-
城市湿地是与人类生产、生活和发展息息相关的生态系统之一,具有涵养水源、蓄洪防旱、维护生物多样性和降低城市热岛效应等生态功能[1],是城市生态环境与社会经济发展的“调节器”. 然而,由于城市化进程的高速推进和工矿业经济的高速发展,人类活动所产生的污染物,特别是具有难降解性、危害持久性、显著生物毒性和食物链富集放大效应等特点的重(类)金属污染物,经地表(下)径流、大气降尘等多种途径进入湿地水体环境[2],最终蓄积于湿地沉积物中,严重危害城市湿地生态系统及人类健康[3]. 因此,开展城市湿地沉积物重金属污染与生态健康风险评估对城市湿地生态环境与生物多样性的保护具有重要的理论和现实意义.
当前,众多学者就黑龙江扎龙[4]、黄河口[5]、宁夏太阳山[6]、湛江湾红树林[7]、合肥市十八联圩[1]、滇池东大河[8]和贵州草海[9]等不同类型生态湿地沉积物的重金属污染特征、生态风险及污染来源等方面开展了广泛的研究. 然而,相较于较多的重金属污染与评价研究,城市湿地沉积物重金属对人体可能造成的健康风险评价研究较少. 此外,目前面向湿地沉积物重金属污染与评价的研究几乎均采用传统的地累积污染指数法、内梅罗指数法、富集因子法、潜在生态危害指数法、健康风险评价法等重金属污染程度和风险评价方法[4,10 − 13]. 这些评价方法均是以确定性的参数和指标为基础进行相应的重金属污染评价与风险评估,而评价参数和指标本身具有可变性,从而导致评价结果的不确定性,即存在偏高或偏低的问题[14 − 16]. 蒙特卡洛的概率风险评价方法可量化和降低传统评价方法的不确定性,提高沉积物重金属污染物风险评价的准确性和科学性[17].
地处兰州西段的黄河银滩湿地公园被誉为“镶嵌在黄河边上的绿宝石”,是一个具有生态价值、经济效益、游憩和科普教育等功能的城市滨湖湿地生态公园,也是黄河流域兰州段最大的湿地生态公园之一. 近年来,随着黄河流域兰州段工农业污水排放、黄河风情线改造提升工程的修建以及过度的土地开发利用等近岸区域人类活动的加剧[18 − 19],银滩湿地公园水体受到外源有机污染物输入的影响、水体富营养化趋势较为明显且水质趋于恶化[20 − 21]. 为此,本文以兰州银滩湿地公园表层沉积物为研究对象,分析沉积物重金属(As、Cd、Cr、Cu、Hg、Ni、Pb和Zn)的含量特征,运用蒙特卡洛模拟与地累积污染指数、富集因子、综合生态风险指数和人体健康风险评价模型相结合的方法对快速城市化背景下湿地沉积物重金属的污染特征、潜在生态危害和健康风险进行概率评估,以期为该区域生态风险的精准管控和人群健康保障提供科学指导和理论依据.
基于蒙特卡洛模拟的兰州银滩湿地公园沉积物重金属污染特征及风险评价
Characteristics and risk assessment of heavy metals contamination in sediments from the Lanzhou Yintan wetland park based on Monte Carlo simulation model
-
摘要: 为探究兰州市市区湿地沉积物重金属污染状况及潜在生态风险和健康风险,以兰州银滩湿地公园为研究区,采集并分析了40个表层沉积物样品重金属As、Cd、Cr、Cu、Hg、Ni、Pb和Zn的含量. 采用蒙特卡洛模拟与地累积指数(Igeo)、富集因子(EF)、综合生态风险指数(NIRI)和人体健康风险评价模型相耦合的方法分别对沉积物重金属污染特征、综合生态风险和人体健康风险进行定量评估. 结果表明,沉积物重金属平均含量除Cd、Pb和Hg之外,其他元素含量均值均低于甘肃省土壤背景值,地累积指数和富集因子显示,沉积物以Cd污染为主,Pb和Hg次之,其余5种重金属均为无污染;综合生态风险指数表明,研究区沉积物的主要生态危害元素是Cd,且Cd对综合生态危害指数的贡献值达到了93.60%,其余元素均为低风险;健康风险评估结果显示,研究区沉积物重金属对不同人群均存在非致癌与致癌健康风险,其中对成人男性、成人女性和儿童构成非致癌风险的概率分别为:16.1%、18.3%和6.0%,Cd和Cr为主要的非致癌风险污染物;对成人男性、成人女性和儿童造成致癌暴露风险的概率分别为:8.0%、13.2%和98.1%,As和Cr为主要的致癌风险污染物.Abstract: To investigate the contamination status, potential ecological and health risks associated with heavy metals in sediment in the urban wetland of Lanzhou city. A total of 40 surface sediment samples were collected from Lanzhou Yintan wetland park and analyzed for the concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. A combination of geoaccumulation index (Igeo), enrichment factor (EF), Nemerow integrated risk index (NIRI), and a health risk assessment model coupled with Monte Carlo simulation was employed to quantitatively assess the characteristics, comprehensive ecological and human health risks of heavy metals contamination in sediments. The results showed that the mean concentrations of heavy metals in sediments were generally lower than their soil background values of Gansu Province except for Cd, Pb, and Hg. The pollution indices of Igeo and EF indicated that the sediments were mainly contaminated by Cd, followed by Pb