-
四环素类抗生素(TCs,表1)是由放线菌产生,以氢化并四苯为基本骨架的一类广谱抗生素,广泛应用于人类医疗、畜牧业和水产养殖业. 据报道,TCs的生产和使用量在我国位居第一[1]、世界第二[2]. TCs主要包括四环素(TC)、土霉素(OTC)、金霉素(CTC)和多西霉素(DXC),使用后大部分会以原型或代谢产物形式随尿液和粪便排出并通过各种途径进入环境,对生态系统和公共健康产生严重影响[3 − 5].
以往的研究报道TCs在河流、湖泊和土壤中被广泛检出[6 − 9],但是主要集中于上述几种原型抗生素,缺乏对其转化产物的监测及潜在风险研究. 一方面,已有研究表明TCs由于水解和光解等作用容易在C4位可逆地形成差向异构产物(如ETC和ECTC)、在C6位形成脱水产物及其差向异构产物(如ATC和EATC)、在b环发生开环反应生成内酯型异构体(如α-apo-OTC和β-apo-OTC)、在c环发生开环生成异构体(如ICIC)[10 − 12]. 另一方面,尽管一些TCs转化产物的抗菌活性不如其原型化合物,但毒性却大大增强,如含有EATC和ETC降解产物的变质TC制剂能引起范康尼综合征[13];Halling-Sorensen等发现EATC和ATC对环境中的一些耐药菌和土壤细菌的杀灭作用比原型化合物更强[14]. 因此,环境中TCs转化产物存在引起的风险不容忽视.
目前,相关研究还主要停留在实验室条件下TCs转化产物的结构鉴定、形成规律及影响因素等方面[9,11],关于它们在实际环境中的污染水平和分布研究还非常少,且已有的检测方法主要针对几种原型化合物,需要进一步研究环境水样萃取条件对转化产物富集浓缩效果的影响、TCs易于差向异构导致同分异构体普遍存在对特异检测的影响等. 本研究针对7种TCs和13种转化产物(包括7组15个同分异构体),应用固相萃取结合超高效液相色谱串联质谱仪(UPLC-MS/MS)建立高灵敏同时分析方法,并应用于永定河(北京段)水体样品,初步调查TCs及转化产物的浓度水平、组成及分布特征,以期为后续的环境行为和风险评估研究奠定基础.
地表水中20种四环素类抗生素及其转化产物的同时检测方法研究和应用
Research and application of simultaneous detection method for 20 tetracyclines and transformation products in surface water
-
摘要: 四环素类抗生素(TCs)由于水解和光解等作用容易生成多种转化产物、且有些转化产物具有更强的毒性效应,因此,TCs转化产物的环境存在引起的风险不容忽视. 本研究建立了超高效液相色谱串联三重四极杆质谱(UPLC-MS/MS)同时检测地表水体中7种TCs及13种转化产物的分析方法,细致研究了TCs及其转化产物的质谱碎裂和液相色谱分离规律. 水样添加5 g·L−1 Na2EDTA后经Oasis HLB固相萃取柱富集净化、1%甲酸甲醇洗脱后用UPLC-MS/MS测定. 流动相为甲醇和0.1%甲酸水溶液,在Waters BEH C18柱上采用梯度洗脱,实现了20种TCs及其转化产物的准确鉴定. 实际水样中绝大多数目标污染物的加标回收率为60%—130%,方法检出限在24.5—927 pg·L−1之间. 应用此方法于永定河(北京段)27个样品,检测出6种原型TCs(平均浓度70.0—560 pg·L−1;检出频率3.7%—29.6%)和9种转化产物(70.0—1980 pg·L−1;3.7%—37%),转化产物与原型物质的检出浓度和检出频率在同一水平上、甚至稍高,应该重视与TCs同时存在的转化产物所引起的环境和健康风险.Abstract: Due to the hydrolysis and photolysis of tetracycline antibiotics (TCs), they are easy to generate a variety of transformation products, and some of them even have stronger toxicities. Therefore, the risks caused by the environmental occurrences of TC transformation products could not be ignored. A method of ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) combined with solid-phase extraction (SPE) has been developed for simultaneous analysis of 7 TCs and 13 transformation products in surface water. It was studied in detail about their mass spectrometric fragmentation pattern and chromatographic separation. After adding 5 g·L−1 Na2EDTA, the water samples were enriched through Oasis HLB cartridges, and eluted with 1% formic acid in methanol for UPLC-MS/MS detection. The detection used gradient elution process on Waters BEH C18 column with methanol and 0.1% formic acid in water as the mobile phase to achieve accurate identification of these 20 analytes. The method detection limits were 24.5—927 pg·L−1 and spiking recoveries of 60%—130% for most target analytes in surface sample. Application of this method for 27 water samples collected from the Yongding River in Beijing area showed