-
全氟化合物(poly- and perfluoroalkyl substance,PFASs)是一类具有良好的热稳定性、疏水疏油和高表面活性的物质[1],被广泛应用于生产和生活领域,如清洁剂、防污剂、表面涂层和消防泡沫[2]. 研究表明,PFASs具有环境持久性、生物累积性和多器官毒性,威胁生态系统和人类健康[3 − 4]. 因此,2009和2019年斯德哥公约分别将全氟辛基磺酸(PFOS)和全氟辛酸(PFOA)列入持久性有机污染物名单[5 − 6],在全球范围内限制其生产和使用;2019年,我国规定禁止PFOS及其盐类除可接受用途外的生产、流通、使用和进出口[7]. 因此,许多新型氟化化合物开始生产和使用并用作替代品,其包括短链PFASs和含有官能团的全氟聚醚,如全氟聚醚羧酸(PFECAs)和磺酸(PFESAs)[8]被广泛使用,但其生态风险仍不明确.
研究发现,相较于传统PFASs,PFASs替代品具有相似或者更强的环境稳定性、迁移性和生物累积性,导致其在环境介质、生物以及人群样本中浓度显著上升. 由于对PFOA和PFOS进行限制和控制,短链PFASs被用作长链PFASs的替代品,使得近年来生物体内的含量呈上升趋势[9,10]. 莱茵河中全氟丁烷磺酸(PFBS)和全氟丁酸(PFBA)的浓度(181—335 ng·L−1)高于其他报告的河流浓度[11]. 此外,PFBA在水生生物中的检出率(93%)高于其他短链PFASs,这表明短链PFASs具有持久性和生物蓄积性的特点[12]. 对于Cl-PFESAs,商品名为F-53B的氯化聚氟烷基醚磺酸(主要成分:6:2 和8:2 Cl-PFESA)是PFOS的主要替代品[13],在中国金属电镀行业应用已有30年[8]. 随着PFOS的逐步淘汰,它可能会被广泛应用于中国以前使用PFOS的更多行业[14],这将不可避免地导致环境中Cl-PFESAs的更严重污染. 6:2 Cl-PFESA在生物、人体、沉积物等环境介质中的检出率高达100%,且含量水平(1.1—7.8 ng·L−1)与PFOS(1.8—11 ng·L−1)相当或更高[15]. 此外,Cl-PFESAs的生物累积性及毒性效应与PFOS相当或更强[15],其环境健康风险不容忽视.
探究PFASs在生物体内的分布特征对于了解其在生物体中的生物积累和潜在风险具有重要作用. 研究表明,PFASs在生物中的累积与物种差异性等影响因素有关[16]. 例如,PFOS在鱼类中的含量水平顺序为罗非鱼(5.98 ng·g−1 ww(湿重))>草鱼(0.458 ng·g−1 ww)>大头鱼(3.9 ng·g−1 ww)>斑醴(1.9 ng·g−1 ww)>鲻鱼和鳜鱼(1.2 ng·g−1 ww)>鲶鱼(0.49 ng·g−1 ww)[17]. 此外,还发现PFASs在不同鱼类中的分布存在差异[12]. 但目前关于PFASs替代品在水生生物中的研究较少,其污染特征和环境健康风险有待阐明.
辽宁省是我国重要的氟化工产业中心之一. 已有研究发现,辽宁省地表水普遍受到PFOS和PFOA的污染[18 − 19],其氟化工业园区的地下水也检测到了PFOA,对居民健康构成严重威胁[20]. 食用食物,特别是动物性食物,如水产品,被认为是人类接触PFASs的主要途径. Haug等[21]研究表明,鱼类是普通人群中接触PFASs最重要的来源,食用受污染的鱼类会使人体血液中的FPASs浓度明显增高. 然而,目前关于该地区水产品中PFASs的赋存特征还不清楚,其中涉及PFASs替代品的研究更是鲜有报道. 因此,本研究主要针对辽宁市场上常见鱼类包括草鱼(Ctenopharyngodon idellus)、鲤鱼(Cyprinus carpio)、鲈鱼(Perca fluviatilis)和鲫鱼(Carassius carassius)中PFASs及其替代品的污染水平进行了研究,并对通过消费水产品而摄入PFASs及其替代品进行了初步的健康风险评估,以期为水产品在PFASs的研究和管控方面,提供决策依据和理论支撑.
