-
在社会经济快速发展以及城市化进程不断加快的背景下,污染场地已经成为全球范围内都要面临的一个全新环境问题[1]. 由于一些人类活动导致的场地重金属污染,会对土壤环境造成严重污染,破坏生态环境,同时也会通过暴露及食物链对人类健康造成一定影响. 目前国内外对污染场地的重金属监测、风险评估和来源识别研究主要集中在矿区[2 − 5]、冶炼厂[6 − 9]、工业区[10 − 14]等. 随着军事场地土壤重金属污染方面研究的增加[15],军事场地的土壤重金属污染问题也受到了国内外学者的广泛关注,主要以靶场、训练场等为主,如Christou等[16]发现,某靶场土壤中的Pb浓度范围为791 mg·kg−1至7265 mg·kg−1,比对照背景样本高几十甚至几百倍;Johnsen等[17]在挪威某射击场土壤中发现,Pb和Cu含量高达3700 mg·kg−1和1654 mg·kg−1;王亮等[18]对西藏某军事训练场土壤重金属污染的研究发现,As和Cu的污染源于靶场人为炮弹射击;王诗雨等[19]对吉林某试验场重金属分布特征、潜在生态风险和来源进行了分析,判断Zn、Pb和Cd主要与试验活动相关的污染源有关;刘玉通等[20 − 22]对几种军事场地的重金属的监测发现,留在土壤里的弹药残余物等都能不断地释放出重金属,造成重金属污染在土壤里长期存在;李烨玲、Bai等[23 − 24]也分别对中国5个靶场重金属污染水平进行了探究. 而我国对弹药销毁场重金属污染的报道较少. 报废弹药销毁处置是部队及兵工厂的经常性工作,其处置方式主要有分解拆卸、倒空、焚烧以及炸毁等[25],弹药各零部件中重金属成分种类繁多,长期销毁作业会导致场地受到严重的重金属污染[26 − 27].
本研究对中国山西某弹药销毁场土壤进行了重金属污染监测分析,分析场地重金属的污染程度和潜在风险,并解析了重金属的来源,为后续对特征重金属污染物的针对性治理修复提供科学依据.
基于APCS-MLR受体模型的弹药销毁场土壤重金属源解析
Analysis of heavy metal sources in soil of ammunition destruction site based on APCS-MLR receptor model
-
摘要: 为了掌握弹药销毁场重金属污染状况与来源,以山西某典型弹药销毁场为例,对该销毁场39个表层土壤重金属(Cr、Ni、Cu、Zn、As、Cd、Sb、Pb)的污染状况、分布特征与污染来源进行评价与分析. 结果表明,弹壳堆放区表层土壤重金属Cr、Ni、Cu、Zn、As、Cd、Sb、Pb的平均含量分别为45.57、23.43、325.54、265.43、9.53、0.42、304.17、13174.29 mg·kg−1,其余区域表层土壤重金属Cr、Ni、Cu、Zn、As、Cd、Sb、Pb的平均含量分别为102.09、26.75、1137.18、3007.13、7.71、0.95、70.65、2894.97 mg·kg−1,均高于山西省背景值. 污染指数评价结果表明,Pb、Zn、Cu、Sb和Cd的累积程度较高. 研究区土壤重金属生态危害指数为2653.35,达到极高生态风险水平. 绝对主成分得分-多元线性回归模型(APCS-MLR)表明,Ni、Cd、Zn、Cr和Cu的来源主要为混合源,贡献率为72.94%,Pb和Sb的主要来源是销毁源,贡献率为53.99%,自然源对As贡献率最大,为44.63%.
