-
废线路板中包含60多种元素[1],由30%左右的金属物质和70%左右的非金属物质组成[2],其中金属物质中既含有回收价值很高的铜、锡、金、银、钯等,也含有铅、镉、砷等对环境可能产生严重危害的有害金属[3 − 7],其会随着废线路板的利用过程释放出来,从而对生态环境和人体健康造成严重影响. 目前,废线路板利用工艺主要有机械物理、湿法冶金、火法冶炼、热解处理、生物浸出、超临界流体氧化法等[8 − 12],在我国实际应用最普遍的仍是机械物理法[13 − 14],包括干法和湿法两种工艺路线. 其中湿法分选工艺使用水作为分选介质,利用过程会产生大量含重金属和有机物的废水,同时,产生的含水非金属富集体较难利用处置. 江苏省已明令禁止使用该工艺对废线路板实施利用[15];而在干法分选工艺过程中,需将废线路板破碎至0.6 mm以下,可实现金属与非金属的完全分离,为后续分选工艺奠定基础[16]. 在破碎和分选过程中,大量附着有重金属和有机污染物的粉尘得以释放,在不同粒径颗粒物中呈现不同的分布特征[17],并伴随着污染物的迁移对生态环境产生影响. 因此粉尘污染控制是干法分选工艺的重点,也是其难点.
废线路板主要包括废弃电器电子产品拆解产生的含电子元器件的废电路板,以及印刷线路板制造产生的报废板和边角料[18]. 在以往的研究中,大多学者以含电子元器件的废电路板为研究对象,分析其拆解、利用过程中存在的风险[19 − 20]. 然而本课题组发现,由于印刷线路板复杂的生产流程及生产中大量含重金属原辅材料的使用,生产过程产生的废线路板和边角料中重金属元素也很复杂,并会随废线路板的利用而释放,从而对生态环境和人体健康产生影响;同时,采用机械物理法利用报废印刷线路板得到的分选产物,较利用脱除元器件的废电路板金属纯度相对较高,后续循环利用价值更高. 本研究以采用干法机械分选工艺、主要利用报废印刷线路板的企业为研究对象,研究废线路板利用过程重金属在灰尘和悬浮颗粒物中的富集特征和污染水平,通过相关性分析和主成分分析等揭示重金属的迁移规律,为精准防控利用过程中重金属污染,保障人民生命健康和生态环境安全提供依据.
废线路板利用过程重金属污染特征、迁移及风险评估
Pollution and migration characteristics and potential ecological risk assessment of heavy metals in waste circuit boards recycling process
-
摘要: 电子工业的发展和电器电子产品更新换代的加速使得废线路板产生量逐年增加. 废线路板虽然资源回收价值高,但伴随其利用,重金属等污染物的释放会对生态环境和人体健康造成严重危害. 因此,研究废线路板利用过程重金属的污染特征和迁移规律可为精准防控利用过程的重金属污染,保障人民群众健康和生态环境安全提供依据. 本研究以采用机械分选工艺利用报废印刷线路板的企业为研究对象,通过采集车间内外不同环境介质样品,运用富集因子法和地累积指数法评价了废线路板利用过程重金属的富集和污染特征,并结合Pearson相关性分析、主成分分析等统计分析方法,阐明利用过程重金属的迁移规律,使用潜在生态风险指数法(RI)分析了潜在生态风险. 结果表明,废线路板利用车间内灰尘和总悬浮颗粒物(TSP)中Cu浓度最高,Cd浓度最低; Sn、Cu、Pb、Cd、Zn在灰尘和TSP中表现出不同程度的富集;Sn、Cd、Pb在车间内主要分布于TSP中,但在车间外的富集程度和污染水平明显降低,表明其对车间外区域的影响范围有限. Cu、Pb、Sn、Cd等元素性质和在颗粒中的存在形态不同,其迁移特征也有所差异,但废线路板利用过程重金属的迁移规律总体可以总结为:破碎的小颗粒物料—车间内TSP—车间内灰尘/车间外—地表灰尘或土壤—扬尘—TSP. 车间内灰尘和TSP的RI值分别为386、1706, Cu、Cd、Pb均是贡献最高的因子. 因此,妥善处置定期清理的灰尘,保持车间相对密闭和微负压状态,并对收集的废气进行处理可有效控制废线路板利用过程重金属污染.Abstract: The annual generation of waste printed circuit boards (WPCBs) has increased over the last decade due to the rapid development of the electronic information industry and the acceleration of the replacement of electrical and electronic products. While waste printed circuit boards (WPCBs) have high recycling values, their recycling can also pose a threat to ecological safety and human health due to the presence of harmful heavy metals such as Pb, Cd, and As. Therefore, researching the pollution and migration characteristics of heavy metals in the recycling process of WPCBs can provide a foundation for precise pollution prevention and control measures for protecting both human health and environmental safety. In this study, a WPCB recycling enterprise, which mainly uses defective WPCBs, with mechanical separation was taken for the research object, environmental media samples