辽宁省鱼类水产品中全氟化合物及其替代品的污染特征与健康风险评估
Contamination characteristics and health risk assessment of poly-and perfluoroalkyl substances and alternatives in fish from Liaoning Province
-
摘要: 采用液相色谱-串联质谱法(LC-MS/MS)对辽宁省鱼类水产品中16种全氟化合物(PFASs)及其替代品进行测定,探究其赋存特征及可能的来源,并运用健康风险商值法评估PFASs的潜在健康风险. 结果表明,PFASs在辽宁鱼类水产品中普遍检出,特别是替代品—短链全氟烷基羧酸化合物(PFCAs,C4—C7)和氯代多氟醚磺酸(Cl-PFESAs),其检出率范围为83.56%—100%. ∑16PFASs含量范围为1.630—3.671 ng·g−1;与国内外其它地区相比较,辽宁省鱼类水产品中∑16PFASs污染处于相对较低的水平. 全氟丁酸(PFBA)是鱼类水产品肌肉中主要污染物,其次是全氟辛酸(PFOA)、全氟辛基磺酸(PFOS). 不同鱼类中PFASs的含量和组成模式有所差异. 基于主成分分析和Spearman相关性发现,辽宁省鱼类水产品中的PFASs主要来源于金属电镀厂、皮革厂、FP化学制造等行业的工业排放和消费品. 健康风险评估结果显示,在中高暴露情景下,辽宁省鱼类水产品中的PFASs含量不会对成人和儿童健康存在风险. 值得注意的是,6:2 Cl-PFESA对人类健康风险不容忽视.
-
关键词:
- 全氟化合物(PFASs) /
- 替代品 /
- 鱼类水产品 /
- 污染特征 /
- 健康风险
Abstract: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine 16 poly-and perfluoroalkyl substances (PFASs) and their substitutes in fish from Liaoning Province. The fugitive characteristics and possible sources of PFASs in fish were investigated, and the potential health risk of PFASs was assessed using the health risk quotient method. The results showed that PFASs were frequently detected in fish from Liaoning Province, especially short-chain perfluoroalkyl carboxylic acids (PFCAs, C4—C7) and chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs), with detection frequencies ranging from 83.56%—100%. The concentrations of ∑16PFASs ranged from 1.630—3.671 ng·g−1, which were at a relatively low level compared with those reported in fish from other domestic and abroad regions. Perfluorobutanoic acid (PFBA) was the major contaminant in the muscle of fish, followed by perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). The concentration and composition patterns of PFASs varied among different fish species. The content and composition distribution of PFASs in different fish were different. It was inferred that PFASs in the fish from Liaoning Province mainly came from consumer products and industrial emissions from metal plating plants, leather, and FP chemical manufacturing industries based on the principal component analysis and spearman correlation analysis. Health risk assessment indicated that the levels of PFASs in fish from Liaoning Province did not pose a health risk to adults and children under a medium-high exposure scenario. However, it is worth noting that the human health risk for 6:2 Cl-PFESA should not be neglected. -
表 1 目标PFASs及内标物、仪器检出限和加标回收率
Table 1. Target PFASs and internal standards, instrumental detection limits and spiked recoveries
化合物
Compounds英文名称
English Name英文简称
Abbreviations内标
Internal standard products检出限/(ng·g−1)
Limit of detection加标回收率/%
Spiked recovery rate全氟丁酸 Perfluorobutanoic acid PFBA 13C4-PFBA 0.026 94.64±5.85 全氟戊酸 Perfluoropentanoic acid PFPeA 13C5- PFPeA 0.004 106.27±15.43 全氟己酸 Perfluorohexanoic acid PFHxA 13C5- PFHxA 0.005 85.50±17.20 全氟庚酸 Perfluoroheptanoic acid PFHpA 13C4- PFHpA 0.003 107.50±10.29 全氟辛酸 Perfluorooctanoic acid PFOA 13C8-PFOA 0.004 82.59±11.36 全氟壬酸 Perfluorononanoic acid PFNA 13C9- PFNA 0.010 103.36±15.43 全氟癸酸 Perfluorodecanoic acid PFDA 13C6-PFDA 0.003 98.19±12.63 全氟十一酸 Perfluoroundecanoic acid PFUnDA 13C7- PFUnDA 0.003 87.28±11.53 全氟十二酸 Perfluorododecanoic acid PFDoDA 13C2- PFDoDA 0.002 83.12±12.63 全氟十三酸 Perfluorotridecanoic acid PFTrDA 13C2- PFTrDA 0.009 111.29±10.75 全氟十四酸 Perfluorotetradecanoic acid PFTeDA 13C2- PFTeDA 0.002 95.38±6.72 全氟丁基磺酸 Perfluorobutane sulfonic acid PFBS 13C3-PFBS 0.006 73.95±14.72 全氟己基磺酸 Perfluorohexane sulfonic acid PFHxS 13C3- PFHxS 0.012 67.59±10.75 全氟辛基磺酸 Perfluorooctane sulfonic acid PFOS 13C4-PFOS 0.005 72.62±10.43 氯代多氟醚磺酸 Chlorinated polyfluoroalkyl
