-
温泉经常出现在世界各地活跃的火山地区,被认为是地热流体在地表的表现形式[1]. 同时,温泉水作为一种新型、宝贵的水资源,通常含有一些特殊的化学成分和对人类产生理疗作用的微量元素[2]. 在大多数地方,它们被用来洗浴和浴疗. 在一些干旱和半干旱地区,由于水资源的紧缺,温泉水被作为饮用水和家庭用水的主要来源[3]. 由于地热水在高温高压环境中发生强烈的水岩反应,相比于普通地下水,地热温泉中含有较多的氟化物、砷、镉和其他重金属元素,通常超出WHO安全指南规定的饮用水最大允许限度(F<1.5 mg·L−1,As<0.01 mg·L−1). 我国羊八井地热水中F和As的含量高达19.6 mg·L−1和5.7 mg·L−1[4] ,腾冲Rehai地热水中F浓度为1.52—18.3 mg·L−1[5];美国黄石公园地热泉中F浓度高达50 mg·L−1,As平均浓度达到2.47 mg·L−1,其余重金属元素也超标明显,污染了周围河流[6 − 7]. 这些世界上典型热泉中有害元素、重金属元素含量远远超过正常值,对周围环境造成严重污染. 如果人们直接使用这些温泉水或受地热水影响的地表水、地下水,将会给生产生活带来风险并对人体健康产生极大危害. 因此,研究温泉水中有害元素和重金属元素的地球化学特征,并进行温泉环境评价显得尤为重要.
目前,常用的水质评价方法有单因子指数法、人工神经网络法、水质综合指数法(WQI)等[8]. 水质综合指数法最早由Horton提出,相比其他方法,WQI是以多种水质指标综合的无量纲数,可综合反映水环境质量状况,已被广泛用于水环境质量评价[9]. 例如,在印度的Unai地区[10],西孟加拉邦地区[3],巴基斯坦Skardu地区[11],利用WQI指数法对当地的温泉水进行水质评估,确定了适宜的饮用水,为当地居民的生活用水提供了可行性建议;青藏高原河流作为亚洲水塔为当地和周边地区的十多亿居民提供了用水资源,WQI指数显示青藏高原河流水质较为原始,大部分有害元素和重金属元素未超标,仅有个别河流有一些潜在的重金属风险,给当地居民的生活用水提供了科学保障[12].
福建地区位于中国东南沿海地热带,全境温泉出露众多,大多都产于与花岗岩有关的断裂、裂隙系统中,以中低温热水系统为主[13 − 14]. 当地居民经常利用温泉洗浴并将它作为生活用水. 前人应用水文地球化学方法对漳州、厦门等地方地热水水化学特征,福建地区典型温泉成因以及水位水温对于地震的同震响应等方面做了较为详细的研究[15 − 17]. 但对温泉水中有害元素的地球化学特征及温泉水质情况鲜有报道. 本文将利用在福建地区断裂带附近采集的温泉水样,运用水文地球化学和统计方法,追溯温泉水中有害元素的来源,分析形成机理及影响因素,科学评价温泉水的质量状况,为温泉开发利用提供新的环境地球化学资料.
福建地区断裂带温泉环境地球化学特征
Environmental geochemical characteristics of hot springs in fault zone in Fujian
-
摘要: 通过对福建地区断裂带附近温泉水样中主量元素和微量元素测定,采用水文地球化学和统计方法重点讨论了温泉水中有害元素地球化学特征,并利用WQI综合水质标识指数法进行水质评价. 分析结果表明:(1)温泉水主量元素主要来源于硅酸盐矿物水解. F−浓度均超标,平均值为9.32 mg·L−1,沿海地区温泉水F−浓度普遍高于内陆地区. 水—岩相互作用、Na+—Ca2+阳离子交换作用是控制温泉水中氟富集的主要地球化学因素. HCO3-Na,HCO3·SO4-Na型水中氟含量较高,pH、温度和含氟岩石类型对温泉水中氟富集过程有重要影响. (2)研究区温泉水中砷浓度平均值为3.29 μg·L−1,特殊的地质环境使得漳州地区砷浓度分布在空间上具有群体性. 还原性—弱碱性环境、地热水的循环深度与热储温度和中小型地震的频繁发生会影响温泉水中砷的含量. (3)研究区温泉水中As与F−呈负相关,这与含水介质的岩性分布密切相关. 同时由于阳离子交换作用也使得砷含量高的温泉水中Ca2+较高,不利于F−富集. (4)温泉水质评价表明本次采集的温泉水均不适合作为生活饮用水和农业用水:SO42−、Cl−、F−均出现不同程度超标,微量元素WQI综合水质标识指数在1类和3类之间,但个别温泉中Fe、Mn、Be、Tl元素出现超标情况. 部分温泉中Li、Sr、F含量及水温达到理疗热泉标准,具有理疗保健的功效. 研究结果为福建地区温泉开发提供了新的环境地球化学资料.Abstract: The geochemical characteristics of harmful elements was discussed by means of hydrogeochemical and statistical methods in this paper, supported by the determination of major elements and trace elements in hot spring water samples near the fault zone in Fujian, and the water quality was evaluated by comprehensive water quality index (WQI) method. The results indicate that (1) The main elements of hot water are mainly derived from silicate mineral hydrolysis. The concentration of F− in hot spring water exceeds the recommended standard with an average of 9.32 mg·L−1, and the F− concentration of hot spring water in coastal areas was generally higher than inland areas. Water-rock interaction and Na+—Ca2+ cation exchange are the main geochemical