that 6 TCs and 9 transformation products were detected with the average concentrations of 70.0—560 pg·L−1 (detection frequencies of 3.7%—29.6%) and 70.0—1980 pg·L−1(3.7%—37%), respectively. The detection concentrations and detection frequencies of transformation products are close to those of TCs, thus more attention should be paid to the environmental and health risks caused by the coexisting TC transformation products.
-
Key words:
- emerging contaminants /
- antibiotics /
- tetracyclines /
- transformation products /
- UPLC-MS/MS /
- surface water.
-
表 1 20种TCs及其转化产物的结构信息和质谱参数
Table 1. Structure information and MS parameters of 20 tetracyclines and transformation products
结构
Structure中文名称
Chinese
Name英文名称
Compounds简称
Abbreviation结构
StructureR1 R2 R3 R4 R5 R6 R7 R8 R9 MRM CE/eV Cone/V 四环素 tetracycline TC A H OH CH3 H H N(CH3)2 OH OH — 445>410
445>42820
1630
304-差向四环素 4-epi-tetracycline ETC A H OH CH3 H N(CH3)2 H OH OH — 445>410
445>42820
1630
30脱水四环素 anhydrotetracycline ATC A H CH3 H H H N(CH3)2 OH OH — 427>410
427>15413
3030
404-差向脱水四环素 4-epi-anhydrotetracy-cline EATC A H CH3 H H N(CH3)2 H OH OH — 427>410
427>15413
3030
40去甲环素 demethyltetracy-cline DMTC A H OH H H H N(CH3)2 OH OH — 431>414
431>15413
2230
34土霉素 oxytetracycline OTC A H OH CH3 CH3 H N(CH3)2 OH OH — 461>426
461>20116
3040
404-差向土霉素 4-epi-oxyltracycline EOTC A H OH CH3 CH3 N(CH3)2 H OH OH — 461>426
461>44416
1040
40金霉素 chlortetracycline CTC A Cl OH CH3 H H N(CH3)2 OH OH — 479>444
479>15420
2610
144-差向金霉素 4-epi-chlortetracyeline ECTC A Cl OH CH3 H N(CH3)2 H OH OH — 479>444
479>15420
2610
14脱水四环霉素 anhydrochlortetracy-cline ACTC A Cl CH3 H H H N(CH3)2 OH OH — 461>444
461>42610
1640
404-差向脱水四环霉素 4-epi-anhydrochlortetracy-cline EACTC A Cl CH3 H H N(CH3)2 H OH OH — 461>444
461>42610
1640
40强力霉素 doxycycline DXC A H H CH3 OH H N(CH3)2 OH OH — 445>428
445>32116
2630
30β-多西环素 6-epi doxycycline 6-EDXC A H CH3 H OH H N(CH3)2 OH OH — 445>428
445>32116
2630
30米诺环素 minocycline MINO A N(CH3)2 H H H H N(CH3)2 OH OH — 458>441
458>35216
2030
30δ-亚氨基米诺环素 12-amino minocycline 12-A MINO A N(CH3)2 H H H H N(CH3)2 NH2 OH — 457>440
457>39516
2620
20美他环素 methacycline MTC A H =CH2 OH H N(CH3)2 OH OH — 443>426
443>20120
3610
24甲氯环素 meclocycline MCC A Cl =CH2 OH H N(CH3)2 OH OH — 477>235
477>9742
2614
14四环素-D6 tetracycline-D6 TC- D6 A H OH CH3 H H N(CD3)2 OH OH — 451>433
451>41616
2030
30金霉素-13C-D3 chlortetracycline-13C-D3 CTC-13C-D3 A Cl OH CH3 H H N213CC D3H3 OH OH — 485>450
485>15820
2614
14强力霉素-D3 doxycycline-D3 DXC-D3 A H D CH2D OH D N(CH3)2 OH OH — 448>431 16 20 α-载脂蛋白-土霉素 α-apo-oxytetracycline α-apo-OTC B H OH — — — — — OH H 443>426
443>40820
2310
30β-载脂蛋白-土霉素 β-apo-oxytetracycline β-apo-OTC B OH H — — — — — H OH 443>426
443>40820
2310
30异氯四环素 isochlortetracycline ICTC C — — — — — — — — — 479>462
