-
N-亚硝胺(以下简称亚硝胺)是一类含亚硝基的有机污染物,化学通式为R1(R2)N—N=O,目前已报导的同系物有300多种. 在已知的亚硝胺当中,至少有90%对人类具有致癌作用,并且存在器官特异性,如N-亚硝基二甲胺(NDMA)以及N-亚硝基二乙胺(NDEA)会导致肝癌和鼻窦癌等疾病[1 − 2]. 此外,NDMA还可能诱导基因和染色体的突变以及引起DNA损伤[2]. 美国环境保护署综合风险信息系统(US EPA IRIS)[3]及国际癌症研究机构(IARC)[1]将9种亚硝胺(包括NDMA、NDEA、N-亚硝基甲基乙胺(NMEA)、N-亚硝基吡咯烷(NPYR)、N-亚硝基吗啉(NMOR)、N-亚硝基哌啶(NPIP)、N-亚硝基正丙胺(NDPA)、N-亚硝基二苯胺(NDPhA),和N-亚硝基正丁胺(NDBA))评定为(很)可能的人体致癌物[4 − 5].
近年来,人们在饮用水、污水、以及自然水体如河流、地下水中均发现了亚硝胺的存在[6 − 8],引起了人们对亚硝胺在水体中的分布、来源及其对人类健康产生的负面影响等一系列问题的关注[9 − 11]. 环境水体中的亚硝胺主要来源于工业废水、生活污水、农业和养殖废水的排放以及各类水体消毒过程[12]. 此外,受污染水体中广泛存在溶解性有机质(DOM)和多种胺类化合物等亚硝胺前体物,这些前体物可在不同条件下发生亚硝化等反应生成亚硝胺,从而增加环境水体中亚硝胺的浓度.
亚硝胺类化合物在水环境中的存在会对水生态安全和人体健康产生威胁. 水体中亚硝胺可通过多种不同的暴露途径影响人体健康,包括食物摄入、抽烟、呼吸、皮肤接触及使用药品和护理品[13]. 由于亚硝胺可能诱导基因和染色体的突变及引起DNA损伤,降低性激素活性,具有一定的遗传毒性,自然水体中的亚硝胺也可能对水生态环境造成潜在威胁[14].
随着人类活动的增多,排入环境中的亚硝胺类化合物将大量增加,环境水体(含饮用水源)中的亚硝胺污染日益严重,饮用水和自然水体中亚硝胺的污染特征及其所产生的生态风险和人体健康风险值得持续关注. 本文综述了亚硝胺及前体物在国内外饮用水及自然水体中的污染状况、来源、人体健康风险和生态风险,并确定了亚硝胺及其前体物的主要一次排放来源和二次生成的主要路径,以期为控制和治理亚硝胺污染提供参考.
水中N-亚硝胺的污染状况、来源及风险
Occurrence, sources, and risk of N-nitrosamines and precursors in water: A review
-
摘要: N-亚硝胺类化合物是一类被国际癌症研究机构列为高毒性和强致癌性的有机污染物,是世界公认的除黄曲霉素、二噁英之外的第三大致癌物. N-亚硝胺水溶性强,广泛存在于环境水体(地表水、地下水)和饮用水当中. 局部地区(特别是城市地区)环境水体及饮用水中的高浓度亚硝胺已对人体和生态健康构成较大威胁. 除工业、农业和生活的一次排放外,前体物存在情况下的二次生成也是水体中亚硝胺持续存在的关键原因,某些情况下可能比一次来源更为重要. 本文综述了环境水体及饮用水中N-亚硝胺的污染水平、组成和空间分布,给出水体中亚硝胺污染的重点化合物和重点区域;总结了导致亚硝胺二次生成的重要前体物,并归纳了N-亚硝胺在环境水体及饮用水系统中的一次来源及二次生成的机理过程,探索降低水体中亚硝胺污染的可行措施,为保障饮水安全和生态健康提供关键支撑.Abstract: : N-nitrosamines with high toxicity and carcinogenicity are one of the three carcinogens in addition to aflatoxin and dioxins. With high water solubility and low volatility, they widely occur in environmental water (including surface water and groundwater) and drinking water systems. The high concentrations of N-nitrosamines in environmental waters and drinking water (especially in urban areas) have posed a significant threat to the health of human beings and ecological systems. N-nitrosamines mainly originate from the primary emission of industrial, agricultural, and domestic wastewater. Secondary generation in the presence of precursors is also the key reason for the occurrence of N-nitrosamines in water bodies, which may be more important than primary sources in some cases. This paper reviews the pollution level and composition of N-nitrosamines in environmental water and drinking water, highlighting the dominant and prevalent N-nitrosamine compounds in the water. Furthermore, this paper introduces the critical precursors that lead to the secondary generation of N-nitrosamines and summarizes the primary sources and secondary generation process of N-nitrosamines in the water. Results should shed light on the exploration of feasible measures to reduce N-nitrosamine’ pollution in the water and provide critical support for ensuring drinking water safety and ecological health.