factor controlling the enrichment of fluorine from hot spring water. HCO3-Na, HCO3-SO4-Na type water has higher fluorine content, and pH, temperature and fluoride-bearing rock type have important effects on the fluorine enrichment process in hot spring water. (2) The average arsenic concentration in hot spring water in the study area is 3.29 μg·L−1, and the special geological environment makes the spatial distribution of arsenic concentration in the Zhangzhou area grouped. The reductive-weakly alkaline environment, the depth of geothermal water circulation and thermal storage temperature, and the frequent occurrence of small and medium-sized earthquakes affect the arsenic content in hot spring water.(3) The correlation between arsenic and fluoride in the hot spring water of the study area are negative, which is closely related to the lithological distribution of the water-bearing medium. At the same time, cation exchange also makes the Ca2+ higher in the hot spring water with high arsenic concentration, which is not conducive to F− enrichment. (4)The water quality evaluation results of the hot springs shows that the hot spring water samples collected are not suitable for drinking water and agricultural water. SO42−, Cl− and F− all exceed the standard to varying degrees. Although the water quality index (WQI) indicates the water quality index is between Category 1 and Category 3, the concentration of Fe, Mn, Be, and Tl have exceeded the standard in some hot spring. The content of Li, Sr, and F and the water temperature has reached the medical hot spring standard with physiotherapy and health care effects in some hot springs. These results provide new environmental geochemical data for the development of hot springs in Fujian.
-
Key words:
- hot spring /
- fluorine /
- arsenic /
- water- rock reaction /
- water quality assessment /
- Fujian.
-
表 1 温泉样品的水化学参数(mg·L−1)
Table 1. Hydrochemical parameters of Thermal spring samples
采样点
Sample温泉名
Thermal springT/℃* pH* TDS Na+* K+* Mg2+* Ca2+* F− Cl−* SO42−* NO3−* CO32−* HCO3−* 水化学类型*
Typeib 1 黄楮林温泉 49.2 7.79 489.1 161.69 5.13 1.28 24.34 6.74 6.12 75.68 0.09 59.68 296.64 HCO3-Na −1.35% 2 中平村坪坡温泉 60.4 8.04 387.3 133.35 4.78 0.32 20.32 10.28 5.75 45.43 0.19 29.47 274.91 HCO3Na −0.63% 3 塔兜温泉 90.0 7.89 337.3 124.18 6.02 0.09 9.49 19.75 8.82 51.45 0.00 27.26 180.53 HCO3Na −0.78% 4 龙门上汤温泉 82.1 7.9 238.9 89.25 3.07 0.06 5.12 12.69 8.33 45.45 0.00 0.00 149.82 HCO3·SO4Na −0.50% 5 蓬壶镇魁都温泉 66.6 7.61 414.9 90.61 4.32 0.25 42.53 5.95 14.83 186.77 0.00 0.00 139.33 HCO3·SO4Na·Ca −2.70% 6 下汤泉 59.0 8 388.4 123.57 5.00 2.82 30.98 6.90 4.64 23.89 0.30 39.79 301.13 HCO3Na 0.09% 7 热西温泉 71.9 7.49 756.7 218.00 