479>15423
2610
14注:MRM(Multiple reaction monitoring);质谱多反应监测;CE(Collision energy):碰撞能量;Cone(Cone voltage):锥孔电压. 表 2 20种TCs及其转化产物的方法检出限和加标回收率
Table 2. Method detection limit and recovery of 20 TCs and transformation products
抗生素
Antibiotics线性回归方程
Regression equationR2 方法检出限/(pg·L−1)
Method detection limit回收率/%
RecoveryRSD/% 内标
Internal standardTC y=2.13x-1.79 0.993 67.0 74.8 2.10 TC-D6 ETC y=0.496x+0.0857 0.992 55.0 100.0 13.8 TC-D6 ATC y=5.99x-5.34 0.990 64.4 72.7 8.50 CTC-13C-D3 EATC y=2.60x-4.13 0.992 53.0 85.9 7.40 CTC-13C-D3 DMTC y=0.548x-0.486 0.994 103.0 84.2 5.20 TC-D6 OTC y=1.06x-1.76 0.990 14.7 124.8 2.00 TC-D6 EOTC y=0.206x-0.00990 0.999 127.0 86.3 8.60 TC-D6 α-APO-OTC y=1.71x-1.77 0.990 128.0 80.4 2.10 CTC-13C-D3 β-APO-OTC y=1.53x-0.0564 0.996 118.0 46.8 3.80 CTC-13C-D3 CTC y=1.43x-1.07 0.994 85.0 99.8 1.30 CTC-13C-D3 ICTC y=0.622x-0.942 0.991 53.0 60.0 2.40 CTC-13C-D3 ECTC y=0.388x-0.673 0.990 40.5 103.9 5.90 CTC-13C-D3 ACTC y=1.15x-0.667 0.991 927.0 82.8 6.70 CTC-13C-D3 EACTC y=0.621x-0.588 0.990 125.0 76.9 3.40 CTC-13C-D3 DXC y=3.29x-3.35 0.992 36.0 74.7 4.70 DXC-D3 6-EDXC y=4.76x-2.19 0.993 24.5 91.2 5.20 CTC-13C-D3 MINO y=0.798x-0.740 0.991 88.7 129.8 6.90 TC-D6 12-AMINO y=0.623x-0.300 0.996 63.8 42.2 8.50 TC-D6 MTC y=0.668x+0.171 0.990 98.4 83.3 3.10 TC-D6 MCC y=0.373x-0.287 0.991 32.2 61.3 4.20 CTC-13C-D3 表 3 永定河(北京段)水样中TCs及其转化产物含量和检出率
Table 3. Concentrations and detection frequencies of TCs and transformation products in water samples from the Yongding River (Beijing)
抗生素
Antibiotics含量范围/(pg·L−1)
Concentration range平均值/(pg·L−1)
Average concentration检出率/%
Detection ratioTC 70.0—1830 520 14.8 ETC 1980 1980 3.70 ATC 70.0 70.0 3.70 EATC 70.0—110 90.0 7.40 OTC 140—340 240 7.40 α-APO-OTC 360—1310 700 14.8 CTC 90.0—100 100 7.40 ICTC 110—130 120 7.40 ECTC 50.0—130 80.0 14.8 EACTC 300—3230 1280 14.8 DXC 30.0—50.0 350 29.6 6-EDXC 30.0—710 140 37.0 12-AMINO 820 820 3.70 MTC 560 560 3.70 MCC 190 190 7.40 -
[1] SHEN Q B, WANG Z Y, YU Q, et al. Removal of tetracycline from an aqueous solution using Manganese dioxide modified biochar derived from Chinese herbal medicine residues[J]. Environmental Research, 2020, 183: 109195. doi: 10.1016/j.envres.2020.109195 [2] PAN S F, ZHU M P, CHEN J P, et al. Separation of tetracycline from wastewater using forward osmosis process with thin film composite membrane–Implications for antibiotics recovery[J]. Separation and Purification Technology, 2015, 153: 76-83. doi: 10.1016/j.seppur.2015.08.034 [3] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. [4] WANG H L, CHEN T H, CHEN D, et al. Sulfurized oolitic hematite as a heterogeneous Fenton-like catalyst for tetracycline antibiotic degradation[J]. Applied Catalysis B:Environmental, 2020, 260: 118203. doi: 10.1016/j.apcatb.2019.118203 [5] 贾世杰, 高会旺, 祁建华. 海洋环境中抗生素抗性基因研究进展[J]. 环境化学, 2023, 42(3): 792-804. doi: 10.7524/j.issn.0254-6108.2022103101 JIA S J, GAO H W, QI J H. Antibiotic resistance genes in marine environment–a review[J]. Environmental Chemistry, 2023, 42(3): 792-804 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022103101