and Hg, while the other five heavy metals were not found to be significantly contaminated. The NIRI revealed that the survey region was primarily driven by Hg, which contributed 93.60% to the comprehensive ecological hazard index. Moreover, the ecological risks associated with As, Cd, Cr, Cu, Ni, Pb, and Zn were found to be low. Health risk assessment indicated that heavy metals in sediments posed noncarcinogenic and carcinogenic risks to all populations. The probabilities of noncarcinogenic risks were 16.1%, 18.3%, and 6.0% for adult males, adult females, and children, respectively, with Cd and Cr identified as the main noncarcinogenic risk metals. For carcinogenic risks, the probabilities were 8.1%, 13.2%, and 98.1% for adult males, adult females, and children, respectively, with As and Cr identified as the main carcinogenic risk metals.
-
Key words:
- heavy metal /
- geoaccumulation /
- enrichment factor /
- ecological risk /
- Yintan wetland park.
-
图 7 兰州银滩湿地公园沉积物重金属成人男性(a)、成人女性(b)、儿童(c)非致癌健康风险和成人男性(d)、成人女性(e)和儿童(f)致癌健康风险评价的敏感性分析
Figure 7. Sensitivity analysis of adult males (a), adult females (b), and children (c) noncarcinogenic (NCR) health risk and adult males (d), adult females (e), and children (f) carcinogenic (CR) health risk of heavy metals in sediments from the Yintan wetland park of Lanzhou
表 1 沉积物重金属污染评价方法的分级标准
Table 1. Classification standard of heavy metal pollution evaluation method for sediment
Igeo 数值范围
Value rangeIgeo≤0 0<Igeo≤1 1<Igeo≤2 2<Igeo≤3 3<Igeo≤4 4<Igeo 污染等级
Pollution grade无污染 轻度污染 中度污染 偏重污染 重度污染 严重污染 EF 数值范围
Value rangeEF≤1 1<EF≤2 2<EF≤5 5<EF≤20 20<EF≤40 EF>40 污染等级
Pollution grade无污染 轻微污染 中度污染 较强污染 强污染 极强污染 Eir 数值范围
Value rangeEir≤40 40<Eir≤80 80<Eir≤160 160<Eir≤320 Eir>320 — 污染等级
Pollution grade轻微风险 中等风险 较强风险 很强风险 极强风险 — NIRI 数值范围
Value rangeNIRI≤40 40<NIRI≤80 80<NIRI≤160 160<NIRI≤320 NIRI>320 — 污染等级
Pollution grade轻微风险 中等风险 较强风险 很强风险 极强风险 — 注:“—”表示无相关内容或数据,下文同此. Note:No related content or data are available, hereinafter the same. 表 2 基于蒙特卡洛模拟的沉积物人体健康风险模型参数值
Table 2. Parameter values of health risk assessment model in sediments via Monte Carlo simulation
暴露参数
Exposure
factor概率分布
Probability
distribution成人男性
Adult males成人女性
Adult females儿童
Children参考文献
ReferenceIRing 点分布 114 114 200 [36] ED 点分布 70 70 18 [36] EF 三角分布1) 345(180—365) 345(180—365) 345(180—365) [36] BW 对数分布2) 67.55±8.72 57.59±8.03 — [36] BW 三角分布1) — — 29.3(5.25—56.8) [36] ABS 点分布 0.03 (As), 0.14 (Cd), 0.04 (Cr), 0.1 (Cu), 0.05 (Hg), 0.35 (Ni), 0.006 (Pb), 0.02 (Zn) [36] SA 三角分布1) 0.169(0.085—0.422) 0.153(0.076—0.382) 0.086(0.043—0.216) [36] AF 对数分布2) 0.49±0.54 0.49±0.54 0.65±1.2 [36] CF 点分布 1×10−6 1×10−6 1×10−6 [37] AT(非致癌) 点分布 365×ED 365×ED 365×ED [37] AT(致癌) 点分布 365×70 365×70 365×70 [37] 注:1)三角分布:最可能值(最小值,最大值);2)对数分布:平均值±标准差.