12.46 3.29 56.81 4.47 5.24 155.76 0.00 50.10 501.13 HCO3Na −1.14% 8 月汤温泉 54.2 7.75 911.9 242.23 12.96 4.61 53.48 4.20 8.18 418.93 0.00 8.84 316.86 HCO3·SO4Na −1.30% 9 天芳悦潭 76.2 8.07 567.9 183.25 9.21 0.71 21.66 10.49 6.89 187.76 0.00 47.16 201.50 HCO3·SO4Na −0.50% 10 谢坊温泉 36.7 7.54 965.8 228.40 9.95 0.91 95.12 3.34 14.65 426.57 0.00 0.00 373.79 HCO3·SO4Na·Ca −0.96% 11 热汤哩温泉 54.8 7.7 490.5 149.50 4.93 0.26 20.25 10.97 8.10 205.27 0.19 0.00 182.03 HCO3·SO4Na −1.30% 12 汰内温泉 57.7 7.8 334.8 103.94 3.79 0.14 20.07 10.08 8.46 105.90 0.00 0.00 164.80 HCO3·SO4Na −0.20% 13 莲氏古村温泉 59.0 7.61 289.1 93.61 3.53 0.69 13.96 8.37 11.21 69.28 2.69 0.00 171.54 HCO3·SO4Na −0.70% 14 下庵温泉 48.2 7.64 593.4 188.38 4.59 0.13 27.36 8.02 126.88 173.39 0.05 0.00 128.84 Cl·SO4·HCO3Na −0.09% 15 五星温泉 59.4 7.83 323.2 116.65 4.62 0.09 7.60 14.50 11.94 69.60 0.10 0.00 196.26 HCO3·SO4Na −0.84% 16 汤坑温泉 75.2 7.84 380.5 135.36 3.20 0.10 6.72 12.43 21.67 123.11 0.00 0.00 155.81 SO4·HCO3Na −0.28% 17 上汤温泉 58.7 8.01 359.5 127.78 4.49 0.27 13.78 13.39 10.45 55.80 0.00 30.95 205.25 HCO3Na −0.68% 18 西坑温泉 60.6 7.85 355.0 121.36 2.89 0.21 13.07 11.72 10.79 113.58 0.15 0.00 162.55 HCO3·SO4Na 0.28% 19 下车温泉 54.9 7.97 186.3 74.09 2.55 0.07 5.91 12.35 3.23 16.95 0.00 0.00 142.33 HCO3Na 1.14% 20 湖里温泉 68.3 8.23 606.8 194.77 9.08 0.35 30.50 9.17 9.49 172.26 0.00 29.47 303.38 HCO3·SO4Na −0.10% 21 清温泉 48.0 7.36 5041.8 1052.04 67.40 3.21 548.95 2.45 3172.96 102.91 0.49 0.00 157.31 Cl-Na·Ca −5.62% 22** 东泗温泉井 65.7 7.21 14358.4 2320.00 79.80 10.30 1913.00 180.40 9405.20 368.43 5.59 0.00 83.15 Cl-Na·Ca −8.71% 23 港尾大桶温泉 65.1 7.01 5171.6 1296.17 41.95 1.74 389.49 3.73 3342.67 64.17 1.27 0.00 35.96 Cl-Na·Ca −5.55% 24 汤兜温泉 70.0 7.97 498.2 173.92 5.01 0.11 33.64 14.29 23.48 75.70 0.00 14.74 314.61 HCO3Na 2.06% 25 东山温泉 63.5 8.13 534.1 187.36 6.89 0.49 18.99 10.77 13.66 98.32 0.00 32.42 330.34 HCO3Na −0.49% 26 漳浦井 45.0 7.31 1502.0 409.17 14.72 0.24 108.44 4.72 873.56 62.59 0.08 0.00 51.69 Cl-Na −3.36% 27 云霄温泉 60.0 7.61 213.1 79.96 2.21 0.07 6.08 11.90 17.10 25.36 0.00 0.00 140.83 HCO3Na −0.65% 28 千江温泉井 83.0 7.98 273.0 96.74 4.64 0.32 13.22 10.87 7.73 8.02 0.33 19.16 223.97 HCO3Na −1.26% 29 贵安 温泉井 81.0 7.95 286.3 99.61 3.83 0.08 5.92 13.66 12.58 72.96 0.00 13.26 128.84 HCO3·SO4Na −2.10% 30 森林公园温泉 25.0 7.54 465.8 14.84 0.83 3.52 125.37 1.96 4.42 208.86 0.00 0.00 211.99 SO4·HCO3−Ca −2.70% 最大值max 90.0 8.23 5171.6 1296.17 67.4 4.61 548.95 19.75 3342.67 426.57 2.69 59.68 501.13 最小值min 25.0 7.01 186.3 14.84 0.83 0.06 5.12 1.96 3.23 8.02 0.00 0.00 35.96 平均值mean 62.0 7.77 805.6 217.58 9.11 0.91 61.00 9.32 268.06 118.68 0.20 13.87 211.86 阈值threshold 1000 1.0 250 250 20 注:*数据来源于文献[30];**表示不参与分析;“—”表示未测得.
