-
四环素(TC)是使用最广泛的抗生素,常被用作疾病治疗剂和牲畜生长促进剂,在全球多地区地表水和地下水中均可检出,对生态系统和人类健康造成不利影响[1-2]. 高级氧化技术(advanced oxidation processes,AOP)是当前公认的最佳水处理技术. 其中,光催化氧化技术(photo catalytic oxidation,PCO)由于可以在温和条件下直接利用太阳能去除污染物而受到广泛关注,具有氧化活性强、成本低、操作流程简单、无二次污染等优点,符合未来绿色清洁技术的发展理念[3-5]. 光催化剂作为该技术的关键,其本身的物理化学性质会关系到催化反应的进程,影响对污染物的去除效果. 因此,制备高效的光催化剂是目前研究的热点[6-8].
在众多光催化材料中,二氧化钛(TiO2)因光催化活性高、化学稳定性好、廉价易得、环境友好等优势而受到青睐,但电子空穴复合速率高以及带隙宽导致其难以利用可见光的弊端始终阻碍其发展[9]. 为此,科研工作者提出掺杂[10-11]、半导体复合[12]、晶面工程[13]、缺陷工程[14]等策略以抑制电子空穴复合、拓宽光响应范围,进而提高TiO2光催化应用范围,虽然晶面工程、缺陷工程等改性方法有效的提升了TiO2的光催化活性,但是复杂的工艺流程、大量的化学试剂、高温高压的制备环境等是注重绿色合成的今天应该改善的.
与窄带隙半导体构建复合材料因可在调控能带结构的同时兼具两种材料的优势,被认为是应用前景广阔的改性方法[15]. 石墨相氮化碳(g-C3N4)是一种典型的非金属、窄带隙半导体,其拥有稳定的化学结构和独特的光学性质[16]. 而其光响应范围广的特性刚好能满足提升TiO2催化活性的需求. 近年来,围绕g-C3N4与TiO2复合型光催化剂的报道频出,Pelin等通过阶梯水热法和高温热处理,构筑了g-C3N4/TiO2异质结光催化剂,实验证明其能够在太阳光下高效降解水中亚甲基蓝[17];Ma等制备的g-C3N4/TiO2纳米管实现了在可见光下对邻氯硝基苯的高效降解[18],但大多研究具有工艺流程复杂、掺杂组分比例难以精确控制、需要高温煅烧等缺点. 前期通过机械混合制备了一系列的g-C3N4/TiO2复合材料,其能够在可见光驱动下高效降解双酚A[19]. 但当前研究少有关于g-C3N4/TiO2复合材料对TC降解性能的评估,特别是在复杂水环境条件下光降解性能的考察.
为贯彻绿色合成制备高效光催化剂,本研究采用简便的原位水热处理,通过将质量不同的g-C3N4和TiO2纳米颗粒复合,成功制备了一系列g-C3N4/TiO2复合材料. 表征并分析了复合材料的表面结构、光学特性和光电化学性能,证实Z型异质结的构建. 测试了最优催化剂CNT-3复合材料在可见光条件下在不同的投加量、较宽的pH范围以及不同的污染物浓度下降解TC,并提出了降解机制. 本研究实现了复合材料在较宽泛条件下对TC的高效降解,为复合型光催化剂的发展提供新思路.
宽泛条件下光催化降解四环素的C3N4/TiO2复合材料的性能研究
Study on the properties of C3N4/TiO2 composites capable of photocatalytic tetracycline degradation under a wide range of conditions
-
摘要: 本研究采用简便的原位水热法成功制备了g-C3N4/TiO2复合材料. 采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、傅立叶红外光谱(FTIR)、比表面积分析仪(BET)、紫外可见漫反射光谱仪(UV-Vis)、电化学工作站等对其物像、结构、形貌、光学特性和光电化学性能进行表征;以四环素(TC)为目标污染物在可见光下进行光催化降解实验,研究催化剂投加量、溶液pH、污染物浓度等不同条件对g-C3N4/TiO2复合材料降解TC效果的影响,通过自由基捕获实验探讨其光催化降解TC的机理. 结果表明,g-C3N4/TiO2复合材料对TC的光催化降解效果均优于纯g-C3N4和TiO2,掺杂量为3%的CNT-3光催化活性最好,且有着优秀的矿化能力;复合材料能够在较少的投加量、较宽的pH范围以及较高的污染物浓度下高效降解TC,并且能够在反应环境中保持稳定,•OH自由基和空穴在反应体系中起主要作用. g-C3N4和TiO2之间存在的Z型异质结,有效减少光生载流子复合,g-C3N4的引入不仅拓宽了TiO2的光响应范围,而且促进了电荷转移和分离,提高了复合材料的光催化活性.Abstract: In this work, g-C3N4/TiO2 composites were successfully prepared by simple in situ hydrothermal method. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier infrared spectroscopy (FTIR), specific surface area analyzer (BET), UV-visible diffuse reflection spectrometer (UV-Vis), electrochemical workstation were used to investigate the object image, structure, morphology, optical properties and photoelectric chemical properties were characterized; Tetracycline (TC) was used as the target pollutant to conduct photocatalytic degradation experiments under visible light. The influences of different conditions such as catalyst dosage, solution pH and pollutant concentration on the TC degradation effect of g-C3N4/TiO2 composites were studied. The mechanism of photocatalytic TC degradation was discussed through free radical capture experiments. The results show that the photocatalytic degradation effect of g-C3N4/TiO2 composites on TC is superior to that of pure g-C3N4 and TiO2. The photocatalytic activity of CNT-3 doped with 3% is the best, and it has excellent mineralization ability. The composite can effectively degrade TC with less dosage, wider pH range and higher pollutant concentration, and can maintain stability in the reaction environment. •OH radical and h+ play a major role in the reaction system. The existence of Z-type heterojunction between g-C3N4 and TiO2 effectively reduces photogenerated carrier recombination. The introduction of g-C3N4 not only broadens the photoresponse range of TiO2, but also promotes charge transfer and separation, which greatly improves the photocatalytic activity of the composites.