of dust, total suspended particulates (TSP) and soil were collected. The enrichment factor and geo-accumulation index were used to evaluate the enrichment and pollution characteristics of heavy metals, and statistical analysis methods such as Pearson correlation analysis, and principal component analysis were used to expound and reveal the migration regularity in the recycling process. Additionally, a comprehensive potential ecological risk index (RI) was used to estimate the potential ecological risk of heavy metals. It showed that the concentration of Cu was the highest and Cd was the lowest in dust and TSP in the workshop. Sn, Cu, Pb, Cd and Zn showed varying enrichment in both dust and TSP. When compared with distribution mainly in dust, Sn, Cd, and Pb were predominantly distributed in TSP. While, the impact on the environment outside the workshop of Sn, Cu and Pb in TSP was demonstrated rarely limited. Due to different properties and morphology in particles, Cu, Pb, Sn and Cd expressed different migration characteristics. In general, the migration characteristics of heavy metals in WPCBs recycling were presented as follows: crushed WPCBs with small particle size-TSP in the workshop-dust in the workshop and TSP outside the workshop-surface dust or soil-flying dust-TSP. The RIs of dust and TSP in the workshop were 386 and 1706, respectively, among which Cu, Cd and Pb contributed more. Therefore, several measures for managing and controlling pollution caused by heavy metals were proposed for recycling enterprises. These measures include the proper disposal of cleaned dust within the workshop, utilizing a closed and slightly negative pressure workshop, and installing a set of gas collection and treatment facilities.
-
表 1 采样点位及样品数量
Table 1. Sampling sites and samples quantity
样品类型
Sample types采样点位数
Numbers of Sampling sites采样点位布置/点位数
Sampling location /Numbers of sampling sites样品数量
Samples quantity灰尘 7 车间内不同区域/5
车间外窗台/226 TSP 4 车间内不同区域/3
车间外下风向/112 土壤 15 车间外1 m / 7
车间外6 m/ 6
车间外8 m临街厂界/ 215 表 2 地累积指数类型及其指示的环境污染状况
Table 2. Igeo classes and their pollution status with respect to dust quality
地累积指数
Igeo地累积指数等级
Class of Igeo污染程度
Pollution level≤0 0 无污染 0—1 1 轻微污染 1—2 2 中度污染 2—3 3 中度至重度污染 3—4 4 重度污染 4—5 5 重度至极重度污染 >5 6 极重度污染 表 3 重金属潜在生态风险评价标准表
Table 3. Potential ecological risk assessment criteria of heavy metals
$ {E}_{j}^{i} $ RI 生态风险程度
Ecological risk level<40 <150 轻微 40—80 150—300 中等 80—160 300—600 强 160—320 ≥600 很强 ≥320 极强 表 4 灰尘、TSP和土壤中重金属浓度(mg·kg−1)
Table 4. Concentrations of heavy metals in dust,TSP and soil in and out of the workshop(mg·kg−1)
区域
Zones介质