Note: *Data from literature[30];** indicates Non-participation in analysis;“—”indicates not test.表 2 温泉样品中的微量元素 (μg·L−1 )
Table 2. Trace Elements in Thermal spring samples (μg·L−1 )
采样点
SampleLi Be V Mn Cr Co Ni Cu Zn Mo Cd 1 125.00 2.46 0.48 410.00 0.39 0.17 2.16 0.54 3.45 63.50 0.09 2 253.00 1.77 0.20 61.70 0.24 0.05 0.96 0.39 1.64 29.40 0.02 3 445.00 1.05 0.26 9.21 0.23 0.04 0.55 0.32 1.28 17.60 0.02 4 133.00 0.23 0.63 0.78 0.16 0.02 0.31 0.46 4.17 43.80 0.07 5 112.00 0.23 0.43 6.91 0.26 0.19 3.13 0.88 2.33 38.50 0.05 6 376.00 1.25 1.06 1.09 0.22 0.17 9.99 10.10 11.10 8.00 0.07 7 799.00 11.2 0.38 487.00 0.28 0.36 6.02 1.22 3.78 1.93 0.02 8 1115.00 2.28 0.52 81.70 0.33 0.37 5.75 2.17 3.37 1.77 0.02 9 1109.00 1.51 0.41 58.70 0.34 0.09 1.33 1.07 2.03 5.82 0.05 10 629.00 9.64 1.18 456.00 0.46 0.54 8.07 2.32 2.29 8.11 0.02 11 487.00 1.44 0.54 39.50 0.27 0.09 1.26 1.49 1.23 11.20 0.04 12 138.00 0.44 0.50 44.70 0.30 0.09 1.24 1.04 1.00 14.40 0.05 13 106.00 0.53 0.57 45.00 0.32 0.02 0.95 0.79 4.21 14.00 0.04 14 281.00 0.11 4.18 3.28 0.38 0.10 2.13 0.86 3.01 17.90 0.02 15 112.00 0.33 0.47 3.02 0.26 0.04 0.38 1.25 1.28 22.80 <0.002 16 110.00 0.11 0.85 6.69 0.06 0.02 0.29 0.93 1.08 23.50 0.05 17 246.00 0.88 0.34 50.20 0.11 0.02 0.96 0.57 1.18 12.00 0.02 18 217.00 0.35 0.38 54.10 0.18 0.04 0.81 0.64 1.81 15.60 0.05 19 174.00 0.56 0.11 11.10 0.02 0.03 0.25 0.12 1.19 26.70 0.05 20 658.00 2.63 0.22 120.00 0.55 0.15 2.04 1.02 1.42 16.80 0.02 21 1540.00 0.38 112.0 412.00 8.15 2.78 35.90 2.55 1.11 13.10 0.05 22 1364.00 0.63 96.40 658.00 2.71 6.35 101.00 4.96 1.96 3.79 0.17 23 1575.00 0.12 61.50 48.40 3.25 1.93 31.60 2.15 15.10 5.65 0.05 24 128.00 0.42 2.48 0.52 0.53 0.05 0.44 0.61 1.36 18.60 0.02 25 205.00 0.79 1.62 124.00 0.44 0.10 1.16 1.23 7.80 18.60 0.14 26 401.00 0.11 28.30 66.10 2.64 0.50 7.92 1.32 0.41 17.80 0.09 27 96.30 0.22 1.16 0.39 0.32 0.01 0.27 0.32 1.53 18.90 0.09 28 281.00 1.46 0.75 174.00 0.40 0.08 0.98 0.54 0.94 4.82 <0.002 29 237.00 0.12 1.22 1.37 0.17 0.02 0.30 0.60 0.42 15.30 0.07 30 25.10 0.3 0.48 94.60 0.33 0.76 12.90 4.56 4.35 5.22 0.07 最大值 1575.00 11.20 112.0 487.00 8.15 2.78 35.90 10.1 15.10 63.50 0.14 最小值 25.10 0.11 0.11 0.39 0.02 0.01 0.25 0.12 0.41 1.77 <0.002 平均值 417.70 1.48 7.70 99.04 0.75 0.30 4.83 1.45 2.96 17.63 0.05 阈值 2 100 50 50 20 1000 1000 70 5 采样点
SampleSb Ba Tl Pb U Ag B Fe Al As Sr 1 0.04 24.80 0.10 0.10 0.26 <0.002 52.40 8.63 8.55 4.30 679.00 2 0.10 25.50 0.12 0.11 0.14 <0.002 33.00 7.93 8.98 2.28 424.00 3 0.16 29.60 0.20 0.14 0.02 0.01 55.70 1.63 45.40 1.62 181.00 4 0.12 2.27 0.07 0.14 0.02 0.01 36.90 4.65 67.10 1.61 77.60 5 1.90 11.30 0.08 0.04 0.01 0.01 32.10 9.60 5.74 <0.60 551.00 6 1.85 5.85 0.05 0.22 0.39 0.01 46.50 14.20 11.90 — 245.00 7 2.42 79.10 0.46 0.07 0.01 0.01 47.00 132.00 26.30 <0.60 1359.00 8 1.41 35.70 0.52 0.03 0.06 0.01 225.00 54.80 5.31 <0.60 1840.00 9 0.02 38.80 0.35 0.05 0.02 0.01 209.00 16.00 8.35 <0.60 571.00 10 <0.002 24.40 0.24 0.09 0.86 0.004 189.00 161.00 3.88 3.31 2514.00 11 <0.002 9.72 0.07 0.04 0.49 0.01 132.00 0.56 8.47 <0.60 531.00 12 1.54 69.10 0.08 0.06 0.00 0.01 51.40 2.64 6.76 <0.60 542.00 13 0.19 4.26 0.15 0.07 0.06 0.01 87.10 3.53 9.99 4.55 304.00 14 0.17 