-
关键词:
- 弹药销毁场 /
- 重金属 /
- 污染特征 /
- 潜在生态风险 /
- APCS-MLR受体模型
Abstract: In order to grasp the pollution status and sources of heavy metals in ammunition destruction sites, the pollution status, distribution characteristics and pollution sources of 39 surface soil heavy metals (Cr, Ni, Cu, Zn, As, Cd, Sb, Pb) in this destruction site were evaluated and analyzed, taking a typical ammunition destruction site in Shanxi as an example. The results showed that the average contents of the surface soil heavy metals Cr, Ni, Cu, Zn, As, Cd, Sb and Pb in the shell dumping area were 45.57, 23.43, 325.54, 265.43, 9.53, 0.42, 304.17, 13174.29 mg·kg−1, respectively, while the average contents of the surface soil heavy metals Cr, Ni, Cu, Zn, As, Cd, Sb and Pb in the rest of the area were 45.57, 23.43, 325.54, 265.43, 9.53, 0.42, 304.17, 13174.29 mg·kg−1, respectively, As, Cd, Sb and Pb were 102.09, 26.75, 1137.18, 3007.13, 7.71, 0.95, 70.65 , 2894.97 mg·kg−1 respectively, which were all higher than the background values in Shanxi Province. The results of the pollution index evaluation showed that the accumulation of Pb, Zn, Cu, Sb and Cd was high. The ecological hazard index for soil heavy metals in the study area was 2653.35, reaching a very high ecological risk level. The absolute principal component score-multiple linear regression model (APCS-MLR) showed that the sources of Ni, Cd, Zn, Cr and Cu were mainly mixed sources with a contribution of 72.94%, the main sources of Pb and Sb were destruction sources with a contribution of 53.99%, and natural sources contributed the most to As with a contribution of 44.63%. -
表 1 土壤重金属污染程度划分表
Table 1. Classification table of soil heavy metal pollution levels
地累积指数
Ground accumulation index单因子污染指数
Single pollution index内梅罗综合污染指数
Nemerow comprehensive pollution indexIgeo 污染程度 Pi 污染程度 PN 污染程度 Igeo≤0 清洁 Pi≤1 无 PN≤0.7 清洁 0<Igeo≤1 轻度污染 1<Pi≤2 轻微 0.7<PN≤1.0 预警 1<Igeo≤2 偏中度污染 2<Pi≤3 轻度 1.0<PN≤2.0 轻微污染 2<Igeo≤3 中度污染 3<Pi≤5 中度 2.0<PN≤3.0 中度污染 3<Igeo≤4 偏重度污染 Pi>5 重度 PN>3.0 重度污染 4<Igeo≤5 严重污染 Igeo>5 极重污染 表 2 土壤重金属潜在生态风险划分表
Table 2. Classification table of potential ecological risks of heavy metals in soil
单个重金属潜在生态风险指数
Potential ecological risk index of individual heavy metals潜在生态风险指数
Potential ecological risk index风险等级
Risk levelEi≤40 RI≤150 轻微 40<Ei≤60 150<RI≤300 中等 60<Ei≤160 300≤RI<600 强 160≤Ei 600≤RI 极强 表 3 土壤重金属污染描述性统计
Table 3. Descriptive statistics of soil heavy metal pollution
场地 统计量 Cr Ni Cu Zn As Cd Sb Pb 研究区 含量范围/
(mg·kg−1)28.00—
550.009.00—
197.0037.40—
1.90×10438.00—
7.00×1042.10—
18.700.05—
11.600.66—
1850.0020.00—
9.00×104平均值/
(mg·kg−1)91.95 26.15 991.50 2515.03 8.04 0.85 112.56 4739.97 标准差 111.60 28.27 3162.46 10981.82 3.98 1.83 314.75 15158.4 CV 1.21 1.08 3.19 4.37 0.5 2.14 2.8 3.2 山西背景值/
(mg·kg−1)57.9[38] 31.4[38] 24.4[38] 66.2[38] 9.5[38] 0.12[38] 1.3[38] 15.1[38] 超标率/% 7.7 2.6 48.7 79.5 0 25.6 35.9 71.8 筛选值/(mg·kg−1) 250 190 100 300 25 0.6 35 170 表 4 销毁场土壤重金属相关性
Table 4. Correlation of soil heavy metals in destruction site
Cr Ni Cu Zn As Cd Sb Pb Cr 1 0.506** 0.167 0.466** 0.03 0.387* 0.348* 0.317* Ni 1 0.352* 0.981** 0.345* 0.927** 0.298 0.199 Cu 1 0.338* 0.054 0.312 0.118 0.091 Zn 1 0.305 0.962** 0.266 0.162 As 1 0.312 0.13 0.081 Cd 1 0.214 0.111 Sb 1 0.991** Pb 1 表 5 土壤重金属元素主成分分析