Media重金属浓度/(mg·kg−1)
Concentration of heavy metalsPb Cr As Cd Cu Sn Zn V Mn Ni 车间内 灰尘 平均值 222.19 130.93 8.95 0.18 12724.01 212.48 656.31 21.31 740.60 454.36 标准方差 169.77 327.19 11.96 0.05 10662.82 247.17 2203.47 3.75 3113.40 2177.55 TSP 平均值 848.17 62.01 13.49 4.20 9608.93 4169.83 645.63 12.98 273.47 40.17 标准方差 471.76 10.13 5.91 3.57 7350.89 3593.92 445.64 2.51 173.75 10.00 车间外 灰尘 平均值 1201.65 159.87 36.08 0.89 5896.47 2026.37 693.93 31.03 295.53 74.24 标准方差 991.94 26.89 0.87 0.04 1210.31 1767.56 51.17 2.64 16.45 9.39 TSP 平均值 544.58 111.00 32.43 12.79 2150.16 266.86 2074.88 23.49 629.62 59.63 标准方差 260.69 60.10 7.48 7.27 733.34 107.89 1572.19 6.33 194.34 16.20 车间外 车间周边土壤 平均值 21.72 67.11 36.26 0.11 111.84 30.15 57.62 100.81 271.95 22.21 标准方差 9.59 2.68 4.72 0.03 186.58 44.17 10.09 7.06 63.89 1.76 表 5 灰尘中重金属Pearson相关系数
Table 5. Pearson correlation coefficient of heavy metals in dust in workshop
Cu Sn Zn V Mn Ni Pb Cr As Cd Cu 1 Sn 0.295 1 Zn 0.118 0.447* 1 V −0.183 0.275 0.835** 1 Mn 0.12 0.455* 0.998** 0.828** 1 Ni 0.124 0.458* 0.998** 0.825** 1.000** 1 Pb −0.128 0.466* −0.187 −0.003 −0.185 −0.19 1 Cr 0.109 0.452* 0.997** 0.833** 0.999** 0.999** −0.165 1 As 0.458 0.957** 0.463 0.048 0.473 0.48 −0.399 0.458 1 Cd −0.145 0.128 0.24 0.19 0.241 0.24 0.068 0.245 0.398 1 * P<0.05, ** P<0.01. 表 6 TSP中重金属Pearson相关系数
Table 6. Pearson correlation coefficient of heavy metals in TSP in and outside workshop
Cu Sn Zn V Ni Mn Pb Cr As Cd Cu 1 Sn 0.987* 1 Zn −0.681 −0.744 1 V −0.79 −0.807 0.954* 1 Ni −0.669 −0.761 0.967* 0.867 1 Mn −0.779 −0.847 0.977* 0.928 0.984* 1 Pb 0.989* 0.984* −0.614 −0.706 −0.638 −0.74 1 Cr −0.712 −0.746 0.981* 0.990* 0.903 0.941 −0.626 1 As −0.629 −0.691 0.997** 0.948 0.951* 0.956* −0.553 0.982* 1 Cd −0.609 −0.682 0.995** 0.926 0.967* 0.961* −0.541 0.966* 0.997** 1 *P<0.05, ** P<0.01. 表 7 土壤中重金属Pearson相关系数
Table 7. Pearson correlation coefficient of heavy metals in soil around workshop
Cr Ni Cu Zn V As Sn Cd Pb Cr 1 Ni 0.288 1 Cu −0.246 0.36 1 Zn −0.216 0.063 0.405 1 V 0.806** 0.175 −0.650** −0.39 1 As 0.671** −0.108 −0.056 −0.112 0.371 1 Sn −0.16 0.385 0.985** 0.36 −0.566* 0.018 1 Cd 0.096 0.523* 0.474 0.503 −0.276 0.165 0.428 1 Pb −0.284 0.342 0.975** 0.411 −0.694** −0.072 0.934** 0.519* 1 *P<0.05, ** P<0.01. 表 8 车间内灰尘和TSP中重金属主成分分析
Table 8. Principal component analysis of heavy metals in workshop dust and TSP
灰尘
DustTSP 成分1 成分2 成分1 成分2 成分3 Cu 0.163 0.756 −0.775 0.554 0.141 Sn 0.716 0.584 −0.773 0.606 0.03 Zn 0.979 −0.139 0.865 0.434 0.001 V 0.805 −0.557 0.86 −0.059 0.39 Mn 0.98 −0.133 0.918 0.187 −0.02 Ni 0.982 −0.126 0.807 0.201 0.436 Pb −0.416 −0.291 −0.516 0.844 0.004 Cr 0.978 −0.153 0.824 0.339 0.342 As 0.609 0.721 0.847 0.228 −0.435 Cd 0.693 −0.164 0.713 0.283 −0.629 方差贡献率% 60.506 19.31 63.52 19 10.65 表 9 土壤中重金属主成分分析