17.50 <0.002 0.67 0.01 0.01 415.00 7.73 24.60 6.88 1009.00 15 0.23 13.00 0.12 0.11 0.00 0.01 97.60 4.47 16.60 4.31 227.00 16 0.15 5.31 0.08 0.08 0.01 <0.002 139.00 1.96 55.60 4.53 250.00 17 0.05 3.81 0.08 0.06 0.02 0.01 70.60 11.80 5.21 <0.60 252.00 18 0.04 5.93 0.03 0.05 0.01 <0.002 67.00 1.17 14.20 <0.60 297.00 19 0.03 0.63 0.05 0.10 0.06 0.01 14.80 2.09 12.00 <0.60 75.00 20 0.08 47.20 0.31 0.12 0.04 0.01 72.00 46.80 4.06 <0.60 617.00 21 0.16 287.00 1.11 2.44 1.70 0.01 152.00 7.96 1.32 7.37 23620.00 22 0.34 324.00 1.18 2.51 0.00 <0.002 85.40 79.30 28.10 1.68 44365.00 23 0.10 115.00 0.65 2.60 0.00 0.02 77.20 1.15 6.97 1.43 14391.00 24 0.03 1.41 0.05 0.22 0.01 <0.002 53.10 3.94 23.70 2.90 195.00 25 0.04 80.70 0.12 0.12 0.16 0.01 75.00 1.96 7.22 2.55 467.00 26 0.11 224.00 0.24 1.67 0.03 <0.002 34.50 5.68 2.25 2.59 5128.00 27 0.02 1.38 0.03 0.07 0.01 <0.002 24.70 0.90 21.10 2.71 98.70 28 0.93 19.90 0.05 0.08 0.02 <0.002 28.00 86.50 15.20 2.22 339.00 29 0.06 1.08 0.09 0.07 0.02 0.01 80.20 1.87 42.60 0.72 109.00 30 0.01 21.2 0.01 0.45 1.40 0.01 5.16 413.00 3.54 <0.60 1326.00 最大值 2.42 287.00 1.11 2.60 1.70 0.02 415.00 413.00 67.10 7.37 23620.00 最小值 <0.002 0.63 <0.002 0.03 0.00 <0.002 5.16 0.56 1.32 <0.60 75.00 平均值 0.44 41.57 0.20 0.35 0.20 0.01 89.76 35.04 16.31 3.29 2007.56 阈值 5 700 0.1 10 50 500 300 200 10 -
[1] WU Y Q, ZHOU X, ZHOU L Y, et al. Structural controls of the northern Red River Fault Zone on the intensity of hydrothermal activity and distribution of hot springs in the Yunnan-Tibet geothermal belt[J]. Geothermics, 2023, 109: 102641. doi: 10.1016/j.geothermics.2022.102641 [2] 周训. 地下水科学专论[M]. 北京: 地质出版社, 2010. ZHOU X. Monograph on groundwater science[M]. Beijing: Publishing House, 2010(in Chinese).
[3] SHUKLA A, MANIAR K, PILLAI A, et al. Geothermal water in Bakreshwar-Tantoli region in West Bengal, India: implications on water quality for irrigation and drinking purposes[J]. Groundwater for Sustainable Development, 2022, 18: 100773. doi: 10.1016/j.gsd.2022.100773 [4] GUO Q H, WANG Y X, LIU W. B, As, and F contamination of river water due to wastewater discharge of the Yangbajing geothermal power plant, Tibet, China[J]. Environmental Geology, 2008, 56(1): 197-205. doi: 10.1007/s00254-007-1155-2 [5] WANG M M, ZHOU X, LIU Y, et al. Major, trace and rare earth elements geochemistry of geothermal waters from the Rehai high-temperature geothermal field in Tengchong of China[J]. Applied Geochemistry, 2020, 119: 104639. doi: 10.1016/j.apgeochem.2020.104639 [6] DENG Y M, NORDSTROM D K, BLAINE MCCLESKEY R. Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation[J]. Geochimica et Cosmochimica Acta, 2011, 75(16): 4476-4489. doi: 10.1016/j.gca.2011.05.028 [7] MORALES-SIMFORS N, BUNDSCHUH J. Arsenic-rich geothermal fluids as environmentally hazardous materials–A global assessment[J]. Science of the Total Environment, 2022, 817: 152669. doi: 10.1016/j.scitotenv.2021.152669 [8] 周默. 几种水质评价方法在地表水评价中的应用及比较研究[J]. 水资源开发与管理, 2022, 8(9): 50-55 ZHOU M. Application and comparative study of several evaluation methods for water quality in surface water evaluation[J]. The Global Seabuckthorn Research and Development, 2022, 8(9): 50-55(in Chinese).