Table 5. Principal component analysis of heavy metal elements in soil
成分
composition初始特征值
Initial eigenvalue旋转载荷平方和
Sum of the squares of rotating loads总计 方差百分比 累积% 总计 方差百分比 累积% 1 3.721 46.509 46.509 3.391 42.387 46.509 2 1.801 22.510 69.019 2.129 26.613 69.001 3 1.076 13.455 82.474 1.078 13.473 82.474 4 0.785 9.812 92.286 5 0.540 6.756 99.042 6 0.063 0.782 99.825 7 0.011 0.135 99.960 8 0.003 0.040 100.000 表 6 土壤重金属Kaiser旋转后的因子分析结果
Table 6. Factor analysis results of heavy metal in soil after Kaiser rotation
1 2 3 Cr 0.498 0.392 −0.232 Ni 0.968 0.149 0.043 Cu 0.439 0.041 −0.619 Zn 0.973 0.107 0.03 As 0.365 0.054 0.796 Cd 0.953 0.047 0.064 Sb 0.152 0.977 0.036 Pb 0.049 0.990 0.013 -
[1] YAN K, WANG H Z, LAN Z, et al. Heavy metal pollution in the soil of contaminated sites in China: Research status and pollution assessment over the past two decades[J]. Journal of Cleaner Production, 2022, 373: 133780. doi: 10.1016/j.jclepro.2022.133780 [2] ZHONG X, CHEN Z W, LI Y Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal of Hazardous Materials, 2020, 400: 123289. doi: 10.1016/j.jhazmat.2020.123289 [3] LEE P K, KANG M J, YU S, et al. Assessment of trace metal pollution in roof dusts and soils near a large Zn smelter[J]. Science of the Total Environment, 2020, 713: 136536. doi: 10.1016/j.scitotenv.2020.136536 [4] OBIRI-NYARKO F, DUAH A A, KARIKARI A Y, et al. Assessment of heavy metal contamination in soils at the Kpone landfill site, Ghana: Implication for ecological and health risk assessment[J]. Chemosphere, 2021, 282: 131007. doi: 10.1016/j.chemosphere.2021.131007 [5] 李强, 曹莹, 何连生, 等. 典型冶炼行业场地土壤重金属空间分布特征及来源解析[J]. 环境科学, 2021, 42(12): 5930-5937. LI Q, CAO Y, HE L S, et al. Spatial distribution characteristics and source analysis of soil heavy metals at typical smelting industry sites[J]. Environmental Science, 2021, 42(12): 5930-5937 (in Chinese).
[6] RAN H Z, DENG X G, GUO Z H, et al. Pollution characteristics and environmental availability of toxic elements in soil from an abandoned arsenic-containing mine[J]. Chemosphere, 2022, 303: 135189. doi: 10.1016/j.chemosphere.2022.135189 [7] YIN Y, WANG X J, HU Y A, et al. Soil bacterial community structure in the habitats with different levels of heavy metal pollution at an abandoned polymetallic mine[J]. Journal of Hazardous Materials, 2023, 442: 130063. doi: 10.1016/j.jhazmat.2022.130063 [8] 顾会, 赵涛, 高月, 等. 贵州省典型铅锌矿区土壤重金属污染特征及来源解析[J]. 地球与环境, 2022, 50(4): 506-515. doi: 10.14050/j.cnki.1672-9250.2022.50.003 GU H, ZHAO T, GAO Y, et al. Pollution characteristics and source analysis of heavy metals in soils of a typical lead-zinc mining area in Guizhou Province[J]. Earth and Environment, 2022, 50(4): 506-515 (in Chinese). doi: 10.14050/j.cnki.1672-9250.2022.50.003
[9] 李强, 何连生, 王耀锋, 等. 中国冶炼行业场地土壤污染特征及分布情况[J]. 生态环境学报, 2021, 30(3): 586-595. doi: 10.16258/j.cnki.1674-5906.2021.03.017 LI Q, HE L S, WANG Y F, et al. The characteristics and distribution of soil pollution in smelting industry sites in China[J]. Ecology and Environmental Sciences, 2021, 30(3): 586-595 (in Chinese). doi: 10.16258/j.cnki.1674-5906.2021.03.017