ether sulfonic acids6:2 Cl-PFESA 13C4-PFOS 0.010 66.35±12.36 8:2 Cl-PFESA 13C4-PFOS 0.004 67.70±16.49 表 2 辽宁省鱼类中目标化合物的含量水平(平均值±标准差(最小值—最大值),单位:ng·g−1)
Table 2. Levels of target compounds in fish from Liaoning province (mean ± standard deviation (min—max), unit: ng·g−1)
化合物
Compounds检出率/%
DF草鱼
Grass carp(N=12)鲤鱼
Carp (N=12)鲈鱼
Perch (N=5)鲫鱼
Crucian carp (N=12)求和
Summation (N=41)PFBA 100.00 2.183±1.545
(0.587—5.901)0.683±0.044
(0.326—1.809)0.144±0.104
(0.061—0.282)1.701±1.606
(0.417—5.472)1.354±1.408
(0.061—5.901)PFPeA 100.00 0.157±0.087
(0.022—0.265)0.123±0.168
(0.019—0.635)0.025±0.013
(0.005—0.040)0.109±0.049
(0.026—0.176)0.117±0.110
(0.007—0.635)PFHxA 93.02 0.099±0.079
(0.029—0.307)0.028±0.030
(ND—0.101)0.006±0.001
(0.007—0.008)0.080±0.079
(ND—0.230)0.061±0.071
(ND—0.307)PFHpA 95.35 0.031±0.026
(0.007—0.103)0.028±0.018
(0.005—0.052)0.005±0.006
(ND—0.016)0.046±0.031
(0.012—0.094)0.031±0.026
(ND—0.103)PFOA 90.70 0.542±0.514
(ND—1.329)0.292±0.303
(ND—0.976)0.024±0.018
(0.005—0.049)0.330±0.288
(0.013—0.914)0.344±0.383
(ND—1.329)PFNA 100.00 0.153±0.112
(0.038—0.368)0.068±0.085
(0.015—0.306)0.121±0.034
(0.090—0.176)0.133±0.063
(0.060—0.267)0.119±0.089
(0.015—0.368)PFDA 83.72 0.025±0.022
(ND—0.066)0.008±0.006
(ND—0.017)0.254±0.068
(0.146—0.328)0.080±0.046
(0.016—0.157)0.064±0.085
(ND—0.328)PFUnDA 100.00 0.035±0.015
(0.005—0.058)0.034±0.029
(0.006—0.097)0.279±0.055
(0.209—0.348)0.107±0.061
(0.029—0.242)0.086±0.089
(0.005—0.348)PFDoDA 76.74 0.004±0.005
(ND—0.013)0.006±0.008
(ND—0.025)0.038±0.013
(0.024—0.057)0.020±0.016
(ND—0.054)0.014±0.016
(ND—0.057)PFTrDA 69.77 0.013±0.017
(ND—0.048)0.011±0.016
(ND—0.055)0.178±0.041
(0.120—0.230)0.053±0.057
(ND—0.180)0.044±0.064
(ND—0.230)PFTeDA 76.74 0.004±0.006
(ND—0.020)0.005±0.005
(ND—0.012)0.013±0.005
(0.006—0.018)0.014±0.016
(ND—0.054)0.009±0.010
(ND—0.035)PFBS 55.81 0.007±0.008
(ND—0.025)0.003±0.004
(ND—0.011)0.020±0.012
(0.008—0.035)0.011±0.011
(ND—0.030)0.008±0.010
(ND—0.035)PFHxS 93.02 0.076±0.043
(0.023—0.171)0.071±0.037
(0.028—0.168)0.006±0.008
(ND—0.018)0.087±0.078
(0.017—0.283)0.069±0.056
(ND—0.283)PFOS 90.70 0.141±0.113
(ND—0.344)0.106±0.093
(0.018—0.289)0.644±0.192
(0.307—0.793)0.658±0.583
(ND—1.552)0.343±0.416
(ND—1.552)6:2 Cl-PFESA 100 0.178±0.107
(0.035—0.332)0.145±0.095
(0.025—0.325)0.133±0.008
(0.121—0.142)0.208±0.122
(0.055—0.432)0.172±0.103
(0.025—0.432)8:2 Cl-PFESA 85.36 0.021±0.015
(ND—0.051)0.020±0.010
(ND—0.039)0.006±0.007
(ND—0.017)0.019±0.017
(ND—0.046)0.018±0.014
(ND—0.051)∑PFCAs 100.00 3.248±1.724
(1.538—6.733)1.285±0.708
(0.610—2.982)1.088±0.216
(0.703—1.216)2.675±1.783
(0.885—6.584)2.242±1.623
(0.610—6.733∑PFSAs 100.00 0.224±0.132
(0.066—0.472)0.180±0.110
(0.046—0.392)0.669±0.202
(0.318—0.827)0.756±0.557
(0.056—1.595)0.421±0.410
(0.046—1.595∑PFESAs 100.00 0.199±0.113
(0.056—0.383)0.165±0.097
(0.045—0.356)0.140±0.011
(0.132—0.159)0.227±0.125
(0.088—0.444)0.190±0.106
(0.045—0.444)∑PFASs 100.00 3.671±1.777
(1.805—7.345)1.630±0.699
(1.008—3.295)1.897±0.418
(1.153—2.147)3.658±2.326
(1.143—8.270)2.854±1.862
(1.008—8.270)注:N表示样品数量,ND表示未检出,求和表示单个污染物的总体含量.