-
Key words:
- environmental water /
- drinking water /
- N-nitrosamines /
- precursors /
- primary discharge /
- secondary generation.
-
表 1 水体中常见的9种亚硝胺的物理化学性质及致癌等级分类
Table 1. Physical and chemical properties and carcinogenic grade classification of 9 nitrosamines commonly found in water
化合物
Compound化学结构
Chemical structure相对分子质量/
(g·mol−1)
Relative molecular mass辛醇/水分配系数
lgKow溶水性/
( mg·L−1)25 ℃
Solubility亨利常数/
(atm m3·mol−1)25 ℃
Henry’s constant致癌等级a
Carcinogenic gradeUS EPA IRIS IARC N-亚硝基二甲胺 74.08 –0.57 1,000,000 1.20×10–6 B2 2A N-亚硝基甲基乙基胺 88.11 0.04 300,000 1.44×10–6 B2 2B N-亚硝基二乙基胺 102.14 0.48 106,000 1.73×10–6 B2 2A N-亚硝基二丙基胺 130.19 1.36 13,000 3.46×10–6 B2 2B N-亚硝基吡咯烷 100.1 -0.19 1,000,000 1.99×10–7 B2 2B N-亚硝基吗啉 116.12 -0.44 861,528 2.13×10–10
—2B N-亚硝基哌啶 114.15 0.36 76,480 2.81×10–7
—2B N-亚硝基二丁基胺 158.24 2.63 1,270 9.96×10–6 B2 2B N-亚硝基二苯胺 198.22 3.13 35 1.38×10–5 B2 — 注:B2,2B:表示可能的人体致癌物质,具有充分的动物实验资料,但对人体的致癌证据有限;2A:表示很可能的人体致癌物质,具有充分的动物实验资料,并且对人体有理论上的致癌性,但是实验性数据有限. ;“—”:表示缺少相关数据.
Note: B2, 2B: probable human carcinogen with sufficient animal data, but limited evidence of carcinogenicity in humans; 2A: very probable human carcinogen with sufficient animal data and theoretical carcinogenicity in humans, but limited experimental data; “—” : data not available.表 2 世界各国饮用水中亚硝胺的浓度水平(ng·L−1).