[6] CHEN Y L, JIANG C X, WANG Y L, et al. Sources, environmental fate, and ecological risks of antibiotics in sediments of Asia’s longest river: A whole-basin investigation[J]. Environmental Science & Technology, 2022, 56(20): 14439-14451. [7] WANG C, ZHAO Y P, LIU S, et al. Contamination, distribution, and risk assessment of antibiotics in the urban surface water of the Pearl River in Guangzhou, South China[J]. Environmental Monitoring and Assessment, 2021, 193(2): 98. doi: 10.1007/s10661-021-08887-5 [8] GU J Y, CHEN C Y, HUANG X Y, et al. Occurrence and risk assessment of tetracycline antibiotics in soils and vegetables from vegetable fields in Pearl River Delta, South China[J]. Science of the Total Environment, 2021, 776: 145959. doi: 10.1016/j.scitotenv.2021.145959 [9] 张晶晶, 陈娟, 王沛芳, 等. 中国典型湖泊四大类抗生素污染特征[J]. 中国环境科学, 2021, 41(9): 4271-4283 doi: 10.19674/j.cnki.issn1000-6923.20210510.007 ZHANG J J, CHEN J, WANG P F, et al. Pollution characteristics of four-type antibiotics in typical lakes in China[J]. China Environmental Science, 2021, 41(9): 4271-4283(in Chinese) doi: 10.19674/j.cnki.issn1000-6923.20210510.007
[10] ZHONG S F, YANG B, XIONG Q, et al. Hydrolytic transformation mechanism of tetracycline antibiotics: Reaction kinetics, products identification and determination in WWTPs[J]. Ecotoxicology and Environmental Safety, 2022, 229: 113063. doi: 10.1016/j.ecoenv.2021.113063 [11] LEICHTWEIS J, VIEIRA Y, WELTER N, et al. A review of the occurrence, disposal, determination, toxicity and remediation technologies of the tetracycline antibiotic[J]. Process Safety and Environmental Protection, 2022, 160: 25-40. doi: 10.1016/j.psep.2022.01.085 [12] DZOMBA P, ZARANYIKA M F. Degradation of tetracycline in tropical river ecosystems: Generation and dissipation of metabolites;kinetic and thermodynamic parameters[J]. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135(4): 2115-2136. doi: 10.1007/s11144-022-02249-z [13] 张业旺, 谭强, 刘瑞江, 等. 青霉素酰化酶制备6-APA的研究进展[J]. 中国抗生素杂志, 2008, 33(7): 385-391. doi: 10.13461/j.cnki.cja.004238 ZHANG Y W, TAN Q, LIU R J, et al. Progress in enzymatic production of 6-aminopenicillanic acid with penicillin acylase[J]. Chinese Journal of Antibiotics, 2008, 33(7): 385-391 (in Chinese). doi: 10.13461/j.cnki.cja.004238