Note:N means number of samples; ND means not detected; Summation means the overall content of individual contaminants.表 3 PFASs 在鱼类水产品中 EDI 值(单位:ng·kg−1·d−1)
Table 3. EDI values of PFASs in fish aquatic products, unit(ng·kg−1·d−1)
儿童 Children 化合物
Compounds中暴露
Medium exposure高暴露
High exposure草鱼
Grass carp鲤鱼
Carp鲈鱼
Perch鲫鱼
Crucian carp草鱼
Grass carp鲤鱼
Carp鲈鱼
Perch鲫鱼
Crucian carpPFBA 1.240 0.401 0.068 0.708 3.935 1.237 0.215 3.441 PFHxA 0.052 0.014 0.006 0.037 0.186 0.067 0.006 0.171 PFOA 0.351 0.197 0.019 0.190 1.041 0.561 0.036 0.669 PFBS 0.006 0.000 0.013 0.007 0.016 0.008 0.027 0.022 PFOS 0.100 0.055 0.564 0.369 0.244 0.224 0.621 1.174 6:2 Cl-PFESA 0.145 0.098 0.109 0.151 0.261 0.247 0.113 0.329 ∑PFASs 1.894 0.764 0.779 1.463 5.682 2.345 1.018 5.808 成人 Adults 化合物
Compounds中暴露
Medium exposure高暴露
Medium exposure草鱼
Grass carp鲤鱼
Carp鲈鱼
Perch鲫鱼
Crucian carp草鱼
Grass carp鲤鱼
Carp鲈鱼
Perch鲫鱼
Crucian carpPFBA 0.891 0.037 0.049 0.509 2.827 0.889 0.154 2.473 PFHxA 0.037 0.010 0.004 0.027 0.133 0.048 0.005 0.123 PFOA 0.252 0.142 0.014 0.137 0.748 0.403 0.026 0.481 PFBS 0.004 0.000 0.010 0.005 0.011 0.006 0.019 0.016 PFOS 0.072 0.039 0.405 0.265 0.175 0.161 0.447 0.844 6:2 Cl-PFESA 0.104 0.070 0.079 0.109 0.188 0.178 0.081 0.237 ∑PFASs 1.361 0.549 0.559 1.051 4.083 1.685 0.731 4.173 -
[1] LINDSTROM A B, STRYNAR M J, LIBELO E L. Polyfluorinated compounds: Past, present, and future[J]. Environmental Science & Technology, 2011, 45(19): 7954-7961. [2] ABUNADA Z, ALAZAIZA M Y D, BASHIR M J K. An overview of per- and polyfluoroalkyl substances (PFAS) in the environment: Source, fate, risk and regulations[J]. Water, 2020, 12(12): 3590. doi: 10.3390/w12123590 [3] ZENG Z T, SONG B, XIAO R, et al. Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies[J]. Environment International, 2019, 126: 598-610. doi: 10.1016/j.envint.2019.03.002 [4] HOLMQUIST H, FANTKE P, COUSINS I T, et al. An (eco)toxicity life cycle impact assessment framework for per- and polyfluoroalkyl substances[J]. Environmental Science & Technology, 2020, 54(10): 6224-6234. [5] WANG T, WANG Y W, LIAO C Y, et al. Perspectives on the inclusion of perfluorooctane sulfonate into the stockholm convention on persistent organic pollutants[J]. Environmental Science & Technology, 2009, 43(14): 5171-5175. [6] CHEN M, ZHU L Y, WANG Q, et al. Tissue distribution and bioaccumulation of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in edible fishes from Taihu Lake, China[J]. Environmental Pollution, 2021, 268: 115887. doi: 10.1016/j.envpol.2020.115887 [7] 中华人民共和国生态环境部. 关于禁止生产、流通、使用和进出口林丹等持久性有机污染物的公告[EB/OL]. [8] WANG Z Y, COUSINS I T, SCHERINGER M, et al. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions[J]. Environment International, 2015, 75: 172-179. doi: 10.1016/j.envint.2014.11.013 [9] GAO K, MIAO X, FU J, et al. Occurrence and trophic transfer of per- and polyfluoroalkyl substances in an Antarctic ecosystem[J]. Environmental Pollution, 2020, 257: 113383. doi: 10.1016/j.envpol.2019.113383 [10] MENG J, LIU S F, ZHOU Y Q, et al. Are perfluoroalkyl substances in water and fish from drinking water source the major pathways towards human health risk?[J]. Ecotoxicology and Environmental Safety, 2019, 181: 194-201. doi: 10.1016/j.ecoenv.2019.06.010 [11] MÖLLER A, AHRENS L, SURM R, et al. Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed[J]. Environmental Pollution, 2010, 158(10): 3243-3250. doi: 10.1016/j.envpol.2010.07.019 [12] ALI A M, SANDEN M, HIGGINS C P, et al. Legacy and emerging per- and polyfluorinated alkyl substances (PFASs) in sediment and edible fish from the Eastern Red Sea[J]. Environmental Pollution, 2021, 280: 116935. doi: 10.1016/j.envpol.2021.116935 [13] LIU W, LI J W, GAO L C, et al. Bioaccumulation and effects of novel chlorinated polyfluorinated ether sulfonate in freshwater Alga Scenedesmus obliquus[J]. Environmental Pollution, 2018, 233: 8-15. doi: 10.1016/j.envpol.2017.10.039 [14] WANG S W, HUANG J, YANG Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years: Its toxicity, persistence, and presence in the environment[J]. Environmental Science & Technology, 2013, 47(18): 10163-10170. [15] WANG Y, CHANG W G, WANG L, et al. A review of sources, multimedia distribution and health risks of novel fluorinated alternatives[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109402. doi: 10.1016/j.ecoenv.2019.109402 [16] SAVOCA D, PACE A. Bioaccumulation, biodistribution, toxicology and biomonitoring of organofluorine compounds in aquatic organisms[J]. International Journal of Molecular Sciences, 2021, 22(12): 6276. doi: 10.3390/ijms22126276 [17] ZHAO Y G, WAN H T, LAW A Y S, et al. Risk assessment for human consumption of perfluorinated-compound-contaminated freshwater and marine fish from Hong Kong and Xiamen[J]. Chemosphere, 2011, 85(2): 277-283. doi: 10.1016/j.chemosphere.2011.06.002 [18] 杨永亮, 路国慧, 杨伟贤, 等. 沈阳地区水环境和生物样品中全氟化合物的污染分布特征[J]. 环境科学学报, 2010, 30(10): 2097-2107. YANG Y L, LU G H, YEUNG L W, et al. Levels and distribution of perfluorinated compounds in water and biological samples from the Shenyang area, China[J]. Acta Scientiae Circumstantiae, 2010, 30(10): 2097-2107 (in Chinese).
[19] 巩秀贤, 李斌, 柳玉英, 等. 浑河-大辽河水系水体与沉积物中典型全氟化合物的污染水平及生态风险评价[J]. 环境科学学报, 2015, 35(7): 2177-2184. GONG X X, LI B, LIU Y Y, et al. Pollution levels and ecological risk assessment of typical perfluorinated compounds in riverine water and sediments of Hun River and Daliao River Watershed[J]. Acta Scientiae Circumstantiae, 2015, 35(7): 2177-2184 (in Chinese).