[9] ZHANG Q Y, XU P P, QIAN H. Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of northwest China[J]. Exposure and Health, 2020, 12(3): 487-500. doi: 10.1007/s12403-020-00345-w [10] SHAH M, SIRCAR A, VARSADA R, et al. Assessment of geothermal water quality for industrial and irrigation purposes in the Unai geothermal field, Gujarat, India[J]. Groundwater for Sustainable Development, 2019, 8: 59-68. doi: 10.1016/j.gsd.2018.08.006 [11] AHSAN W A, AHMAD H R, FAROOQI Z U R, et al. Surface water quality assessment of Skardu springs using Water Quality Index[J]. Environmental Science and Pollution Research, 2021, 28(16): 20537-20548. doi: 10.1007/s11356-020-11818-5 [12] QU B, ZHANG Y L, KANG S C, et al. Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the “Water Tower of Asia”[J]. Science of the Total Environment, 2019, 649: 571-581. doi: 10.1016/j.scitotenv.2018.08.316 [13] HU S B, HE L J, WANG J Y. Heat flow in the continental area of China: A new data set[J]. Earth and Planetary Science Letters, 2000, 179(2): 407-419. doi: 10.1016/S0012-821X(00)00126-6 [14] 庄庆祥. 福建地热资源勘查研究[J]. 能源与环境, 2015(1): 2-4. ZHUANG Q X. Study on geothermal resources exploration in Fujian[J]. Energy and Environment, 2015(1): 2-4(in Chinese).
[15] 魏斯禹, 刘绍成, 敖光华, 等. 福建省陆缘地热活动及地球物理场特征[J]. 西北地震学报, 1988(3): 74-81. WEI S Y, LIU S C, AO G H, et al. The Geothermal Activity and the Characteristics of Geophysics Field in Continental Margin of Fujian Province[J]. Northwestern Seismological Journal, 1988(3): 74-81(in Chinese).
[16] 庞忠和, 樊志成, 汪集旸. 漳州盆地水热系统的氢氧稳定同位素研究[J]. 岩石学报, 1990, 6(4): 75-84. PANG Z H, FAN Z C, WANG J Y. The study on stable oxygen and hydrogen isotopes in the Zhangzhou Basin hydrothermal system[J]. Acta Petrologica Sinica, 1990, 6(4): 75-84 (in Chinese).
[17] 廖丽霞, 秦双龙. 福建流体台网对日本9级巨震的响应特征分析[J]. 内陆地震, 2014, 28(4): 298-304. LIAO L X, QIN S L. Responding characteristics of Fujian fluid network for Japan earthquake with Ms9.0[J]. Inland Earthquake, 2014, 28(4): 298-304(in Chinese).
[18] ZHANG Y, ZHANG Y J, YU H, et al. Geothermal resource potential assessment of Fujian Province, China, based on geographic information system (GIS)-supported models[J]. Renewable Energy, 2020, 153: 564-579. doi: 10.1016/j.renene.2020.02.044 [19] 王琼. 福建东南沿海地区地下水质量与防治对策探析[J]. 福建建筑, 2022, (11): 141-144. WANG Q. Studies about the underground water quality in southeastern coastal areas of Fujian and preventive countermeasures[J]. Fujian Architecture & Construction, 2022, (11): 141-144(in Chinese).
[20] 韦德光, 揭育金, 黄廷淦. 福建省区域地质构造特征[J]. 中国区域地质, 1997(2): 51-59. WEI D G, JIE Y J, HUANG T G. Regional geological structure of Fujian[J]. Regional Geology of China, 1997(2): 51-59(in Chinese).
[21] 谢其锋, 蔡元峰, 董云鹏, 等. 福建上杭地区燕山期花岗岩锆石U-Pb年代学及Hf同位素组成[J]. 地质学报, 2017, 91(10): 2212-2230. XIE Q F, CAI Y F, DONG Y P, et al. LA-ICP-MS zircon U-Pb geochronology and Hf isotopic compositions of yanshanian granites in the Shanghang area, Fujian Province[J]. Acta Geologica Sinica, 2017, 91(10): 2212-2230(in Chinese).