[10] XU L, DAI H P, SKUZA L, et al. Integrated survey on the heavy metal distribution, sources and risk assessment of soil in a commonly developed industrial area[J]. Ecotoxicology and Environmental Safety, 2022, 236: 113462. doi: 10.1016/j.ecoenv.2022.113462 [11] KHAN J, SINGH R, UPRETI P, et al. Geo-statistical assessment of soil quality and identification of Heavy metal contamination using Integrated GIS and Multivariate statistical analysis in Industrial region of Western India[J]. Environmental Technology & Innovation, 2022, 28: 102646. [12] 张义, 周心劝, 曾晓敏, 等. 长江经济带工业区土壤重金属污染特征与评价[J]. 环境科学, 2022, 43(4): 2062-2070. doi: 10.13227/j.hjkx.202106237 ZHANG Y, ZHOU X Q, ZENG X M, et al. Characteristics and assessment of heavy metal contamination in soils of industrial regions in the Yangtze River economic belt[J]. Environmental Science, 2022, 43(4): 2062-2070 (in Chinese). doi: 10.13227/j.hjkx.202106237
[13] 毛盼, 王明娅, 孙昂, 等. 某典型废弃硫酸场地土壤重金属污染特征与评价[J]. 环境化学, 2022, 41(2): 511-525. doi: 10.7524/j.issn.0254-6108.2021071304 MAO P, WANG M Y, SUN A, et al. Heavy metal pollution characteristics and assessment in soil of a typical abandoned sulfuric acid site[J]. Environmental Chemistry, 2022, 41(2): 511-525 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021071304
[14] 张施阳. 钢铁厂遗留场地土壤重金属和多环芳烃的污染特征及健康风险评价[J]. 环境污染与防治, 2022, 44(10): 1336-1342. doi: 10.15985/j.cnki.1001-3865.2022.10.012 ZHANG S Y. Pollution characteristics and health risk assessment of heavy metals and polycyclic aromatic hydrocarbons in soils of remaining site left by a steel plant[J]. Environmental Pollution & Control, 2022, 44(10): 1336-1342 (in Chinese). doi: 10.15985/j.cnki.1001-3865.2022.10.012
[15] SKALNY A V, ASCHNER M, BOBROVNITSKY I P, et al. Environmental and health hazards of military metal pollution[J]. Environmental Research, 2021, 201: 111568. doi: 10.1016/j.envres.2021.111568 [16] CHRISTOU A, HADJISTERKOTIS E, DALIAS P, et al. Lead contamination of soils, sediments, and vegetation in a shooting range and adjacent terrestrial and aquatic ecosystems: A holistic approach for evaluating potential risks[J]. Chemosphere, 2022, 292: 133424. doi: 10.1016/j.chemosphere.2021.133424 [17] JOHNSEN I V, AANEBY J. Soil intake in ruminants grazing on heavy-metal contaminated shooting ranges[J]. Science of the Total Environment, 2019, 687: 41-49. doi: 10.1016/j.scitotenv.2019.06.086 [18] 王亮, 李宏伟, 李昂泽, 等. 军事训练场炮弹靶场土壤重金属污染特征及生态风险评价: 以西藏某训练场为例[J]. 环境化学, 2022, 41(8): 2646-2654. doi: 10.7524/j.issn.0254-6108.2022012705 WANG L, LI H W, LI A Z, et al. Study on characteristics and ecological risks of heavy metal pollution in soil of projectile range in military training ground—a case of a training ground in Tibet[J]. Environmental Chemistry, 2022, 41(8): 2646-2654 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022012705
[19] 王诗雨, 李淳, 赵洪伟, 等. 某试验场土壤重金属分布特征及其污染评价[J]. 环境科学, 2023, 44(3): 1657-1667. doi: 10.13227/j.hjkx.202201279 WANG S Y, LI C, ZHAO H W, et al. Distribution characteristics and pollution assessment of heavy metals in soils of a testing range[J]. Environmental Science, 2023, 44(3): 1657-1667 (in Chinese). doi: 10.13227/j.hjkx.202201279
[20] 刘玉通, 方振东, 杨琴, 等. 某轻武器射击场土壤重金属总量及赋存形态分析[J]. 安全与环境学报, 2013, 13(5): 103-107. LIU Y T, FANG Z D, YANG Q, et al. Analysis of the total concentration and the existing speciation of heavy metals in small arms shooting range soils[J]. Journal of Safety and Environment, 2013, 13(5): 103-107 (in Chinese).