Note: 1) Triangular distribution: Most probable value (Minimum, Maximum); 2) Logarithmic distribution: Mean±Standard deviation.表 3 重金属的致癌斜率因子和非致癌参考剂量
Table 3. Slope factor and reference dose of heavy metals
项目
ItemAs Cd Cr Cu Hg Ni Pb Zn 参考文献
ReferenceRfDing 3.00×10−4 1.00×10−3 3.00×10−3 4.00×10−2 3.00×10−4 2.00×10−2 3.50×10−3 3.00×10−1 [36] RfDderm 1.23×10−4 1.00×10−5 6.00×10−5 1.20×10−2 2.10×10−5 5.40×10−3 5.25×10−4 6.00×10−2 [36] SFing 1.50 1.80 5.00×10−1 — — — 8.50×10−3 — [36] SFderm 3.66 3.80×10−1 — — — — — — [36] 表 4 兰州银滩湿地公园沉积物重金属描述性统计(mg·kg–1)
Table 4. Descriptive statistics of heavy metals in sediments from the Lanzhou Yintan wetland park (mg·kg–1)
项目
ItemAs Cd Cr Cu Hg Ni Pb Zn 参考文献
Reference湿地沉积物
Wetland Sediment最小值 7.3 0.06 31.39 16.49 0.009 19.65 17.24 48.67 本研究 平均值 10.44 0.82 37.88 20.84 0.03 23.71 37.38 61.92 最大值 15.81 7.283 49.84 26.31 0.108 33.06 197.13 95.44 标准差 1.6 1.37 4.3 2.3 0.02 2.79 34.31 10.31 变异系数/(%) 15.33 167.07 11.35 11.04 66.67 11.77 91.79 16.65 参考值
Reference value上地壳金属元素 1.5 0.1 35 25 — 20 20 71 [38] 中国水系沉积物背景值 9 0.13 54 20 0.034 23 23 67 [39] 甘肃省土壤元素背景值 12.6 0.12 70.2 24.1 0.02 35.2 18.8 68.5 [31] 最低效应水平 6 0.6 26 16 0.2 16 31 120 [40] 严重效应水平 33 10 110 110 2 75 250 820 [40] 毒性参考值 1.5 0.6 26 9 0.15 52 31 120 [40] 表 5 基于蒙特卡洛模拟的兰州银滩湿地公园沉积物重金属生态风险指数评价
Table 5. Ecological risk assessment of heavy metals in sediments from the Lanzhou Yintan wetland park via Monte Carlo simulation
生态风险指数
Ecological risk重金属
Elements分布范围
Distribution range平均值
Mean沉积物生态风险指数处于不同风险等级的概率
Probability of ecological risk index factor at different risk levels in sediments轻微
Slight中等
Moderate较强
Significant很强
Very high极强
ExtremeEir As 0.55—14.26 8.29 100% 0 0 0 0 Cd 14.00—2000.00 200.39 30.60% 21.78% 18.81% 2.87% 15.85% Cr 0.28—1.78 1.07 100% 0 0 0 0 Cu 3.12—6.63 4.33 100% 0 0 0 0 Hg 13.27—537.79 57.90 40.59% 40.59% 14.85% 0 0 Ni 2.79—5.86 3.37 100% 0 0 0 0 Pb 4.55—619.59 11.10 96.04% 1.98% 0 0 0.99% Zn 0.70—1.86 0.90 100% 0 0 0 0 NIRI 12.05—1488.68 165.38 39.00% 22.00% 16.00% 11.00% 12.00% 表 6 基于蒙特卡洛模拟的兰州银滩湿地公园沉积物重金属的非致癌健康风险评价
Table 6. Non-carcinogenic health risk assessment of heavy metals in the sediments from the Lanzhou Yintan wetland park via Monte Carlo simulation
类型
Type重金属
ElementsHQ手口摄入 HQ皮肤接触 HQ 成人男性
Adult males成人女性
Adult females儿童
Children成人男性
Adult males成人女性
Adult females儿童
Children成人男性
Adult males成人女性
Adult females儿童
Children非致癌风险
Non-
carcinogenic
riskAs 4.85×10−2 5.68×10−2 5.61×10−2 3.45×10−2 3.66×10−2 1.56×10−2 8.29×10−2 9.34×10−2 7.16×10−2 Cd 1.35×10−3 1.58×10−3 1.50×10−3 1.92×10−1 2.15×10−1 8.00×10−2 1.94×10−1 2.17×10−1 8.15×10−2 Cr 1.75×10−2 2.06×10−2 2.02×10−2 3.40×10−1 3.63×10−1 1.53×10−1 3.57×10−1 3.83×10−1 1.73×10−1 Cu 7.26×10−4 8.55×10−4 6.93×10−3 2.35×10−3 2.52×10−3 8.65×10−3 3.07×10−3 3.37×10−3 1.56×10−2 Hg 1.34×10−4 1.58×10−4 1.56×10−4 9.27×10−4 1.01×10−3 4.19×10−4 1.06×10−3 1.16×10−3 5.75×10−4 Ni 1.65×10−3 1.94×10−3 1.90×10−3 2.08×10−2 2.22×10−2 9.39×10−3 2.24×10−2 2.41×10−2 1.13×10−2 Pb 1.72×10−2 1.95×10−2 1.86×10−2 1.13×10−2 1.13×10−2 4.83×10−3 2.86×10−2 3.08×10−2 2.34×10−2 Zn 2.89×10−4 3.38×10−4 3.36×10−4 2.80×10−4 2.98×10−4 1.28×10−4 5.69×10−4 6.36×10−4 4.64×10−4 表 7 基于蒙特卡洛模拟的兰州银滩湿地公园沉积物重金属的致癌健康风险评价