Table 2. Concentrations of N-nitrosamines in the drinking water of different countries
中国
China加拿大
Canada巴西
Brazil韩国
South Korea西班牙
Spain美国
United States英国
Britain日本
Japan意大利
ItalyNDMA 33 66 33 0.9 4.5 9 7.2 10 NA NDEA 3.3 NA 9 0.3 0.8 15 NA NA 10.3 NPIP 2.9 NA 22 NA 12 NA NA NA NA NMEA 3.1 NA 11 0.2 NA 4 NA NA NA NPYR 2.4 4 14 NA NA 5 NA NA NA NMOR 7.8 2 NA 0.4 2.9 NA 6.9 NA 83.7 NDPA 9.5 NA 10 NA NA NA NA NA 8.1 NDBA 2.7 NA 11 0.3 6.7 8 18.8 NA 11 NDPhA 2.5 NA 0 NA 1.8 NA NA NA NA 总含量 67.2 72 110 2.1 28.7 41 32.9 10 113.1 参考文献 [16] [18] [19] [24] [22] [16] [21] [23] [20] 注:NA:表示缺少相关数据. Note: NA: data not available. 表 3 世界各国环境水体中亚硝胺的浓度水平
Table 3. Concentrations of N-nitrosamines in surface water, groundwater, and seawater of different countries
研究区
Research area国家
Country亚硝胺种类
Number of
N-nitrosamines地表水/
(ng·L−1)
Surface water地下水/
(ng·L−1)
Groundwater海水/
(ng·L−1)
Sea water参考文献
Reference贾鲁河流域 中国 7 11.7—385.8 ND—101.1 NA [47] 松花江 中国 7 1.6—62.4 ND—60.8 NA [42] 珠江流域 中国 5 ND— 1090 NA NA [48] 珠江三角洲地区 中国 6 ND—517.1 ND—79.6 NA [30] 长江中下游 中国 6 ND—32 NA NA [38] 滦河 中国 3 ND—12.4 NA NA [49] 台湾高平河 中国 6 ND—4.4 NA NA [50] 洛东江 韩国 6 ND—735.7 NA NA [44] 汉江 韩国 6 4—44 NA NA [51] 釜山 韩国 8 26— 5180 NA 1.2—166 [45] 东京 日本 1(NDMA) ND—5.2 ND—3.4 NA [43] 洛杉矶 美国 1(NDMA) ND— 2534 ND—13 NA [39] 加利福尼亚州 美国 1(NDMA) NA 最高400,000 NA [52] 注:ND:表示未检出;NA:表示缺少相关数据. Note: ND: not detectable; NA: data not available. -
[1] WHO. International Agency for Research on Cancer, IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans: Some N-nitroso compounds[R]. Lyon, France: WHO IARC, 1978: Volume 17. [2] LIVIAC D, CREUS A, MARCOS R. Genotoxic evaluation of the non-halogenated disinfection by-products nitrosodimethylamine and nitrosodiethylamine[J]. Journal of Hazardous Materials, 2011, 185(2/3): 613-618. [3] U. S. EPA IRIS. Chemical Assessment Summary[R]. U. S. EPA IRIS, 2012. [4] U. S. EPA IRIS. A-Z List of Substances[R]. U. S. EPA IRIS, 2015. [5] WHO. International agency for research on cancer, iarc monographs on the evaluation of carcinogenic risks to human: Agents classified by the IARC monographs[R]. WHO IARC, 2014: Volumes 1-111. [6] QIAN Y C, WU M H, WANG W, et al. Determination of 14 nitrosamines at nanogram per liter levels in drinking water[J]. Analytical Chemistry, 2015, 87(2): 1330-1336. doi: 10.1021/ac504104k [7] 李婷, 鲜啟鸣, 孙成, 等. 水中N-亚硝胺类消毒副产物的污染现状及分析技术[J]. 环境化学, 2012, 31(11): 1767-1774. LI T, XIAN Q M, SUN C, et al. The level and analysis of N-nitrosamines in waters[J]. Environmental Chemistry, 2012, 31(11): 1767-1774 (in Chinese).