Table 9. Principal component analysis of heavy metals in soil
成分1 成分2 成分3 Cr −0.426 0.863 0.081 Ni 0.346 0.599 −0.694 Cu 0.947 0.142 0.103 Zn 0.567 −0.006 0.07 As −0.211 0.673 0.674 Sn 0.9 0.215 0.125 Cd 0.596 0.491 −0.122 Pb 0.955 0.11 0.099 V −0.78 0.538 −0.186 方差贡献率% 47.21 24.06 11.47 表 10 重金属潜在生态风险评价
Table 10. Potential ecological risk assessment of heavy metals in dust and soil
评价对象
ObjectEj RI Pb Cr As Cd Cu Zn Ni Mn 灰尘 最大值 71.91 3.69 26.59 108.28 1334.75 8.46 18.54 0.45 1444.18 最小值 17.31 1.30 0.28 36.27 125.26 1.13 1.67 0.08 233.97 平均数 38.18 2.17 6.75 55.74 277.27 2.97 4.91 0.22 385.95 标准方差 15.59 0.56 9.68 16.18 243.90 1.99 3.98 0.09 242.77 对RI贡献率/% 9.89 0.56 1.75 14.44 71.84 0.77 1.27 0.06 TSP 最大值 327.85 2.52 23.66 3706.63 496.29 19.81 10.29 0.96 4001.76 最小值 56.62 1.63 7.58 187.86 81.41 2.96 4.51 0.18 390.94 平均数 163.11 2.03 12.04 1299.26 212.59 8.70 7.47 0.47 1705.67 标准方差 90.72 0.33 5.28 1103.66 162.63 6.01 1.86 0.30 1096.27 对RI贡献率/% 9.56 0.12 0.71 76.17 12.46 0.51 0.44 0.03 土壤 最大值 10.04 2.36 45.38 52.14 14.52 1.11 4.91 0.64 131.12 最小值 3.08 2.08 27.95 22.22 0.44 0.63 3.71 0.31 60.41 平均数 4.18 2.20 32.38 32.49 2.47 0.78 4.13 0.47 79.09 标准方差 1.84 0.09 4.21 8.56 4.13 0.14 0.33 0.11 13.85 对RI贡献率/% 5.28 2.78 40.94 41.08 3.13 0.98 5.22 0.59 -
[1] YANG J S, WANG H F, ZHANG G W, et al. Recycling organics from non-metallic fraction of waste printed circuit boards by a novel conical surface triboelectric separator[J]. Resources, Conservation and Recycling, 2019, 146: 264-269. doi: 10.1016/j.resconrec.2019.03.008 [2] HADI P, XU M, LIN C S K, et al. Waste printed circuit board recycling techniques and product utilization[J]. Journal of Hazardous Materials, 2015, 283: 234-243. doi: 10.1016/j.jhazmat.2014.09.032 [3] 顾明事, 李兴福, 赵泽华, 等. 江苏省废线路板处置利用现状及管理对策研究[J]. 污染防治技术, 2017, 30(5): 90-94. GU M S, LI X F, ZHAO Z H, et al. Studies on waste circuit boards disposal and management countermeasures in Jiangsu Province[J]. Pollution Control Technology, 2017, 30(5): 90-94 (in Chinese).
[4] PANT D, JOSHI D, UPRETI M K, et al. Chemical and biological extraction of metals present in E waste: A hybrid technology[J]. Waste Management, 2012, 32(5): 979-990. doi: 10.1016/j.wasman.2011.12.002 [5] 葛亚军, 金宜英, 聂永丰. 电子废弃物回收管理现状与研究[J]. 环境科学与技术, 2006, 29(3): 61-63, 118. GE Y J, JIN Y Y, NIE Y F. Recovery and management of electronic wastes: Status quo and needs for improvement[J]. Environmental Science & Technology, 2006, 29(3): 61-63, 118 (in Chinese).