Table 7. Carcinogenic health risk assessment of heavy metals in the sediments from the Lanzhou Yintan wetland park via Monte Carlo simulation
类型
Type重金属Elements CR手口摄入 CR皮肤接触 TCR 成人男性
Adult males成人女性
Adult females儿童
Children成人男性
Adult males成人女性
Adult females儿童
Children成人男性
Adult males成人女性
Adult females儿童
Children致癌风险
Carcinogenic riskAs 2.18×10−5 2.56×10−5 9.81×10−5 1.55×10−5 1.65×10−5 2.73×10−5 3.73×10−5 4.21×10−5 1.25×10−4 Cd 2.43×10−6 2.84×10−6 1.05×10−5 7.31×10−7 8.18×10−7 1.18×10−6 3.16×10−6 3.66×10−6 1.17×10−5 Cr 2.63×10−5 3.09×10−5 1.18×10−4 — — — 2.63×10−5 3.09×10−5 1.18×10−4 Pb 5.13×10−7 5.79×10−7 2.15×10−6 — — — 5.13×10−7 5.79×10−7 2.15×10−6 -
[1] 陈姗, 许凡, 谢三桃, 等. 合肥市十八联圩湿地表层沉积物营养盐与重金属分布及污染评价[J]. 环境科学, 2019, 40(11): 4932—4943. doi: 10.13227/j.hjkx.201903184 CHEN S, XU F, XIE S T, et al. Distribution and pollution assessment of nutrients and heavy metals in surface sediments from shibalianwei wetland in Hefei, Anhui Province, China[J]. Environmental Science, 2019, 40(11): 4932-4943 (in Chinese). doi: 10.13227/j.hjkx.201903184
[2] 陈海南, 张春华, 刘国强, 等. 广西北部湾沉积物重金属污染特征及生态风险评价[J]. 环境化学, 2022, 41(9)∶2872—2879. doi: 10.7524/j.issn.0254-6108.2021051505 CHEN H N, ZHANG C H, LIU G Q, et al. Evaluation on sediment pollution and potential ecological risks in Guangxi Beibu Gulf[J]. Environmental Chemistry, 2022, 41(9): 2872-2879 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021051505
[3] XIA F, QU L Y, WANG T, et al. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system[J]. Chemosphere, 2018, 207: 218-228. doi: 10.1016/j.chemosphere.2018.05.090 [4] 叶华香, 臧淑英, 张丽娟, 等. 扎龙湿地沉积物重金属空间分布特征及其潜在生态风险评价[J]. 环境科学, 2013, 34(4)∶1333—1339. doi: 10.13227/j.hjkx.2013.04.046 YE H X, ZANG S Y, ZHANG L J, et al. Distribution and potential ecological risk assessment of heavy metals in sediments of Zhalong wetland[J]. Environmental Science, 2013, 34(4): 1333-1339 (in Chinese). doi: 10.13227/j.hjkx.2013.04.046
[5] 刘淑民, 姚庆祯, 刘月良, 等. 黄河口湿地表层沉积物中重金属的分布特征及其影响因素[J]. 中国环境科学, 2012, 32(9)∶1625—1631. doi: 10.3969/j.issn.1000-6923.2012.09.013 LIU S M, YAO Q Z, LIU Y L, et al. Distribution and influence factors of heavy metals in surface sediments of the Yellow River Estuary wetland[J]. China Environmental Science, 2012, 32(9): 1625-1631 (in Chinese). doi: 10.3969/j.issn.1000-6923.2012.09.013
[6] 赵增锋, 冯娜, 邱小琮, 等. 宁夏太阳山湿地水环境重金属分布特征及污染评价[J]. 生态与农村环境学报, 2022, 38(2)∶168—175. doi: 10.19741/j.issn.1673-4831.2021.0136 ZHAO Z F, FENG N, QIU X C, et al. Distribution characteristics and pollution evaluation of heavy metals in water environment of Taiyangshan wetland in Ningxia[J]. Journal of Ecology and Rural Environment, 2022, 38(2): 168-175 (in Chinese). doi: 10.19741/j.issn.1673-4831.2021.0136