[8] MCCURRY D L, KRASNER S W, VON GUNTEN U, et al. Determinants of disinfectant pretreatment efficacy for nitrosamine control in chloraminated drinking water[J]. Water Research, 2015, 84: 161-170. doi: 10.1016/j.watres.2015.07.024 [9] WANG W F, REN S Y, ZHANG H F, et al. Occurrence of nine nitrosamines and secondary amines in source water and drinking water: Potential of secondary amines as nitrosamine precursors[J]. Water Research, 2011, 45(16): 4930-4938. doi: 10.1016/j.watres.2011.06.041 [10] WANG W F, GUO Y L, YANG Q X, et al. Characterization of the microbial community structure and nitrosamine-reducing isolates in drinking water biofilters[J]. Science of the Total Environment, 2015, 521/522: 219-225. doi: 10.1016/j.scitotenv.2015.03.133 [11] WANG W F, HU J Y, YU J W, et al. Determination of N-nitrosodimethylamine in drinking water by UPLC-MS/MS[J]. Journal of Environmental Sciences, 2010, 22(10): 1508-1512. doi: 10.1016/S1001-0742(09)60281-3 [12] KRAUSS M, LONGRÉE P, DORUSCH F, et al. Occurrence and removal of N-nitrosamines in wastewater treatment plants[J]. Water Research, 2009, 43(17): 4381-4391. doi: 10.1016/j.watres.2009.06.048 [13] HECHT S S. Approaches to cancer prevention based on an understanding of N-nitrosamine carcinogenesis[J]. Proceedings of the Society for Experimental Biology and Medicine, 1997, 216(2): 181-191. doi: 10.3181/00379727-216-44168 [14] WATSON K, SHAW G, LEUSCH F D L, et al. Chlorine disinfection by-products in wastewater effluent: Bioassay-based assessment of toxicological impact[J]. Water Research, 2012, 46(18): 6069-6083. doi: 10.1016/j.watres.2012.08.026 [15] RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research[J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1/2/3): 178-242. [16] BEI E, SHU Y Y, LI S X, et al. Occurrence of nitrosamines and their precursors in drinking water systems around mainland China[J]. Water Research, 2016, 98: 168-175. doi: 10.1016/j.watres.2016.04.013 [17] BARRETT S, HWANG C, CARRIE GUO Y, et al. Occurrence of NDMA in drinking water: a North American survey, 2001-2002[C]. 2003 AWWA Annual Conference. Denver: 2003. [18] CHARROIS J W A, BOYD J M, FROESE K L, et al. Occurrence of N-nitrosamines in Alberta public drinking-water distribution systems[J]. Journal of Environmental Engineering and Science, 2007, 6(1): 103-114. doi: 10.1139/s06-031 [19] DE CAROLI VIZIOLI B, HANTAO L W, MONTAGNER C C. Drinking water nitrosamines in a large metropolitan region in Brazil[J]. Environmental Science and Pollution Research, 2021, 28(25): 32823-32830. doi: 10.1007/s11356-021-12998-4 [20] POZZI R, BOCCHINI P, PINELLI F, et al. Determination of nitrosamines in water by gas chromatography/chemical ionization/selective ion trapping mass spectrometry[J]. Journal of Chromatography A, 2011, 1218(14): 1808-1814. doi: 10.1016/j.chroma.2011.02.009 [21] TEMPLETON M R, CHEN Z. NDMA and seven other nitrosamines in selected UK drinking water supply systems[J]. Journal of Water Supply:Research and Technology-Aqua, 2010, 59(4): 277-283. doi: 10.2166/aqua.2010.077 [22] JURADO SÁNCHEZ B, BALLESTEROS E, GALLEGO M. Occurrence of aromatic amines and N-nitrosamines in the different steps of a drinking water treatment plant[J]. Water Research, 2012, 46(14): 4543-4555. doi: 10.1016/j.watres.2012.05.039 [23] ASAMI M, OYA M, KOSAKA K. A nationwide survey of NDMA in raw and drinking water in Japan[J]. Science of the Total Environment, 2009, 407(11): 3540-3545. doi: 10.1016/j.scitotenv.2009.02.014 [24] HASHEMI S, PARK J H, YANG M, et al. Long-term monitoring and risk assessment of N-nitrosamines in the finished water of drinking water treatment plants in South Korea[J]. Environmental Science and Pollution Research, 