[14] HALLING-SØRENSEN B, SENGELØV G, TJØRNELUND J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria[J]. Archives of Environmental Contamination and Toxicology, 2002, 42(3): 263-271. doi: 10.1007/s00244-001-0017-2 [15] ZHU P X, ZHOU L X, JIANG K Z, et al. Diastereomer recognition of three pairs of tetracyclines by electrospray ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2022, 36(2): e9221. doi: 10.1002/rcm.9221 [16] ŠALA M, KOČAR D, LUKEŽIČ T, et al. Rapid identification of atypical tetracyclines using tandem mass spectrometric fragmentation patterns[J]. Rapid Communications in Mass Spectrometry, 2015, 29(17): 1556-1562. doi: 10.1002/rcm.7252 [17] SHEN F, XU Y J, WANG Y, et al. Rapid and ultra-trace levels analysis of 33 antibiotics in water by on-line solid-phase extraction with ultra-performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography. A, 2022, 1677: 463304. doi: 10.1016/j.chroma.2022.463304 [18] ŁUKASZEWICZ P, BIAŁK-BIELIŃSKA A, DOŁŻONEK J, et al. A new approach for the extraction of tetracyclines from soil matrices: Application of the microwave-extraction technique[J]. Analytical and Bioanalytical Chemistry, 2018, 410(6): 1697-1707. doi: 10.1007/s00216-017-0815-7 [19] VIDAL J L M, AGUILERA-LUIZ M D, ROMERO-GONZÁLEZ R, et al. Multiclass analysis of antibiotic residues in honey by ultraperformance liquid chromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2009, 57(5): 1760-1767. doi: 10.1021/jf8034572 [20] ANDRADE-EIROA A, CANLE M, LEROY-CANCELLIERI V, et al. Solid-phase extraction of organic compounds: A critical review (Part Ⅰ)[J]. TrAC Trends in Analytical Chemistry, 2016, 80: 641-654. doi: 10.1016/j.trac.2015.08.015 [21] ANDRADE-EIROA A, CANLE M, LEROY-CANCELLIERI V, et al. Solid-phase extraction of organic compounds: A critical review (Part Ⅱ)[J]. TrAC Trends in Analytical Chemistry, 2016, 80: 655-667. doi: 10.1016/j.trac.2015.08.014 [22] 廖杰, 李青松. 测定13种抗生素的固相萃取-高效液相色谱串联质谱法优化与应用[J]. 环境化学, 2022, 41(5): 1538-1547. doi: 10.7524/j.issn.0254-6108.2022021302 LIAO J, LI Q S. Optimization and application of solid phase extraction-high performance liquid chromatography-tandem mass spectrometry for determination of 13 antibiotics[J]. Environmental Chemistry, 2022, 41(5): 1538-1547 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022021302
[23] JIA A, XIAO Y, HU J Y, et al. Simultaneous determination of tetracyclines and their degradation products in environmental waters by liquid chromatography–electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2009, 1216(22): 4655-4662. doi: 10.1016/j.chroma.2009.03.073 [24] ZHENG W L, ZHANG L F, ZHANG K Y, et al. Determination of tetracyclines and their epimers in agricultural soil fertilized with swine manure by ultra-high-performance liquid chromatography tandem mass spectrometry[J]. Journal of Integrative Agriculture, 2012, 11(7): 1189-1198. doi: 10.1016/S2095-3119(12)60114-2 [25] ZHOU J L, MASKAOUI K, LUFADEJU A. Optimization