[7] 罗松英, 邢雯淋, 梁绮霞, 等. 湛江湾红树林湿地表层沉积物重金属形态特征、生态风险评价及来源分析[J]. 生态环境学报, 2019, 28(2)∶348—358. doi: 10.16258/j.cnki.1674-5906.2019.02.017 LUO S Y, XING W L, LIANG Q X, et al. Speciation, ecological risk assessment and source analysis of heavy metals in the surface sediments of mangrove wetland in Zhanjiang Bay[J]. Ecology and Environmental Sciences, 2019, 28(2): 348-358 (in Chinese). doi: 10.16258/j.cnki.1674-5906.2019.02.017
[8] 岑言霸, 苏斌, 陈越豪, 等. 滇池东大河湿地沉积物重金属空间分异特征及生态风险评价[J]. 环境化学, 2023, 42(4)∶1—12. CEN Y B, SU B, CHEN Y H, et al. Spatial distribution and ecological risk assessment of heavy metals in sediments of Dongda River wetland in Dianchi Lake[J]. Environmental Chemistry, 2023, 42(4): 1-12 (in Chinese).
[9] XIA P H, MA L, SUN R G, et al. Evaluation of potential ecological risk, possible sources and controlling factors of heavy metals in surface sediment of Caohai Wetland, China[J]. Science of the Total Environment, 2020, 740: 140231. doi: 10.1016/j.scitotenv.2020.140231 [10] 马康, 史璇, 尤晓光, 等. 河流岸带湿地沉积物重金属分布对植被物种多样性和底栖动物群落特征的影响[J]. 生态学报, 2021, 41(5)∶2001—2010. MA K, SHI X, YOU X G, et al. Relationship of the heavy metals distribution in sediments to vegetation diversity and macroinvertebrate communities in riparian wetlands[J]. Acta Ecologica Sinica, 2021, 41(5): 2001-2010 (in Chinese).
[11] 王柏淳, 朱四喜, 赵斌, 等. 贵州锁黄仓湿地沉积物重金属空间分布及生态风险评价[J]. 水生态学杂志, 2021, 42(1)∶49—57. doi: 10.15928/j.1674-3075.201903150062 WANG B C, ZHU S X, ZHAO B, et al. Spatial distribution and ecological risk assessment of heavy metals in surface sediments of Suohuangcang wetland in Guizhou Province[J]. Journal of Hydroecology, 2021, 42(1): 49-57 (in Chinese). doi: 10.15928/j.1674-3075.201903150062
[12] 蔡长卿, 金昌盛, 陈佳, 等. 东洞庭湖沉积物重金属污染及生态-健康风险[J]. 农业环境科学学报, 2022, 41(6)∶1337—1347. doi: 10.11654/jaes.2021-1488 CAI C Q, JIN C S, CHEN J, et al. Sediment heavy metal pollution and its ecological and health risk assessment in the East Dongting Lake, China[J]. Journal of Agro-Environment Science, 2022, 41(6): 1337-1347 (in Chinese). doi: 10.11654/jaes.2021-1488
[13] 尹德超, 祁晓凡, 王雨山, 等. 雄安新区白洋淀表层沉积物重金属地球化学特征及生态风险评价[J]. 中国地质, 2022, 49(3)∶979—992. YIN D C, QI X F, WANG Y S, et al. Geochemical characteristics and ecological risk assessment of heavy metals in surface sediments of Baiyangdian Lake, Xiong’an New Area[J]. Geology in China, 2022, 49(3): 979-992 (in Chinese).
[14] 杨湜烟, 刘杏梅, 徐建明. 土壤重金属污染健康风险评估新视角: 概率风险评估的源起及展望[J]. 土壤学报, 2022, 59(1)∶28—37. doi: 10.11766/trxb202009120516 YANG S Y, LIU X M, XU J M. New perspectives about health risk assessment of soil heavy metal pollution—origin and prospects of probabilistic risk analysis[J]. Acta Pedologica Sinica, 2022, 59(1): 28-37 (in Chinese). doi: 10.11766/trxb202009120516
[15] 王静, 魏恒, 潘波. 中国农田土壤Cd累积分布特征及概率风险评价[J]. 环境科学,2023, 44(7): 4006-4016. WANG J, WEI H, PAN B. Accumulation characteristics and probabilistic risk assessment of Cd in agricultural soils across China[J]. Environmental Science , 2023, 44(7): 4006-4016(in Chinese).