[21] 刘玉通, 方振东, 杨琴, 等. 某军事区域土壤重金属污染状况及其评价[J]. 后勤工程学院学报, 2010, 26(1): 62-65. doi: 10.3969/j.issn.1672-7843.2010.01.014 LIU Y T, FANG Z D, YANG Q, et al. State and evaluation of heavy metal pollution of soil from a military area[J]. Journal of Logistical Engineering University, 2010, 26(1): 62-65 (in Chinese). doi: 10.3969/j.issn.1672-7843.2010.01.014
[22] 刘玉通, 方振东, 杨琴, 等. 基于GIS的某训练场土壤重金属污染评价[J]. 环境科学, 2012, 33(5): 1725-1730. doi: 10.13227/j.hjkx.2012.05.051 LIU Y T, FANG Z D, YANG Q, et al. Evaluation of heavy metal pollution in soils from a training ground based on GIS[J]. Environmental Science, 2012, 33(5): 1725-1730 (in Chinese). doi: 10.13227/j.hjkx.2012.05.051
[23] 李烨玲. 靶场土壤中铅的环境行为及生物有效性研究[D]. 合肥: 中国科学技术大学, 2018. LI Y L. The environmental fate and bioavailability of lead in shooting range soils[D]. Hefei: University of Science and Technology of China, 2018 (in Chinese).
[24] BAI J A, ZHAO X F. Ecological and human health risks of heavy metals in shooting range soils: A meta assessment from China[J]. Toxics, 2020, 8(2): 32. doi: 10.3390/toxics8020032 [25] 张怀智, 刘鹏, 曹宏安, 等. 报废弹药烧毁作业环境废气污染治理研究[J]. 工业安全与环保, 2011, 37(12): 32-34. doi: 10.3969/j.issn.1001-425X.2011.12.013 ZHANG H Z, LIU P, CAO H A, et al. Study on the treatment of waste gas environmental pollution in abandoned ammunition burining[J]. Industrial Safety and Environmental Protection, 2011, 37(12): 32-34 (in Chinese). doi: 10.3969/j.issn.1001-425X.2011.12.013
[26] ZHANG H J, ZHU Y B, WANG S Y, et al. Contamination characteristics of energetic compounds in soils of two different types of military demolition range in China[J]. Environmental Pollution, 2022, 295: 118654. doi: 10.1016/j.envpol.2021.118654 [27] 孟欢, 朱勇兵, 王晴, 等. 吉林某弹药销毁场土壤炸药污染调查及其赋存状态研究[J]. 中国无机分析化学, 2022, 12(3): 31-39. MENG H, ZHU Y B, WANG Q, et al. Investigation on soil explosive pollution and occurrence status of a certain ammunition destruction site in Jilin Province[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(3): 31-39 (in Chinese).
[28] 刘春跃, 王辉, 白明月, 等. 沈阳市老城区表层土壤重金属分布特征及风险评价[J]. 环境工程, 2020, 38(1): 167-171. doi: 10.13205/j.hjgc.202001027 LIU C Y, WANG H, BAI M Y, et al. Risk assessment and characteristics of heavy metals in surface soil of old town of Shenyang[J]. Environmental Engineering, 2020, 38(1): 167-171 (in Chinese). doi: 10.13205/j.hjgc.202001027
[29] 熊佳, 韩志伟, 吴攀, 等. 独山锑冶炼厂周边土壤锑砷空间分布特征、污染评价及健康风险评估[J]. 环境科学学报, 2020, 40(2): 655-664. XIONG J, HAN Z W, WU P, et al. Spatial distribution characteristics, contamination evaluation and health risk assessment of arsenic and antimony in soil around an antimony smelter of Dushan County[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 655-664 (in Chinese).