[20] BAO J, LIU W, LIU L, et al. Perfluorinated compounds in the environment and the blood of residents living near fluorochemical plants in Fuxin, China[J]. Environmental Science & Technology, 2011, 45(19): 8075-8080. [21] HAUG L S, THOMSEN C, BRANTSÆTER A L, et al. Diet and particularly seafood are major sources of perfluorinated compounds in humans[J]. Environment International, 2010, 36(7): 772-778. doi: 10.1016/j.envint.2010.05.016 [22] 刘嘉烈, 石运刚, 唐娜, 等. 重庆长江流域鲫鱼和沉积物中17种全氟化合物污染特征[J]. 环境化学, 2020, 39(12): 3450-3461. doi: 10.7524/j.issn.0254-6108.2020061702 LIU J L, SHI Y G, TANG N, et al. Pollution characteristics of seventeen per- and polyfluoroalkyl substances in fish and sediments of Yangtze River Basin in Chongqing City[J]. Environmental Chemistry, 2020, 39(12): 3450-3461(in Chinese). doi: 10.7524/j.issn.0254-6108.2020061702
[23] DIAO J Y, CHEN Z W, WANG Y T, et al. Perfluoroalkyl substances in marine food webs from South China Sea: Trophic transfer and human exposure implication[J]. Journal of Hazardous Materials, 2022, 431: 128602. doi: 10.1016/j.jhazmat.2022.128602 [24] 段小丽, 赵秀阁, 王丽敏, 等. 中国人群暴露参数手册, 成人卷[M]. 北京: 环境保护部, 2013. DUAN X L, ZHAO X L, WANG L M, et al. Handbook of Exposure Parameters for Chinese Populations, Adult Volume[M]. Beijing: Department of Environmental Protection, 2013 (in Chinese).
[25] 段小丽, 赵秀阁. 中国人群暴露参数手册(儿童卷6-17岁)[M]. 北京: 环境保护部, 2016. DUAN X L, ZHAO X G. Handbook of Exposure Parameters for Chinese Populations (Children's Volume 6-17 Years)[M]. Beijing: Department of Environmental Protection, 2016 (in Chinese).
[26] SUN Q P, BI R, WANG T Y, et al. Are there risks induced by novel and legacy poly- and perfluoroalkyl substances in coastal aquaculture base in South China?[J]. Science of the Total Environment, 2021, 779: 146539. doi: 10.1016/j.scitotenv.2021.146539 [27] JIN Q, SHI Y L, CAI Y Q. Occurrence and risk of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) in seafood from markets in Beijing, China[J]. Science of the Total Environment, 2020, 726: 138538. doi: 10.1016/j.scitotenv.2020.138538 [28] ARINAITWE K, KOCH A, TAABU-MUNYAHO A, et al. Spatial profiles of perfluoroalkyl substances and mercury in fish from northern Lake Victoria, East Africa[J]. Chemosphere, 2020, 260: 127536. doi: 10.1016/j.chemosphere.2020.127536 [29] LIN X P, WANG S Q, LI Q, et al. Occurrence, partitioning behavior and risk assessments of per- and polyfluoroalkyl substances in water, sediment and biota from the Dongshan Bay, China[J]. Chemosphere, 2022, 291: 132812. doi: 10.1016/j.chemosphere.2021.132812 [30] PAN C G, XIAO S K, YU K F, et al. Legacy and alternative per- and polyfluoroalkyl substances in a subtropical marine food web from the Beibu Gulf, South China: Fate, trophic transfer and health risk assessment[J]. Journal of Hazardous Materials, 2021, 403: 123618. doi: 10.1016/j.jhazmat.2020.123618 [31] WANG S Q, CAI Y Z, MA L Y, et al. Perfluoroalkyl substances in water, sediment, and fish from a subtropical river of China: Environmental behaviors and potential risk[J]. Chemosphere, 2022, 288: 132513. doi: 10.1016/j.chemosphere.2021.132513 [32] VI P T, NGOC N T, QUANG P D, et al. Perfluoroalkyl substances in freshwater and marine fish from northern Vietnam: Accumulation levels, profiles, and implications for human consumption[J]. Marine Pollution Bulletin, 2022, 182: 113995. doi: 10.1016/j.marpolbul.2022.113995 [33] GOODROW S M, RUPPEL B, LIPPINCOTT R L, et al. Investigation of levels of perfluoroalkyl substances in surface water, sediment and fish tissue in New Jersey, USA[J]. Science of the Total Environment, 2020, 729: 138839. doi: 10.1016/j.scitotenv.2020.138839 [34] ZHU Z Y, WANG T Y, MENG J, et al. Perfluoroalkyl substances in the Daling River with concentrated fluorine industries in China: Seasonal variation, mass flow, and risk assessment[J]. Environmental Science and Pollution Research, 2015, 22(13): 10009-10018. doi: 10.1007/s11356-015-4189-0 [35] WANG P, LU Y L, WANG T Y, et al. Transport of short-chain perfluoroalkyl acids from concentrated fluoropolymer facilities to the Daling River Estuary, China[J]. Environmental Science and Pollution Research, 2015, 22(13): 9626-9636. doi: 10.1007/s11356-015-4090-x [36] WANG P, LU Y L, SU H Q, et al. Managing health risks of perfluoroalkyl acids in aquatic food from a river-estuary-sea environment affected by fluorochemical industry[J]. Environment International, 2020, 138: 105621. doi: 10.1016/j.envint.2020.105621 [37] 叶洪丽, 余玮玥, 史永富, 等. 东海沿岸省市鱼类水产品中全氟烷基化合物含量调查研究[J]. 中国渔业质量与标准, 2019, 9(4): 13-21. YE H L, YU W Y, SHI Y F, et al. Investigation and study of perfluorinated alkylated substances in fish aquatic products in the East China Sea area[J]. Chinese Fishery Quality and Standards, 2019, 9(4): 13-21(in Chinese).