-
Key words:
- titanium dioxide /
- photocatalysis /
- tetracycline /
- Z-type heterojunction
-
图 6 (a)合成样品的可见光降解TC曲线,(b)对应的一级反应动力学曲线,(c)CNT-3复合材料对TC的矿化效果,(d)CNT-3复合材料对TC的循环使用效果
Figure 6. (a) Visible light degradation TC curve of the synthesized sample, (b) corresponding first-order reaction kinetics curve, (c) TC mineralization effect of CNT-3 composite, (d) recycling effect of CNT-3 composite on TC
表 1 合成样品的比表面积和孔容
Table 1. Specific surface area and pore volume of the synthesized sample
样品
Samples比表面积/(m2·g−1)
BET孔容/(cm3·g−1)
Pore volumeTiO2 185.41 0.29 CNT-1 196.65 0.27 CNT-3 194.81 0.27 CNT-5 190.99 0.27 CNT-7 189.26 0.27 g-C3N4 11.91 0.05 -
[1] ZHU X D, WANG Y J, SUN R J, et al. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2 [J]. Chemosphere, 2013, 92(8): 925-932. doi: 10.1016/j.chemosphere.2013.02.066 [2] WU S Q, HU H Y, LIN Y, et al. Visible light photocatalytic degradation of tetracycline over TiO2 [J]. Chemical Engineering Journal, 2019, 382: 122842. [3] SAEED M, MUNEER M, HAQ A U, et al. Photocatalysis: An effective tool for photodegradation of dyes-a review [J]. Environmental Science and Pollution Research International, 2022, 29(1): 293-311. doi: 10.1007/s11356-021-16389-7 [4] WANG X N, SAYED M, RUZIMURADOV O, et al. A review of step-scheme photocatalysts [J]. Applied Materials Today, 2022, 29: 101609. doi: 10.1016/j.apmt.2022.101609 [5] 陈丽华, 杜建斌, 王茀学, 等. ZIF-8复合物光催化去除水体污染物 [J]. 环境化学, 2022, 41(7): 2149-2161. doi: 10.7524/j.issn.0254-6108.2021031401 CHEN L H, DU J B, WANG F X, et al. Photocatalytic removal of water pollutants in ZIF-8 composites [J]. Environmental Chemistry, 2022, 41(7): 2149-2161(in Chinese). doi: 10.7524/j.issn.0254-6108.2021031401
[6] MA X J, TANG X J, HU Z Z, et al. Oxygen vacancies assist a facet effect to modulate the microstructure of TiO2 for efficient photocatalytic O2 activation [J]. Nanoscale, 2023, 15(2): 768-778. doi: 10.1039/D2NR05849A [7] WEI X J, AKBAR M U, RAZA A, et al. A review on bismuth oxyhalide based materials for photocatalysis [J]. Nanoscale Advances, 2021, 3(12): 3353-3372. doi: 10.1039/D1NA00223F [8] 饶志, 顾彦, 黄春迎, 等. FeVO4可见光光催化降解有毒有机污染物 [J]. 环境化学, 2013, 32(4): 564-571. doi: 10.7524/j.issn.0254-6108.2013.04.005 RAO Z, GU Y, HUANG C Y, et al. Photodegradation of toxic organic pollutants by FeVO4 under visible light irradiation [J]. Environmental Chemistry, 2013, 32(4): 564-571(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.04.005
[9] SHIRAISHI F, IWANAGA M, KITAGAWA N, et al. Enhancing the photocatalytic decomposition of acetaldehyde in air by immobilized titanium dioxide [J]. Journal of Chemical Technology & Biotechnology, 2020, 95(7): 2034-2044. [10] MORETTI E, CATTARUZZA E, FLORA C, et al. Photocatalytic performance of Cu-doped titania thin films under UV light irradiation [J]. Applied Surface Science, 2021, 553: 149535. doi: 10.1016/j.apsusc.2021.149535 [11] 周乐乐, 沈知章, 唐灵铃, 等. Sn掺杂强化TiO2在湿空气中光催化降解甲苯的性能 [J]. 环境化学, 2022, 41(7): 2404-2413. doi: 10.7524/j.issn.0254-6108.2021031205 ZHOU L L, SHEN Z Z, TANG L L, et al. Sn doping enhanced the photocatalytic degradation of toluene by TiO2 in humid air [J]. Environmental Chemistry, 2022, 41(7): 2404-2413(in Chinese). doi: 10.7524/j.issn.0254-6108.2021031205