[30] 崔罗肖, 胡启智, 李蒙, 等. 清远电子垃圾拆解区土壤重金属污染空间分布特征及风险评价[J]. 农业环境科学学报, 2022, 41(10): 2200-2211. doi: 10.11654/jaes.2022-0630 CUI L X, HU Q Z, LI M, et al. Spatial distribution and risk assessment of heavy metals in the soils of Qingyuan e-waste dismantling area, China[J]. Journal of Agro-Environment Science, 2022, 41(10): 2200-2211 (in Chinese). doi: 10.11654/jaes.2022-0630
[31] 马杰, 刘萍, 刘今朝, 等. 重庆市煤矸山周边农用地土壤重金属污染评价和定量溯源解析[J]. 环境科学, 2022, 43(12): 5698-5709. doi: 10.13227/j.hjkx.202202123 MA J, LIU P, LIU J Z, et al. Pollution evaluation and quantitative traceability analysis of heavy metals in farmland soils around the gangue heap of a coal mine in Chongqing[J]. Environmental Science, 2022, 43(12): 5698-5709 (in Chinese). doi: 10.13227/j.hjkx.202202123
[32] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [33] 施建飞, 靳正忠, 周智彬, 等. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 2022, 31(5): 1015-1023. doi: 10.16258/j.cnki.1674-5906.2022.05.017 SHI J F, JIN Z Z, ZHOU Z B, et al. Evaluation of heavy metal pollution in the soil around A typical tailing reservoir in Irtysh River Basin[J]. Ecology and Environmental Sciences, 2022, 31(5): 1015-1023 (in Chinese). doi: 10.16258/j.cnki.1674-5906.2022.05.017
[34] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115. XU Z Q, NI S J, TUO X G, et al. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 2008, 31(2): 112-115 (in Chinese).
[35] WANG N N, WANG A H, KONG L H, et al. Calculation and application of Sb toxicity coefficient for potential ecological risk assessment[J]. Science of the Total Environment, 2018, 610/611: 167-174. doi: 10.1016/j.scitotenv.2017.07.268 [36] 张旺, 高珍冉, 邰粤鹰, 等. 基于APCS-MLR受体模型的贵州喀斯特矿区水田土壤重金属源解析[J]. 农业工程学报, 2022, 38(3): 212-219. doi: 10.11975/j.issn.1002-6819.2022.03.025 ZHANG W, GAO Z R, TAI Y Y, et al. Source analysis of the heavy metals in paddy field soils in Karst mining areas of Guizhou using APCS-MLR receptor model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(3): 212-219 (in Chinese). doi: 10.11975/j.issn.1002-6819.2022.03.025
[37] FACHIN P A, COSTA Y T, THOMAZ E L. Evolution of the soil chemical properties in slash-and-burn agriculture along several years of fallow[J]. Science of the Total Environment, 2021, 764: 142823. doi: 10.1016/j.scitotenv.2020.142823 [38] 史崇文, 赵玲芝, 郭新波, 等. 山西土壤元素背景值及其特征[J]. 华北地质矿产杂志, 1994(2): 188-196. SHI C W, ZHAO L Z, GUO X B, et al. Background values of soil elementsin Shanxi and their distribution feature[J]. Journal of Geology & Min Resources North China, 1994, 9 ( 2) : 188-196. (in Chinese)
[39] 王敏, 董佳琦, 白龙龙, 等. 浙江省香榧主产区土壤重金属空间异质性及其生态风险[J]. 环境科学, 2021, 42(12): 5949-5957. doi: 10.13227/j.hjkx.202104238 WANG M, DONG J Q, BAI L L, et al. Spatial variation and risk assessment of heavy metals in soils of main Torreya grandis plantation region in Zhejiang Province[J]. Environmental Science, 2021, 42(12): 5949-5957 (in Chinese). doi: 10.13227/j.hjkx.202104238
[40] 张慧君, 朱勇兵, 赵三平, 等. 炸药的多相界面环境行为与归趋研究进展[J]. 含能材料, 2019, 27(7): 569-586. doi: 10.11943/CJEM2019047 ZHANG H J, ZHU Y B, ZHAO S P, et al. A review on environmental behavior and fate of explosives in multiphase interfaces[J]. Chinese Journal of Energetic Materials, 2019, 27(7): 569-586 (in Chinese). doi: 10.11943/CJEM2019047
[41] 郑宇娜, 刘鹏, 刘金河, 等. 台州市典型电子垃圾拆解场地周边农田土壤重金属污染特征和来源解析[J]. 农业环境科学学报, 2022, 41(7): 1442-1451. doi: 10.11654/jaes.2021-1395 ZHENG Y N, LIU P, LIU J H, et al. Pollution characteristics and source analysis of heavy metals in farmland soils around the e-waste dismantling sites in Taizhou City, China[J]. Journal of Agro-Environment Science, 2022, 41(7): 1442-1451 (in Chinese). doi: 10.11654/jaes.2021-1395