[6] HUANG K, GUO J, XU Z M. Recycling of waste printed circuit boards: A review of current technologies and treatment status in China[J]. Journal of Hazardous Materials, 2009, 164(2/3): 399-408. [7] YAMANE L H, de MORAES V T, ESPINOSA D C R, et al. Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers[J]. Waste Management, 2011, 31(12): 2553-2558. doi: 10.1016/j.wasman.2011.07.006 [8] 杨春刚, 戈保梁, 李飞, 等. 废旧印刷线路板的再资源化技术及新进展[J]. 矿产综合利用, 2016(5): 6-9. YANG C G, GE B L, LI F, et al. Resource recovery technology of and new progress of WPCB[J]. Multipurpose Utilization of Mineral Resources, 2016(5): 6-9 (in Chinese).
[9] 董卿, 尤飞, 蒋军成, 等. 废弃FR1酚醛树脂印刷线路板热解特性及动力学分析[J]. 安全与环境学报, 2016, 16(3): 279-284. DONG Q, YOU F, JIANG J C, et al. Pyrolysis characteristics and dynamic analysis of the waste FR1 phenol resin PC board[J]. Journal of Safety and Environment, 2016, 16(3): 279-284 (in Chinese).
[10] 马硕, 刘万福, 马洪亭, 等. 废弃印刷线路板热解过程传热特性实验研究[J]. 环境科学学报, 2018, 38(12): 4760-4768. MA S, LIU W F, MA H T, et al. Experimental investigation on the heat transfer characteristics of waste printed circuit boards during pyrolysis[J]. Acta Scientiae Circumstantiae, 2018, 38(12): 4760-4768 (in Chinese).
[11] 杨崇, 朱能武, 崔佳莹, 等. 胞外聚合物对生物浸出线路板金属粉末中铜的作用[J]. 环境工程学报, 2015, 9(9): 4503-4508. YANG C, ZHU N W, CUI J Y, et al. Extracellular polymeric substances’ role in bioleaching copper from metal concentrates of waste printed circuit boards[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4503-4508 (in Chinese).
[12] FENG P, WANG Z, MENG L, et al. Supergravity-enhanced liquation crystallization for metal recovery from waste printed circuit boards[J]. Chemical Engineering and Processing - Process Intensification, 2022, 173: 108813. doi: 10.1016/j.cep.2022.108813 [13] ROCCHETTI L, AMATO A, BEOLCHINI F. Printed circuit board recycling: A patent review[J]. Journal of Cleaner Production, 2018, 178: 814-832. doi: 10.1016/j.jclepro.2018.01.076 [14] VANEGAS P, PEETERS J R, CATTRYSSE D, et al. Ease of disassembly of products to support circular economy strategies[J]. Resources, Conservation and Recycling, 2018, 135: 323-334. doi: 10.1016/j.resconrec.2017.06.022 [15] 江苏省市场监督管理局. 废线路板综合利用污染控制技术规范: DB32/T 3942—2021[S]. 南京: 江苏省市场监督管理局, 2021. Technical specifications for pollution control of comprehensive utilization of waste printed circuit boards: DB32/T 3942—2021[S]. Nanjing: Market Supervision Administration of Jiangsu Province, 2021 (in Chinese).
[16] GUO C, WANG H, LIANG W, et al. Liberation characteristic and physical separation of printed circuit board (PCB)[J]. Waste Management, 2011, 31(9/10): 2161-2166. [17] 谭淑妃, 郭杰, 许振明. 废电路板热拆解过程中颗粒污染物的排放特征[J]. 环境科学与技术, 2019, 42(12): 74-80. TAN S F, GUO J, XU Z M. Emission characteristics of particulate pollutants from the thermal disassembly of waste printed circuit boards[J]. Environmental Science & Technology, 2019, 42(12): 74-80 (in Chinese).