of antibiotic analysis in water by solid-phase extraction and high performance liquid chromatography–mass spectrometry/mass spectrometry[J]. Analytica Chimica Acta, 2012, 731: 32-39. doi: 10.1016/j.aca.2012.04.021 [26] de ZAN M M, GIL GARCÍA M D, CULZONI M J, et al. Solving matrix-effects exploiting the second order advantage in the resolution and determination of eight tetracycline antibiotics in effluent wastewater by modelling liquid chromatography data with multivariate curve resolution-alternating least squares and unfolded-partial least squares followed by residual bilinearization algorithms[J]. Journal of Chromatography A, 2008, 1179(2): 106-114. doi: 10.1016/j.chroma.2007.11.091 [27] 杨艳红, 王欣, 白璇. 引黄生态补水对官厅水库水质时空分布影响及污染源解析[J]. 水资源开发与管理, 2022, 8(3): 61-69. doi: 10.16616/j.cnki.10-1326/TV.2022.03.12 Yang Y H, Wang X, Bai X. Influence of ecological water supplement of the Yellow River Diversion on time and space distribution of Guanting Reservoir water quality and analysis of pollution sources[J]. Water Resources Development and Management, 2022, 8(3): 61-69 (in Chinese). doi: 10.16616/j.cnki.10-1326/TV.2022.03.12
[28] ZHAO W J, ZUO H Y, GUO Y, et al. Porous covalent triazine-terphenyl polymer as hydrophilic–lipophilic balanced sorbent for solid phase extraction of tetracyclines in animal derived foods[J]. Talanta, 2019, 201: 426-432. doi: 10.1016/j.talanta.2019.04.010 [29] SHAO B, JIA X F, WU Y N, et al. Multi-class confirmatory method for analyzing trace levels of tetracyline and quinolone antibiotics in pig tissues by ultra-performance liquid chromatography coupled with tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(21): 3487-3496. doi: 10.1002/rcm.3236 [30] LINGHU K L, WU Q X, ZHANG J, et al. Occurrence, distribution and ecological risk assessment of antibiotics in Nanming River: Contribution from wastewater treatment plant and implications of urban river syndrome[J]. Process Safety and Environmental Protection, 2023, 169: 428-436. doi: 10.1016/j.psep.2022.11.025 [31] WU X F, WEI Y S, ZHENG J X, et al. The behavior of tetracyclines and their degradation products during swine manure composting[J]. Bioresource Technology, 2011, 102(10): 5924-5931. doi: 10.1016/j.biortech.2011.03.007 [32] JI L L, WAN Y Q, ZHENG S R, et al. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: Implication for the relative importance of black carbon to soil sorption[J]. Environmental Science & Technology, 2011, 45(13): 5580-5586. [33] 徐龙凤, 魏群山, 吕强, 等. 水体模拟颗粒物对四环素的吸附特性及基本规律[J]. 环境科学, 2018, 39(4): 1668-1676. doi: 10.13227/j.hjkx.201707225 XU L F, WEI Q S, LÜ Q, et al. Adsorption of tetracycline on simulated suspended particles in water[J]. Environmental Science, 2018, 39(4): 1668-1676 (in Chinese). doi: 10.13227/j.hjkx.201707225