[22] 贺振宇, 颜丽丽, 褚平利, 等. 中国东南沿海晚白垩世长屿火山的活动过程与古环境意义[J]. 岩石学报, 2022, 38(5)1419-1442. doi: 10.18654/1000-0569/2022.05.10 HE Z Y, YAN L L, CHU P L, et al. Volcanological evolution and paleoenvironment of the late cretaceous changyu volcano in the coastal SE China[J]. Acta Petrologica Sinica, 2022, 38(5): 1419-1442(in Chinese). doi: 10.18654/1000-0569/2022.05.10
[23] HUANG Q T, ZHENG S P. Micro-relief research on active fault in the coast of southeast Fujian and adjacent area[J]. Progress in Geophysics, 2006: 1099-1107. [24] 林小平, 林木好. 福州市地热资源勘查开发利用现状及建议[J]. 上海地质, 2010(B11): 251-253, 257. LIN X P, LIN M H. Fuzhou geothermal resources exploration&exploitation situation and proposal[J]. Shanghai Geology, 2010, 31(B11): 251-253, 257(in Chinese).
[25] 张远城. 漳州地区地下热水的水文地质特征及映震效应[J]. 台湾海峡, 1993(3): 272-279. ZHANG Y C. Hydrogeogical characteristics of underground hot water from Zhangzhou region and its response to earthquake[J]. Journal of Oceanography in Taiwan Strait, 1993(3): 272-279(in Chinese).
[26] YAN Y C, ZHOU X C, LIAO L X, et al. Hydrogeochemical characteristic of geothermal water and precursory anomalies along the Xianshuihe fault zone, southwestern China[J]. Water, 2022, 14(4): 550. doi: 10.3390/w14040550 [27] ZHOU R L, ZHOU X C, LI Y, et al. Hydrogeochemical and isotopic characteristics of the hot springs in the Litang fault zone, southeast Qinghai–Tibet Plateau[J]. Water, 2022, 14(9): 1496. doi: 10.3390/w14091496 [28] BORA M, GOSWAMI D C. Water quality assessment in terms of water quality index (WQI): Case study of the Kolong River, Assam, India[J]. Applied Water Science, 2017, 7(6): 3125-3135. doi: 10.1007/s13201-016-0451-y [29] 徐祖信. 我国河流单因子水质标识指数评价方法研究[J]. 同济大学学报(自然科学版), 2005, 33(3)321-325. XU Z X. Single factor water quality identification index for environmental quality assessment of surface water[J]. Journal of Tongji University (Natural Science), 2005, 33(3): 321-325(in Chinese).
[30] WANG B, ZHOU X C, ZHOU Y S, et al. Hydrogeochemistry and precursory anomalies in thermal springs of Fujian (southeastern China) associated with earthquakes in the Taiwan strait[J]. Water, 2021, 13(24): 3523. doi: 10.3390/w13243523 [31] 范祖金, 魏兴, 李佳文, 等. 重庆市万州区浅层地下水化学特征及控制因素[J]. 环境化学, 2023, 42(1): 113-124. FAN Z J, WEI X, LI J W, et al. Chemical characteristics and controlling factors of shallow groundwater in Wanzhou district of Chongqing[J]. Environmental Chemistry, 2023, 42(1): 113-124 (in Chinese).
[32] 陈京鹏, 闫燕, 冯颖, 等. 黄河流域下游德州地区地下水水化学成因及生态环境影响[J]. 环境化学, 2023, 42(1): 125-137. doi: 10.7524/j.issn.0254-6108.2022081103 CHEN J P, YAN Y, FENG Y, et al. Hydrochemical genesis and ecological environment influence of groundwater in Dezhou city at lower Yellow River Basin[J]. Environmental Chemistry, 2023, 42(1): 125-137 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022081103
[33] SRACEK O, WANKE H, NDAKUNDA N N, et al. Geochemistry and fluoride levels of geothermal springs in Namibia[J]. Journal of Geochemical Exploration, 2015, 148: 96-104. doi: 10.1016/j.gexplo.2014.08.012 [34] 欧浩, 卢国平, 胡晓农, 等. 广东省信宜-廉江地区地热水中氟的富集过程[J]. 环境化学, 2019, 38(5): 1128-1138. doi: 10.7524/j.issn.0254-6108.2018092303 OU H, LU G P, HU X N, et al. Fluoride enrichment in geothermal waters in Xinyi-Lianjiang region, Guangdong[J]. Environmental Chemistry, 2019, 38(5): 1128-1138(in Chinese). doi: 10.7524/j.issn.0254-6108.2018092303
[35] 李英, 吴平, 张勃, 等. 灵武市北部高氟地下水的分布特征及影响因素[J]. 环境化学, 2020, 39(9): 2520-2528. doi: 10.7524/j.issn.0254-6108.2019063002 LI Y, WU P, ZHANG B, et al. Distribution characteristics and formation factors of high fluoride groundwater in the north of Lingwu City[J]. Environmental Chemistry, 2020, 39(9): 2520-2528(in Chinese). doi: 10.7524/j.issn.0254-6108.2019063002
[36] 胡云虎. 皖北地下水源地水环境地球化学特征研究[D]. 淮南:安徽理工大学, 2015. Huainan:HU Y H. Study on geochemical features of groundwater source in north Anhui Province[D]. Anhui University of Science& Technology, 2015(in Chinese).