[16] 庞阔, 李敏, 刘璐, 等. 基于蒙特卡洛模拟与PMF模型的黄河流域沉积物重金属污染评价及源解析[J]. 环境科学, 2022, 43(8)∶4008—4017. doi: 10.13227/j.hjkx.202111172 PANG K, LI M, LIU L, et al. Evaluation and source analysis of heavy metal pollution in sediments of the Yellow River Basin based on Monte Carlo simulation and PMF model[J]. Environmental Science, 2022, 43(8): 4008-4017 (in Chinese). doi: 10.13227/j.hjkx.202111172
[17] YANG Q C, ZHANG L M, WANG H L, et al. Bioavailability and health risk of toxic heavy metals (As, Hg, Pb and Cd) in urban soils: A Monte Carlo simulation approach[J]. Environmental Research, 2022, 214: 113772. doi: 10.1016/j.envres.2022.113772 [18] 赵夏婷, 李珊, 王兆炜, 等. 黄河兰州段水体中有色溶解性有机质组成、空间分布特征及来源分析[J]. 环境科学, 2018, 39(9)∶4105—4113. doi: 10.13227/j.hjkx.201711181 ZHAO X T, LI S, WANG Z W, et al. Composition, spatial distribution characteristics and source analysis of chromophoric dissolved organic matter in the Lanzhou reach of the Yellow River[J]. Environmental Science, 2018, 39(9): 4105-4113 (in Chinese). doi: 10.13227/j.hjkx.201711181
[19] 李雪迎, 杨曦, 乔琦, 等. 黄河流域甘肃段工业行业水污染物空间排放特征[J]. 环境科学, 2022, 43(5)∶2459—2466. doi: 10.13227/j.hjkx.202108253 LI X Y, YANG X, QIAO Q, et al. Emission characteristics of industrial water pollutants in Gansu section of the Yellow River Basin[J]. Environmental Science, 2022, 43(5): 2459-2466 (in Chinese). doi: 10.13227/j.hjkx.202108253
[20] 郜逗, 张成君, 张菀漪, 等. 兰州市银滩湿地小生境沉积物中硅藻的属种分布及特征[J]. 生态环境学报, 2011, 20(10)∶1518—1522. doi: 10.3969/j.issn.1674-5906.2011.10.022 GAO D, ZHANG C J, ZHANG W Y, et al. Diatom distribution characteristics of a ecological niche in Yintan wetland of Lanzhou[J]. Ecology and Environmental Sciences, 2011, 20(10): 1518-1522 (in Chinese). doi: 10.3969/j.issn.1674-5906.2011.10.022
[21] 张丽, Imbabazi Berthe, 徐荣海, 等. 兰州银滩湿地沉积物有机质源解析及色素对环境的指示[J]. 兰州大学学报(自然科学版), 2017, 53(1)∶35—42, 47. doi: 10.13885/j.issn.0455-2059.2017.01.005 ZHANG L, BERTHE I, Xu R H, et al. Organic matter sources in the Lanzhou Yintan wetland and pigments that can indicate relevant environments[J]. Journal of Lanzhou University (Natural Sciences), 2017, 53(1): 35-42, 47 (in Chinese). doi: 10.13885/j.issn.0455-2059.2017.01.005
[22] 唐铭, 郭浩磊. 兰州银滩湿地公园现状评价与保护对策[J]. 安徽农业科学, 2010, 38(2)∶1015—1017, 1035. doi: 10.3969/j.issn.0517-6611.2010.02.187 TANG M, GUO H L. Study on the state evaluation and protection countermeasures of Yintan wetland park in Lanzhou[J]. Journal of Anhui Agricultural Sciences, 2010, 38(2): 1015-1017, 1035 (in Chinese). doi: 10.3969/j.issn.0517-6611.2010.02.187
[23] 张华, 康雅茸. 银滩黄河湿地植被优势种光合作用影响因子识别[J]. 西北师范大学学报(自然科学版), 2016, 52(6)∶111—117. doi: 10.16783/j.cnki.nwnuz.2016.06.020 ZHANG H, KANG Y R. Effect factors of photosynthesis of plant species in Yintan Wetland of Yellow River[J]. Journal of Northwest Normal University (Natural Science), 2016, 52(6): 111-117 (in Chinese). doi: 10.16783/j.cnki.nwnuz.2016.06.020
[24] 黄宏, 商栩, 梅琨, 等. 基于Monte Carlo模拟的河流水质评价: 以温瑞塘河为例[J]. 中国环境科学, 2019, 39(5)∶2210—2218. doi: 10.3969/j.issn.1000-6923.2019.05.050 HUANG H, SHANG X, MEI K, et al. River water quality assessment based on Monte Carlo simulation: A case study of Wen-Rui Tang River[J]. China Environmental Science, 2019, 39(5): 2210-2218 (in Chinese). doi: 10.3969/j.issn.1000-6923.2019.05.050