[18] 王建波. 废旧电路板上元器件的环境友好拆解及铝电容器和晶体管的资源化回收[D]. 上海: 上海交通大学, 2017. WANG J B. Environmetally friendly disassembly of electronic components from waste printed circuit boards and resources recovery of aluminum electrolytic capacitors and transistors[D]. Shanghai: Shanghai Jiao Tong University, 2017 (in Chinese).
[19] 吴文成, 宋清梅, 刘谞承, 等. 电子废物拆解区典型用地土壤重金属分布特征[J]. 中国环境科学, 2018, 38(7): 2632-2638. WU W C, SONG Q M, LIU X C, et al. Distribution pattern of heavy metals in soils with respect to typical land uses in electronic waste recycling region[J]. China Environmental Science, 2018, 38(7): 2632-2638 (in Chinese).
[20] 缪雄谊. 重金属污染的扩散迁移及其健康风险评价: 以三角洲和河流为例[D]. 合肥: 中国科学技术大学, 2020. MIAO X Y. The conversion, migration and health risk assessment of heavy metals pollution— a field study in typical delta and river[D]. Hefei: University of Science and Technology of China, 2020 (in Chinese).
[21] CHENG Z, CHEN L J, LI H H, et al. Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China[J]. Science of the Total Environment, 2018, 619/620: 621-629. doi: 10.1016/j.scitotenv.2017.11.144 [22] LI H M, WANG J H, WANG Q G, et al. Chemical fractionation of arsenic and heavy metals in fine particle matter and its implications for risk assessment: A case study in Nanjing, China[J]. Atmospheric Environment, 2015, 103: 339-346. doi: 10.1016/j.atmosenv.2014.12.065 [23] LOSKA K, WIECHUŁA D, PELCZAR J. Application of enrichment factor to assessment of zinc enrichment/depletion in farming soils[J]. Communications in Soil Science and Plant Analysis, 2005, 36(9/10): 1117-1128. [24] 魏复盛, 杨国治, 蒋德珍, 等. 中国土壤元素背景值基本统计量及其特征[J]. 中国环境监测, 1991, 7(1): 1-6. WEI F S, YANG G Z, JIANG D Z, et al. Basic statistics and characteristics of background values of soil elements in China[J]. Environmental Monitoring in China, 1991, 7(1): 1-6 (in Chinese).
[25] ZHOU L, LIU G J, SHEN M C, et al. Characteristics and health risk assessment of heavy metals in indoor dust from different functional areas in Hefei, China[J]. Environmental Pollution, 2019, 251: 839-849. doi: 10.1016/j.envpol.2019.05.058 [26] LOSKA K, CEBULA J, PELCZAR J, et al. Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland[J]. Water, Air, and Soil Pollution, 1997, 93(1): 347-365. [27] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [28] WANG J Y, CHEN H, XIA W Y, et al. Heavy metal pollution in the surface dust from E-waste disposal place and its ecological risk assessment[J]. Advanced Materials Research, 2011, 347-353: 2360-2364. doi: 10.4028/www.scientific.net/AMR.347-353.2360 [29] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115. XU Z Q, NI S J, TUO X G, et al. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 2008, 31(2): 112-115 (in Chinese).
[30] 杨舒珺. 重金属工业废水渗坑的风险评价及渗坑废水处理研究[D]. 天津: 天津大学, 2018. YANG S J. The risk assessment and treatment of industrial heavy-metal wastewater ponds[D]. Tianjin: Tianjin University, 2018 (in Chinese).
[31] 陈润甲, 田艳梅, 张钧, 等. 山西省某焦化厂周边土壤中重金属污染评价及特征分析[J]. 天津农业科学, 2020, 26(6): 79-84. CHEN R J, TIAN Y M, ZHANG J, et al. Evaluation and characteristic analysis of heavy metal pollution in soil of a coking plant in Shanxi Province[J]. Tianjin Agricultural Sciences, 2020, 26(6): 79-84 (in Chinese).
[32] 汪锐. 废旧电路板破碎过程中污染物的生成释放及转化机理研究[D]. 上海: 上海交通大学, 2020. WANG R. Study on the formation, release and conversion mechanism of pollutants in process of crushing waste printed circuit boards[D]. Shanghai: Shanghai Jiao Tong University, 2020 (in Chinese).