2022, 29(3): 3930-3943. doi: 10.1007/s11356-021-15814-1 [25] CHEN Z Y, YANG L, HUANG Y, et al. Carcinogenic risk of N-nitrosamines in Shanghai drinking water: Indications for the use of ozone pretreatment[J]. Environmental Science & Technology, 2019, 53(12): 7007-7018. [26] ZHAO C, LU Q, GU Y, et al. Distribution of N-nitrosamines in drinking water and human urinary excretions in high incidence area of esophageal cancer in Huai'an, China[J]. Chemosphere, 2019, 235: 288-296. doi: 10.1016/j.chemosphere.2019.06.124 [27] MAQBOOL T, ZHANG J X, LI Q Y, et al. Occurrence and fate of N-nitrosamines in three full-scale drinking water treatment systems with different treatment trains[J]. Science of the Total Environment, 2021, 783: 146982. doi: 10.1016/j.scitotenv.2021.146982 [28] FAN C C, LIN T F. N-nitrosamines in drinking water and beer: Detection and risk assessment[J]. Chemosphere, 2018, 200: 48-56. doi: 10.1016/j.chemosphere.2018.02.025 [29] LUO Q, BEI E, LIU C, et al. Spatial, temporal variability and carcinogenic health risk assessment of nitrosamines in a drinking water system in China[J]. Science of the Total Environment, 2020, 736: 139695. doi: 10.1016/j.scitotenv.2020.139695 [30] 赵仑山, 岑况, 刘秀丽, 等. 珠江三角洲含N-亚硝胺地下水与地区性癌症[J]. 地学前缘, 2019, 26(2): 335-349. doi: 10.13745/j.esf.sf.2019.1.19 ZHAO L S, CEN K, LIU X L, et al. N-nitrosamine containing underground waters and regional cancer incidence in the Pearl River Delta region[J]. Earth Science Frontiers, 2019, 26(2): 335-349 (in Chinese). doi: 10.13745/j.esf.sf.2019.1.19
[31] WHO. N-nitrosodimethylamine in drinking-water: background document for development of WHO guidelines for drinking-water quality[R]. Geneva: WHO, 2008. [32] KADMI Y, FAVIER L, WOLBERT D. N-nitrosamines, emerging disinfection by-products of health concern: An overview of occurrence, mechanisms of formation, control and analysis in water[J]. Water Supply, 2015, 15(1): 11-25. doi: 10.2166/ws.2014.095 [33] JURADO-SÁNCHEZ B, BALLESTEROS E, GALLEGO M. Screening of N-nitrosamines in tap and swimming pool waters using fast gas chromatography[J]. Journal of Separation Science, 2010, 33(4/5): 610-616. [34] HEALTH CANADA. N-nitrosodimethylamine NDMA in drinking water[R]. Ottawa, Ontario, Canada: Federal Provincial Territorial Committee on Drinking Water, Health Canada, 2010. [35] ONTARIO MINISTRY OF THE ENVIRONMENT. Technical Support Document for Ontario Drinking Water Standards, Objectives And Guidelines[R]. Ontario, Canada: Ontario Ministry of the Environment, 2003. [36] CALIFORNIA DEPARTMENT OF PUBLIC HEALTH. Public Health Goal for N-nitrosodimethylamine in Drinking Water[R]. California, U S: California Department of Public Health, 2006. [37] LI X, BEI E, QIU Y, et al. Intake of volatile nitrosamines by Chinese residents in different provinces via food and drinking water[J]. Science of the Total Environment, 2021, 754: 142121. doi: 10.1016/j.scitotenv.2020.142121 [38] CHEN Y J, CHEN W W, HUANG H F, et al. Occurrence of N-nitrosamines and their precursors in the middle and lower reaches of Yangtze River water[J]. Environmental Research, 2021, 195: 110673. doi: 10.1016/j.envres.2020.110673 [39] ZHOU Q L, McCRAVEN S, GARCIA J, et al. Field evidence of biodegradation of N-nitrosodimethylamine (NDMA) in groundwater with incidental and active recycled water recharge[J]. Water Research, 2009, 43(3): 793-805. doi: 10.1016/j.watres.2008.11.011 [40] PRESCOTT M, KRASNER S W, GUO Y C. Estimation of NDMA precursor loading in source water via artificial sweetener monitoring[J]. Journal - American Water Works Association, 2017, 109: E243-E251. [41] SCHREIBER I M, MITCH W A. Occurrence and fate of nitrosamines and nitrosamine precursors in wastewater-impacted