[37] 乌丽罕. 衡水地区高氟地下水化学特征及其成因[D]. 北京: 中国地质大学(北京), 2015. WU L H. Characteristics and genesis of high-fluoride groundwater in Hengshui city, the north China Plain[D]. Beijing: China University of Geosciences (Beijing), 2015(in Chinese).
[38] 吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436. L X L, LIU J T, ZHOU B, et al. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin[J]. Earth Science Frontiers, 2021, 28(2): 426-436(in Chinese).
[39] 梁礼革, 朱明占, 朱思萌, 等. 桂东地区地热水中氟的分布及其富集过程研究[J]. 安全与环境工程, 2015, 22(1): 1-6. LIANG L G, ZHU Z M, ZHU S M, et al. Spatial distribution and enrichment of fluoride in geothermal water from eastern guangxi, China[J]. Safety and Environmental Engineering, 2015, 22(1): 1-6(in Chinese).
[40] 孙红丽, 马峰, 刘昭, 等. 西藏高温地热显示区氟分布及富集特征[J]. 中国环境科学, 2015, 35(1): 251-259. SUN H L, MA F, LIU Z, et al. The distribution and enrichment characteristics of fluoride in geothermal active area in tibet[J]. China Environmental Science, 2015, 35(1): 251-259(in Chinese).
[41] ZHANG Y F, TAN H B, ZHANG W J, et al. Geochemical constraint on origin and evolution of solutes in geothermal springs in western Yunnan, China[J]. Geochemistry, 2016, 76(1): 63-75. doi: 10.1016/j.chemer.2015.11.002 [42] 谭梦如, 周训, 张彧齐, 等. 云南勐海县勐阿街温泉水化学和同位素特征及成因[J]. 水文地质工程地质, 2019, 46(3): 70-80. TAN M R, ZHOU X, ZHANG Y Q, et al. Hydrochemical and isotopic characteristics and formation of the Mengajie hot spring in Menghai County of Yunnan[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 70-80(in Chinese).
[43] 李晓露. 云南洱源县牛街温泉的水化学特征与成因[D]. 北京: 中国地质大学(北京), 2017. LI X L. Hydrochemical characteristics and formation of the niujie hot springs in eryuan County of Yunnan[D]. Beijing: China University of Geosciences (Beijing), 2017(in Chinese).
[44] LIU M L, GUO Q H, WU G, et al. Boron geochemistry of the geothermal waters from two typical hydrothermal systems in Southern Tibet (China): Daggyai and Quzhuomu[J]. Geothermics, 2019, 82: 190-202. doi: 10.1016/j.geothermics.2019.06.009 [45] TIAN J, LI Y M, ZHOU X C, et al. Geochemical characteristics of hydrothermal volatiles from southeast China and their implications on the tectonic structure controlling heat convection[J]. Frontiers in Earth Science, 2021, 9: 786051. doi: 10.3389/feart.2021.786051 [46] RAHMAN M S, REZA A H M S, AHSAN M A, et al. Arsenic in groundwater from Southwest Bangladesh: Sources, water quality, and potential health concern[J]. HydroResearch, 2023, 6: 1-15. doi: 10.1016/j.hydres.2022.12.001 [47] ZHOU Y Z, TU Z, ZHOU J L, et al. Distribution, dynamic and influence factors of groundwater arsenic in the Manas River Basin in Xinjiang, PR China[J]. Applied Geochemistry, 2022, 146: 105441. doi: 10.1016/j.apgeochem.2022.105441 [48] 颜港归, 张庆华, 张鹏, 等. 高砷地下水分布特征与形成机理研究[J]. 地下水, 2022, 44(5): 16-18, 23. doi: 10.19807/j.cnki.DXS.2022-05-006 YAN G G, ZHANG Q H, ZHANG P, et al. Study on distribution characteristics and formation mechanism of high arsenic groundwater[J]. Ground Water, 2022, 44(5): 16-18, 23(in Chinese). doi: 10.19807/j.cnki.DXS.2022-05-006
[49] ZHANG H X, ZHANG W, WANG G L, et al. Distribution and genetic mechanism of high arsenic geothermal water in the Batang area, Western Sichuan[J]. Geothermics, 2021, 97: 102232. doi: 10.1016/j.geothermics.2021.102232 [50] JHA P K, TRIPATHI P. Arsenic and fluoride contamination in groundwater: A review of global scenarios with special reference to India[J]. Groundwater for Sustainable Development, 2021, 13: 100576. doi: 10.1016/j.gsd.2021.100576 [51] BHATTACHARYA P, CLAESSON M, BUNDSCHUH J, et al. Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina[J]. Science of the Total Environment, 2006, 358(1/2/3): 97-120.