[12] SERWICKA E M. Titania-clay mineral composites for environmental catalysis and photocatalysis [J]. Catalysts, 2021, 11(9): 1087. doi: 10.3390/catal11091087 [13] BUTBUREE T, KOTCHASARN P, HIRUNSIT P, et al. New understanding of crystal control and facet selectivity of titanium dioxide ruling photocatalytic performance [J]. Journal of Materials Chemistry A, 2019, 7(14): 8156-8166. doi: 10.1039/C8TA11475G [14] ZHANG F, FENG G, HU M Y, et al. Liquid-plasma hydrogenated synthesis of gray titania with engineered surface defects and superior photocatalytic activity [J]. Nanomaterials (Basel, Switzerland), 2020, 10(2): 342. [15] CHEN H P, CHEN N, FENG C P, et al. Synthesis of a novel narrow-band-gap iron(II, III) oxide/titania/silver silicate nanocomposite as a highly efficient and stable visible light-driven photocatalyst [J]. Journal of Colloid and Interface Science, 2018, 515: 119-128. doi: 10.1016/j.jcis.2018.01.022 [16] KUMAR S, KARTHIKEYAN S, LEE A F. G-C3N4-based nanomaterials for visible light-driven photocatalysis [J]. Catalysts, 2018, 8(2): 74. doi: 10.3390/catal8020074 [17] GÜNDOĞMUŞ P, PARK J, ÖZTÜRK A. Preparation and photocatalytic activity of g-C3N4/TiO2 heterojunctions under solar light illumination [J]. Ceramics International, 2020, 46(13): 21431-21438. doi: 10.1016/j.ceramint.2020.05.241 [18] 马晓明, 信帅帅, 张春蕾, 等. g-C3N4/TiO2纳米管阵列光阳极的制备及其光电催化降解邻氯硝基苯 [J]. 环境科学学报, 2022, 42(8): 166-178. MA X M, XIN S S, ZHANG C L, et al. Preparation of g-C3N4/TiO2 nanotube arrays photoanode for photoelectrocatalytic degradation of o-chloronitrobenzene [J]. Acta Scientiae Circumstantiae, 2022, 42(8): 166-178(in Chinese).
[19] 郭盛祺, 马同宇, 杨波, 等. 机械混合法制备TiO2/g-C3N4复合材料及其光催化降解双酚A的性能 [J]. 环境化学, 2022, 41(4): 1425-1434. doi: 10.7524/j.issn.0254-6108.2020121201 GUO S Q, MA T Y, YANG B, et al. Preparation of TiO2/g-C3N4 composite material by mechanical mixing method and study on its photocatalytic degradation performance of bisphenol A [J]. Environmental Chemistry, 2022, 41(4): 1425-1434(in Chinese). doi: 10.7524/j.issn.0254-6108.2020121201
[20] GUO Q, ZHOU C Y, MA Z B, et al. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges [J]. Advanced Materials, 2019, 31(50): 1901997. doi: 10.1002/adma.201901997 [21] LIU Y L, WU S S, LIU J, et al. Synthesis of g-C3N4/TiO2 nanostructures for enhanced photocatalytic reduction of U(VI) in water [J]. RSC Advances, 2021, 11(8): 4810-4817. doi: 10.1039/D0RA10694A [22] SAADATI F, KERAMATI N, GHAZI M M. Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: A review [J]. Critical Reviews in Environmental Science and Technology, 2016, 46(8): 757-782. doi: 10.1080/10643389.2016.1159093 [23] 张茜, 梁海欧, 李春萍, 等. g-C3N4/CeO2异质结材料的制备及其光催化性能的研究 [J]. 化学通报, 2022, 85(12): 1475-1482. ZHANG X, LIANG H O, LI C P, et al. Preparation and photocatalytic properties of g-C3N4/CeO2 heterojunction [J]. Chemistry, 2022, 85(12): 1475-1482(in Chinese).
[24] LINCHO J, ZALESKA-MEDYNSKA A, MARTINS R C, et al. Nanostructured photocatalysts for the abatement of contaminants by photocatalysis and photocatalytic ozonation: An overview [J]. The Science of the Total Environment, 2022, 837: 155776. doi: 10.1016/j.scitotenv.2022.155776 [25] LOW J, YU J G, JARONIEC M, et al. Heterojunction photocatalysts [J]. Advanced Materials, 2017, 29(20): 1601694. doi: 10.1002/adma.201601694 [26] Di LIBERTO G, CIPRIANO L A, TOSONI S, et al. Rational design of semiconductor heterojunctions for photocatalysis [J]. Chemistry – A European Journal, 2021, 27(53): 13306-13317. doi: 10.1002/chem.202101764