[25] 熊鸿斌, 陈神剑. 基于Monte Carlo-Hakanson模型的土壤重金属生态风险评价研究[J]. 农业环境科学学报, 2020, 39(8)∶1706—1712. doi: 10.11654/jaes.2020-0054 XIONG H B, CHEN S J. Reducing uncertainty in ecological risk assessment for heavy metal contamination based on Monte Carlo–Hakanson model[J]. Journal of Agro-Environment Science, 2020, 39(8): 1706-1712 (in Chinese). doi: 10.11654/jaes.2020-0054
[26] MULLER G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2: 108-118. [27] 尹芳, 封凯, 尹翠景, 等. 青海典型工业区耕地土壤重金属评价及源解析[J]. 中国环境科学, 2021, 41(11)∶5217—5226. doi: 10.3969/j.issn.1000-6923.2021.11.030 YIN F, FENG K, YIN C J, et al. Evaluation and source analysis of heavy metal in cultivated soil around typical industrial district of Qinghai Province[J]. China Environmental Science, 2021, 41(11): 5217-5226 (in Chinese). doi: 10.3969/j.issn.1000-6923.2021.11.030
[28] ZOLLER W H, GLADNEY E S, DUCE R A. Atmospheric concentrations and sources of trace metals at the South pole[J]. Science, 1974, 183(4121): 198-200. doi: 10.1126/science.183.4121.198 [29] NIENCHESKI L F, BAUMGARTEN M G Z. Distribution of particulate trace metal in the southern part of the Patos Lagoon Estuary[J]. Aquatic Ecosystem Health and Management, 2000, 3(4): 515-520. doi: 10.1080/14634980008650688 [30] WU Q M, HU W Y, WANG H F, et al. Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China[J]. Science of the Total Environment, 2021, 780: 146557. doi: 10.1016/j.scitotenv.2021.146557 [31] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. China Environmental Monitoring Station. Chinese soil element background value[M]. Beijing: China Environmental Science Press, 1990 (in Chinese).
[32] MEN C, LIU R M, XU L B, et al. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China[J]. Journal of Hazardous Materials, 2020, 388: 121763. doi: 10.1016/j.jhazmat.2019.121763 [33] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [34] VAROL M. Environmental, ecological and health risks of trace metals in sediments of a large reservoir on the Euphrates River (Turkey)[J]. Environmental Research, 2020, 187: 109664. doi: 10.1016/j.envres.2020.109664 [35] USEPA. Risk assessment guidance for Superfund. Volume I-Human Health Evaluation Manual (Part A)[R]. Washington DC: Office of Emergency and Remedial Response. 1989. [36] LI Y Z, CHEN H Y, TENG Y G. Source apportionment and source-oriented risk assessment of heavy metals in the sediments of an urban river-lake system[J]. Science of the Total Environment, 2020, 737: 140310. doi: 10.1016/j.scitotenv.2020.140310 [37] 朱成斌, 胡菁, 龙云川, 等. 贵州草海沉积物重金属元素分布特征及健康风险评价[J]. 环境科学学报, 2021, 41(6)∶2212—2221. doi: 10.13671/j.hjkxxb.2020.0455 ZHU C B, HU J, LONG Y C, et al. Spatial distribution fractionation and human health risk assessment of heavy metals in surface sediments from Caohai Lake, Guizhou[J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2212-2221 (in Chinese). doi: 10.13671/j.hjkxxb.2020.0455
[38] TAYLOR S R, McLENNAN S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262 [39] 史长义, 梁萌, 冯斌. 中国水系沉积物39种元素系列背景值[J]. 地球科学, 2016, 41(2)∶234—251. SHI C Y, LIANG M, FENG B. Average background values of 39 chemical elements in stream sediments of China[J]. Earth Science, 2016, 41(2): 234-251 (in Chinese).