[38] 王旭峰, 王强, 黎智广, 等. 广州市售水产品中全氟烷基化合物的污染特征和安全风险评价[J]. 环境科学, 2019, 40(4): 1931-1938. WANG X F, WANG Q, LI Z G, et al. Contamination characteristics and safety risk assessment of perflurorinated alkylated substances in aquatic products from Guangzhou[J]. Environmental Science, 2019, 40(4): 1931-1938(in Chinese).
[39] CHEN H, HAN J B, CHENG J Y, et al. Distribution, bioaccumulation and trophic transfer of chlorinated polyfluoroalkyl ether sulfonic acids in the marine food web of Bohai, China[J]. Environmental Pollution, 2018, 241: 504-510. doi: 10.1016/j.envpol.2018.05.087 [40] SHI Y L, VESTERGREN R, ZHOU Z, et al. Tissue distribution and whole body burden of the chlorinated polyfluoroalkyl ether sulfonic acid F-53B in crucian carp (Carassius carassius): Evidence for a highly bioaccumulative contaminant of emerging concern[J]. Environmental Science & Technology, 2015, 49(24): 14156-14165. [41] CUI Q Q, PAN Y T, ZHANG H X, et al. Elevated concentrations of perfluorohexanesulfonate and other per- and polyfluoroalkyl substances in Baiyangdian Lake (China): Source characterization and exposure assessment[J]. Environmental Pollution, 2018, 241: 684-691. doi: 10.1016/j.envpol.2018.05.099 [42] RUAN T, LIN Y F, WANG T, et al. Identification of novel polyfluorinated ether sulfonates as PFOS alternatives in municipal sewage sludge in China[J]. Environmental Science & Technology, 2015, 49(11): 6519-6527. [43] SHI Y L, VESTERGREN R, XU L, et al. Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs)[J]. Environmental Science & Technology, 2016, 50(5): 2396-2404. [44] LIU Y W, RUAN T, LIN Y F, et al. Chlorinated polyfluoroalkyl ether sulfonic acids in marine organisms from Bohai Sea, China: Occurrence, temporal variations, and trophic transfer behavior[J]. Environmental Science & Technology, 2017, 51(8): 4407-4414. [45] BIRGERSSON L, JOUVE J, JÖNSSON E, et al. Thyroid function and immune status in perch (Perca fluviatilis) from lakes contaminated with PFASs or PCBs[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112495. doi: 10.1016/j.ecoenv.2021.112495 [46] BERGER U, GLYNN A, HOLMSTRÖM K E, et al. Fish consumption as a source of human exposure to perfluorinated alkyl substances in Sweden - analysis of edible fish from Lake Vättern and the Baltic Sea[J]. Chemosphere, 2009, 76(6): 799-804. doi: 10.1016/j.chemosphere.2009.04.044 [47] YAMADA A, BEMRAH N, VEYRAND B, et al. Perfluoroalkyl acid contamination and polyunsaturated fatty acid composition of French freshwater and marine fishes[J]. Journal of Agricultural and Food Chemistry, 2014, 62(30): 7593-7603. doi: 10.1021/jf501113j [48] ÅKERBLOM S, NEGM N, WU P P, et al. Variation and accumulation patterns of poly- and perfluoroalkyl substances (PFAS) in European perch (Perca fluviatilis) across a gradient of pristine Swedish lakes[J]. Science of the Total Environment, 2017, 599/600: 1685-1692. doi: 10.1016/j.scitotenv.2017.05.032 [49] AHRENS L, NORSTRÖM K, VIKTOR T, et al. Stockholm Arlanda Airport as a source of per- and polyfluoroalkyl substances to water, sediment and fish[J]. Chemosphere, 2015, 129: 33-38. doi: 10.1016/j.chemosphere.2014.03.136 [50] PREVEDOUROS K, COUSINS I T, BUCK R C, et al. Sources, fate and transport of perfluorocarboxylates[J]. Environmental Science & Technology, 2006, 40(1): 32-44. [51] XIAO F, HALBACH T R, SIMCIK M F, et al. Input characterization of perfluoroalkyl substances in wastewater treatment plants: Source discrimination byexploratory data analysis[J]. Water Research, 2012, 46(9): 3101-3109. doi: 10.1016/j.watres.2012.03.027 [52] OLSEN G W, CHANG S C, NOKER P E, et al. A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans[J]. Toxicology, 2009, 256(1/2): 65-74. [53] HERZKE D, OLSSON E, POSNER S. