 李敬光. 全氟化合物前体物质生物转化与毒性研究进展[J]. 环境化学, 2015, 34(4): 649-655. YANG L, LI J G. Perfluorinated compound precursors: Biotransformation and toxicity[J]. Environmental Chemistry, 2015, 34(4): 649-655 (in Chinese).
[27] KIM M H, WANG N, McDONALD T, et al. Biodefluorination and biotransformation of fluorotelomer alcohols by two alkane-degrading Pseudomonas strains[J]. Biotechnology and Bioengineering, 2012, 109(12): 3041-3048. doi: 10.1002/bit.24561 [28] KIM M H, WANG N, CHU K H. 6: 2 Fluorotelomer alcohol (6: 2 FTOH) biodegradation by multiple microbial species under different physiological conditions[J]. Applied Microbiology and Biotechnology, 2014, 98(4): 1831-1840. doi: 10.1007/s00253-013-5131-3 [29] DINGLASAN M J A, YE Y, EDWARDS E A, et al. Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids[J]. Environmental Science & Technology, 2004, 38(10): 2857-2864. [30] ZHANG S, SZOSTEK B, McCAUSLAND P K, et al. 6: 2 and 8: 2 fluorotelomer alcohol anaerobic biotransformation in digester sludge from a WWTP under methanogenic conditions[J]. Environmental Science & Technology, 2013, 47(9): 4227-4235. [31] YU X L, TAKABE Y, YAMAMOTO K, et al. Biodegradation property of 8: 2 fluorotelomer alcohol (8: 2 FTOH) under aerobic/anoxic/anaerobic conditions[J]. Journal of Water and Environment Technology, 2016, 14(3): 177-190. doi: 10.2965/jwet.15-056 [32] YU X L, NISHIMURA F, HIDAKA T. Effects of microbial activity on perfluorinated carboxylic acids (PFCAs) generation during aerobic biotransformation of fluorotelomer alcohols in activated sludge[J]. Science of the Total Environment, 2018, 610/611: 776-785. doi: 10.1016/j.scitotenv.2017.08.075 [33] WANG N, SZOSTEK B, FOLSOM P W, et al. Aerobic biotransformation of 14C-labeled 8-2 telomer B alcohol by activated sludge from a domestic sewage treatment plant[J]. Environmental Science & Technology, 2005, 39(2): 531-538. [34] LI F, SU Q F, ZHOU Z M, et al. Anaerobic biodegradation of 8: 2 fluorotelomer alcohol in anaerobic activated sludge: Metabolic products and pathways[J]. Chemosphere, 2018, 200: 124-132. doi: 10.1016/j.chemosphere.2018.02.065 [35] 陈红瑞, 张昱, 杨敏. 全氟化合物前体物氟调醇的检测方法、环境分布及转化研究进展[J]. 环境化学, 2015, 34(12): 2170-2178. doi: 10.7524/j.issn.0254-6108.2015.12.2015052602 CHEN H R, ZHANG Y, YANG M. Research progress on the detection methods, environmental distribution and transformation of perfluorinated compounds’ precursors fluorotelomer alcohols[J]. Environmental Chemistry, 2015, 34(12): 2170-2178 (in Chinese). doi: 10.7524/j.issn.0254-6108.2015.12.2015052602
[36] 马春萌, 陈红瑞, 马洁, 等. 短链全氟烷酸替代物在城市污水深度处理工艺中的分布和排放[J]. 生态毒理学报, 2020, 15(5): 147-157. MA C M, CHEN H R, MA J, et al. Occurrence and discharge of short-chain perfluoroalkyl acids(PFAAs)substitutes during advanced treatment process in municipal wastewater treatment plants[J]. Asian Journal of Ecotoxicology, 2020, 15(5): 147-157 (in Chinese).
[37] MU H X, LI J H, CHEN L, et al. Distribution, source and ecological risk of per- and polyfluoroalkyl substances in Chinese municipal wastewater treatment plants[J]. Environment International, 2022, 167: 107447. doi: 10.1016/j.envint.2022.107447 [38] ZHOU Y Q, MENG J, ZHANG M, et al. Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants?[J]. Environment International, 2019, 131: 104982. doi: 10.1016/j.envint.2019.104982 [39] CAO X H, WANG C C, LU Y L, et al. Occurrence, sources and health risk of polyfluoroalkyl substances (PFASs) in soil, water and sediment from a drinking water source area[J]. Ecotoxicology and Environmental Safety, 2019, 174: 208-217. doi: 10.1016/j.ecoenv.2019.02.058