[42] 张一修, 王济, 张浩. 贵阳市区地表灰尘重金属污染分析与评价[J]. 生态环境学报, 2011, 20(1): 169-174. doi: 10.3969/j.issn.1674-5906.2011.01.030 ZHANG Y X, WANG J, ZHANG H. Pollution analysis and evaluation of heavy metals in urban dust in Guiyang[J]. Ecology and Environmental Sciences, 2011, 20(1): 169-174 (in Chinese). doi: 10.3969/j.issn.1674-5906.2011.01.030
[43] BARKER A J, CLAUSEN J L, DOUGLAS T A, et al. Environmental impact of metals resulting from military training activities: A review[J]. Chemosphere, 2021, 265: 129110. doi: 10.1016/j.chemosphere.2020.129110 [44] MARIUSSEN E, FJELLSBØ L, FRØMYR T R, et al. Toxic effects of gunshot fumes from different ammunitions for small arms on lung cells exposed at the air liquid interface[J]. Toxicology in Vitro, 2021, 72: 105095. doi: 10.1016/j.tiv.2021.105095 [45] BORDELEAU G, MARTEL R, AMPLEMAN G, et al. Environmental impacts of training activities at an air weapons range[J]. Journal of Environmental Quality, 2008, 37(2): 308-317. doi: 10.2134/jeq2007.0197 [46] 陈丹丹, 谭璐, 聂紫萌, 等. 湖南典型金属冶炼与采选行业企业周边土壤重金属污染评价及源解析[J]. 环境化学, 2021, 40(9): 2667-2679. doi: 10.7524/j.issn.0254-6108.2021010901 CHEN D D, TAN L, NIE Z M, et al. Evaluation and source analysis of heavy metal pollution in the soil around typical metal smelting and mining enterprises in Hunan Province[J]. Environmental Chemistry, 2021, 40(9): 2667-2679 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021010901
[47] 黄波涛. 典型危废处置利用企业周边土壤重金属分布特征、来源及风险评价[J]. 环境化学, 2023, 42(2): 435-445. doi: 10.7524/j.issn.0254-6108.2022062403 HUANG B T. Distribution characteristics, sources analysis and potential ecological risk assessment of heavy metals in soils surrounding typical hazardous waste disposal and utilization plants[J]. Environmental Chemistry, 2023, 42(2): 435-445 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022062403
[48] 姜昱聪, 贾晓洋, 夏天翔, 等. 起爆药污染场地土壤中锑的环境风险评估[J]. 环境科学研究, 2020, 33(2): 485-493. doi: 10.13198/j.issn.1001-6929.2019.06.03 JIANG Y C, JIA X Y, XIA T X, et al. Environmental risk assessment of antimony in contaminated soil by primary explosives[J]. Research of Environmental Sciences, 2020, 33(2): 485-493 (in Chinese). doi: 10.13198/j.issn.1001-6929.2019.06.03
[49] 李朋飞, 刘超, 陶春军, 等. 再生铅工业园周边土壤重金属分布特征及来源解析[J]. 现代地质, 2020, 34(4): 663-671. doi: 10.19657/j.geoscience.1000-8527.2020.04.03 LI P F, LIU C, TAO C J, et al. Spatial distribution and source analysis of heavy metal pollution in soils around recycled lead industrial park[J]. Geoscience, 2020, 34(4): 663-671 (in Chinese). doi: 10.19657/j.geoscience.1000-8527.2020.04.03
[50] 江雅琪, 桂和荣, 陈晨, 等. 宿州市城市景区水域底泥重金属含量特征及生态风险评价[J]. 环境化学, 2021, 40(8): 2410-2418. doi: 10.7524/j.issn.0254-6108.2020111302 JIANG Y Q, GUI H R, CHEN C, et al. Distribution and ecological risk assessment of heavy metals in sediment in urban scenic area[J]. Environmental Chemistry, 2021, 40(8): 2410-2418 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020111302
[51] 杨新明, 钟雅琪, 李国锋, 等. 典型工业城市大气降尘中重金属分布特征及其来源解析: 以济南市为例[J]. 环境化学, 2022, 41((1): ): 94-103. doi: 10.7524/j.issn.0254-6108.2020090803 YANG X M, ZHONG Y Q, LI G F, et al. Distribution characteristic and source apportionment of heavy metals in atmospheric dust in a typical industrial city—a case study of Jinan[J]. Environmental Chemistry, 2022, 41((1): ): 94-103 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020090803