[40] CHEN R H, CHEN H Y, SONG L T, et al. Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils[J]. Science of the Total Environment, 2019, 694: 133819. doi: 10.1016/j.scitotenv.2019.133819 [41] NIU S P, GAO L M, WANG X. Characterization of contamination levels of heavy metals in agricultural soils using geochemical baseline concentrations[J]. Journal of Soils and Sediments, 2019, 19(4): 1697-1707. doi: 10.1007/s11368-018-2190-1 [42] CHAI L, WANG Y H, WANG X, et al. Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China[J]. Ecological Indicators, 2021, 125: 107507. doi: 10.1016/j.ecolind.2021.107507 [43] 康乐, 彭鑫波, 马延龙, 等. 兰州市耕地表层土壤重金属的积累特征及其影响因素分析[J]. 环境科学, 2023, 44(3)∶1620—1635. doi: 10.13227/j.hjkx.202204096 KANG L, PENG X B, MA Y L, et al. Accumulation characteristics and influencing factors of heavy metals in cultivated land surface soil in Lanzhou[J]. Environmental Science, 2023, 44(3): 1620-1635 (in Chinese). doi: 10.13227/j.hjkx.202204096
[44] WANG Y M, ZHANG L X, WANG J N, et al. Identifying quantitative sources and spatial distributions of potentially toxic elements in soils by using three receptor models and sequential indicator simulation[J]. Chemosphere, 2020, 242: 125266. doi: 10.1016/j.chemosphere.2019.125266 [45] 杨安, 邢文聪, 王小霞, 等. 西藏中部河流、湖泊表层沉积物及其周边土壤重金属来源解析及风险评价[J]. 中国环境科学, 2020, 40(10)∶4557—4567. doi: 10.3969/j.issn.1000-6923.2020.10.043 YANG A, XING W C, WANG X X, et al. Source and risk assessment of heavy metals in surface sediments of rivers, lakes and their surrounding soils in central Tibet[J]. China Environmental Science, 2020, 40(10): 4557-4567 (in Chinese). doi: 10.3969/j.issn.1000-6923.2020.10.043
[46] 陈明, 蔡青云, 徐慧, 等. 水体沉积物重金属污染风险评价研究进展[J]. 生态环境学报, 2015, 24(6)∶1069—1074. doi: 10.16258/j.cnki.1674-5906.2015.06.024 CHEN M, CAI Q Y, XU H, et al. Research progress of risk assessment of heavy metals pollution in water body sediments[J]. Ecology and Environmental Sciences, 2015, 24(6): 1069-1074 (in Chinese). doi: 10.16258/j.cnki.1674-5906.2015.06.024
[47] 佟瑞鹏, 杨校毅. 基于蒙特卡罗模拟的土壤环境健康风险评价: 以PAHs为例[J]. 环境科学, 2017, 38(6)∶2522—2529. TONG R P, YANG X Y. Environmental health risk assessment of contaminated soil based on Monte Carlo method: A case of PAHs[J]. Environmental Science, 2017, 38(6): 2522-2529 (in Chinese).
[48] LIU Q Q, WANG F F, MENG F P, et al. Assessment of metal contamination in estuarine surface sediments from Dongying City, China: Use of a modified ecological risk index[J]. Marine Pollution Bulletin, 2018, 126: 293-303. doi: 10.1016/j.marpolbul.2017.11.017 [49] TIAN K, WU Q M, LIU P, et al. Ecological risk assessment of heavy metals in sediments and water from the coastal areas of the Bohai Sea and the Yellow Sea[J]. Environment International, 2020, 136: 105512. doi: 10.1016/j.envint.2020.105512 [50] CUI L, WANG X N, LI J, et al. Ecological and health risk assessments and water quality criteria of heavy metals in the Haihe River[J]. Environmental Pollution, 2021, 290: 117971. doi: 10.1016/j.envpol.2021.117971 [51] 李军, 李旭, 李开明, 等. 黄河兰州段城市河道表层沉积物重金属空间分布特征及来源解析[J]. 环境科学,2023,44(5):2562-2573 . LI J, LI X, LI K M, et al. Spatial distribution characteristics and source analysis of heavy metals in urban river surface sediments from the Lanzhou reach of the Yellow River[J]. Environmental Science , 2023, 44(5): 2562-2573 (in Chinese).
[52] LI Z Y, MA Z W, Van der KUIJP T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468/469: 843-853. doi: 10.1016/j.scitotenv.2013.08.090 [53] HUANG J L, WU Y Y, SUN J X, et al. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model[J]. Journal of Hazardous Materials, 2021, 415: 125629. doi: 10.1016/j.jhazmat.2021.125629 [54] COGLIANO V J, BAAN R, STRAIF K, et al. Preventable exposures associated with human cancers[J]. JNCI: Journal of the National Cancer Institute, 2011, 103(24): 1827-1839. doi: 10.1093/jnci/djr483