[33] ZHOU P, GUO J, ZHOU X Y, et al. PM2.5, PM10 and health risk assessment of heavy metals in a typical printed circuit noards manufacturing workshop[J]. Journal of Environmental Sciences, 2014, 26(10): 2018-2026. doi: 10.1016/j.jes.2014.08.003 [34] 刘方方. 物理法从废线路板中回收铜合金粉末新技术研究[D]. 广州: 华南理工大学, 2020. LIU F F. Investigation of a novel technology of recycling copper alloy powders from waste printed circuit boards by physical method[D]. Guangzhou: South China University of Technology, 2020 (in Chinese).
[35] 周啸宇. 印刷电路板生产、回收拆解及废弃堆置过程中重金属与溴系阻燃剂的污染、释放规律及人体暴露研究[D]. 上海: 华东理工大学, 2014. ZHOU X Y. Occurrence and emssion of heavy metals and brominated flame retardants in printed circuit board production, recycling and disposal processes and human exposure assessment[D]. Shanghai: East China University of Science and Technology, 2014 (in Chinese).
[36] 刘伟锋, 胡晓丽, 张杜超, 等. 废线路板破碎分选产物的工艺矿物学[J]. 中国有色金属学报, 2022, 32(9): 2703-2713. LIU W F, HU X L, ZHANG D C, et al. Process mineralogy of waste printed circuit board crushing and sorting products[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(9): 2703-2713 (in Chinese).
[37] WANG Q, ZHANG B G, YU S Q, et al. Waste-printed circuit board recycling: Focusing on preparing polymer composites and geopolymers[J]. ACS Omega, 2020, 5(29): 17850-17856. doi: 10.1021/acsomega.0c01884 [38] GONZÁLEZ-MARTÍN J, KRAAKMAN N J R, PÉREZ C, et al. A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control[J]. Chemosphere, 2021, 262: 128376. doi: 10.1016/j.chemosphere.2020.128376 [39] REIS A M, CAVE M, SOUSA A J, et al. Lead and zinc concentrations in household dust and toenails of the residents (Estarreja, Portugal): A source-pathway-fate model[J]. Environmental Science. Processes & Impacts, 2018, 20(9): 1210-1224. [40] SHI T R, WANG Y H. Heavy metals in indoor dust: Spatial distribution, influencing factors, and potential health risks[J]. Science of the Total Environment, 2021, 755: 142367. doi: 10.1016/j.scitotenv.2020.142367 [41] 陶红, 张小红, 王亚娟, 等. 银川市城区地表灰尘重金属污染分布特征及健康风险评价[J]. 环境化学, 2022, 41(8): 2573-2585. doi: 10.7524/j.issn.0254-6108.2021042501 TAO H, ZHANG X H, WANG Y J, et al. Pollution characteristics and health risk assessment of heavy metals of surface dust in urban areas of Yinchuan[J]. Environmental Chemistry, 2022, 41(8): 2573-2585 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021042501
[42] 周利. 室内颗粒物的环境化学特征、来源识别及风险评价: 以合肥市为例[D]. 合肥: 中国科学技术大学, 2022. ZHOU L. Environmental chemical characteristics, source identification and risk assessment of indoor particulates— a case in Hefei, China[D]. Hefei: University of Science and Technology of China, 2022 (in Chinese).
[43] 黄波涛. 典型危废处置利用企业周边土壤重金属分布特征、来源及风险评价[J]. 环境化学, 2023, 42(2): 435-445. doi: 10.7524/j.issn.0254-6108.2022062403 HUANG B T. Distribution characteristics, sources analysis and potential ecological risk assessment of heavy metals in soils surrounding typical hazardous waste disposal and utilization plants[J]. Environmental Chemistry, 2023, 42(2): 435-445(in Chinese). doi: 10.7524/j.issn.0254-6108.2022062403
[44] WANG S B, YAN Q S, ZHANG R Q, et al. Size-fractionated particulate elements in an inland city of China: Deposition flux in human respiratory, health risks, source apportionment, and dry deposition[J]. Environmental Pollution, 2019, 247: 515-523. doi: 10.1016/j.envpol.2019.01.051