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway–A pilot study[J]. Chemosphere, 2012, 88(8): 980-987. doi: 10.1016/j.chemosphere.2012.03.035 [54] WANG Z Y, COUSINS I T, SCHERINGER M, et al. Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: Production and emissions from quantifiable sources[J]. Environment International, 2014, 70: 62-75. doi: 10.1016/j.envint.2014.04.013 [55] LIN Y, JIANG J J, RODENBURG L A, et al. Perfluoroalkyl substances in sediments from the Bering Sea to the western Arctic: Source and pathway analysis[J]. Environment International, 2020, 139: 105699. doi: 10.1016/j.envint.2020.105699 [56] LIU Y Q, ZHANG Y, LI J F, et al. Distribution, partitioning behavior and positive matrix factorization-based source analysis of legacy and emerging polyfluorinated alkyl substances in the dissolved phase, surface sediment and suspended particulate matter around coastal areas of Bohai Bay, China[J]. Environmental Pollution, 2019, 246: 34-44. doi: 10.1016/j.envpol.2018.11.113 [57] GEBBINK W A, van LEEUWEN S P J. Environmental contamination and human exposure to PFASs near a fluorochemical production plant: Review of historic and current PFOA and GenX contamination in the Netherlands[J]. Environment International, 2020, 137: 105583. doi: 10.1016/j.envint.2020.105583 [58] XIE L N, WANG X C, DONG X J, et al. Concentration, spatial distribution, and health risk assessment of PFASs in serum of teenagers, tap water and soil near a Chinese fluorochemical industrial plant[J]. Environment International, 2021, 146: 106166. doi: 10.1016/j.envint.2020.106166 [59] BEESOON S, GENUIS S J, BENSKIN J P, et al. Exceptionally high serum concentrations of perfluorohexanesulfonate in a Canadian family are linked to home carpet treatment applications[J]. Environmental Science & Technology, 2012, 46(23): 12960-12967. [60] KOTTHOFF M, MÜLLER J, JÜRLING H, et al. Perfluoroalkyl and polyfluoroalkyl substances in consumer products[J]. Environmental Science and Pollution Research, 2015, 22(19): 14546-14559. doi: 10.1007/s11356-015-4202-7 [61] WANG P, WANG T Y, GIESY J P, et al. Perfluorinated compounds in soils from Liaodong Bay with concentrated fluorine industry parks in China[J]. Chemosphere, 2013, 91(6): 751-757. doi: 10.1016/j.chemosphere.2013.02.017 [62] 刘承友, 刘金林, 郭婧, 等. 大伙房水库多介质中全氟化合物赋存特征、源解析及健康风险评估[J]. 环境监控与预警, 2022, 14(5): 133-142. LIU C Y, LIU J L, GUO J, et al. Occurrence characteristics, source analysis and health risk assessment of perfluorinated compounds in multi-media of Dahuofang Reservoir[J]. Environmental Monitoring and Forewarning, 2022, 14(5): 133-142 (in Chinese).
[63] FAIR P A, WOLF B, WHITE N D, et al. Perfluoroalkyl substances (PFASs) in edible fish species from Charleston Harbor and tributaries, South Carolina, United States: Exposure and risk assessment[J]. Environmental Research, 2019, 171: 266-277. doi: 10.1016/j.envres.2019.01.021 [64] HUNG M D, LAM N H, JEONG H H, et al. Perfluoroalkyl substances (PFASs) in ten edible freshwater fish species from major rivers and lakes in Korea: Distribution and human exposure by consumption[J]. Toxicology and Environmental Health Sciences, 2018, 10(5): 307-320. doi: 10.1007/s13530-018-0379-8 [65] LEE J W, LEE H K, LIM J E, et al. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in the coastal environment of Korea: Occurrence, spatial distribution, and bioaccumulation potential[J]. Chemosphere, 2020, 251: 126633. doi: 10.1016/j.chemosphere.2020.126633 [66] ZHANG Y, LIU X D, YU L, et al. Perfluoroalkyl acids in representative edible aquatic species from the Lower Yangtze River: Occurrence, distribution, sources, and health risk[J]. Journal of Environmental Management, 2022, 317: 115390. doi: 10.1016/j.jenvman.2022.115390