surface waters using boron as a conservative tracer[J]. Environmental Science & Technology, 2006, 40(10): 3203-3210. [42] WANG X Z, LIU Z M, WANG C, et al. Occurrence and formation potential of nitrosamines in river water and ground water along the Songhua River, China[J]. Journal of Environmental Sciences, 2016, 50: 65-71. doi: 10.1016/j.jes.2016.05.021 [43] VAN HUY N, MURAKAMI M, SAKAI H, et al. Occurrence and formation potential of N-nitrosodimethylamine in ground water and river water in Tokyo[J]. Water Research, 2011, 45(11): 3369-3377. doi: 10.1016/j.watres.2011.03.053 [44] KIM G A, SON H J, KIM C W, et al. Nitrosamine occurrence at Korean surface water using an analytical method based on GC/LRMS[J]. Environmental Monitoring and Assessment, 2013, 185(2): 1657-1669. doi: 10.1007/s10661-012-2658-1 [45] LEE J H, OH J E. A comprehensive survey on the occurrence and fate of nitrosamines in sewage treatment plants and water environment[J]. Science of the Total Environment, 2016, 556: 330-337. doi: 10.1016/j.scitotenv.2016.02.090 [46] DHS. California Department of Health Services; NDMA in California Drinking Water[R]. California U S: DHS, 2002. [47] MA F J, WAN Y, YUAN G X, et al. Occurrence and source of nitrosamines and secondary amines in groundwater and its adjacent Jialu River Basin, China[J]. Environmental Science & Technology, 2012, 46(6): 3236-3243. [48] CHEN W W, CHEN Y J, HUANG H F, et al. Occurrence of N-nitrosamines in the Pearl River Delta of China: Characterization and evaluation of different sources[J]. Water Research, 2019, 164: 114896. doi: 10.1016/j.watres.2019.114896 [49] WANG C K, LIU S M, WANG J, et al. Monthly survey of N-nitrosamine yield in a conventional water treatment plant in North China[J]. Journal of Environmental Sciences, 2015, 38: 142-149. doi: 10.1016/j.jes.2015.05.025 [50] CHEN W H, WANG C Y, HUANG T H. Formation and fates of nitrosamines and their formation potentials from a surface water source to drinking water treatment plants in Southern Taiwan[J]. Chemosphere, 2016, 161: 546-554. doi: 10.1016/j.chemosphere.2016.07.027 [51] YOON W H, LEE J H, LEE H J, et al. Investigation of N-nitrosamines using GC-MS/MS in Han-river water supply systems[J]. Journal of Korean Society on Water Environment, 2016, 32(5): 410-418. doi: 10.15681/KSWE.2016.32.5.410 [52] MITCH W A, SHARP J O, TRUSSELL R R, et al. N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review[J]. Environmental Engineering Science, 2003, 20(5): 389-404. doi: 10.1089/109287503768335896 [53] KRASNER S W, WESTERHOFF P, CHEN B Y, et al. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents[J]. Environmental Science & Technology, 2009, 43(21): 8320-8325. [54] SEDLAK D L, DEEB R A, HAWLEY E L, et al. Sources and fate of nitrosodimethylamine and its precursors in municipal wastewater treatment plants[J]. Water Environment Research:a Research Publication of the Water Environment Federation, 2005, 77(1): 32-39. doi: 10.2175/106143005X41591 [55] ZENG T, MITCH W A. Contribution of N-nitrosamines and their precursors to domestic sewage by greywaters and blackwaters[J]. Environmental Science & Technology, 2015, 49(22): 13158-13167. [56] DISTRICT O C S. Sources of nitrosodimethylamine in the Orange County Sanitation District Service Area[J]. Report. Source Control Division, Orange County Sanitation District, California, 2002. [57] AYDIN E, YAMAN F B, ATES GENCELI E, et al. Occurrence of THM and NDMA precursors in a watershed: Effect of seasons and anthropogenic pollution[J]. Journal of Hazardous Materials, 2012, 221/222: 86-91. doi: 10.1016/j.jhazmat.2012.04.012 [58] FARRÉ M J, JAÉN-GIL A, HAWKES J, et al. Orbitrap molecular fingerprint of dissolved organic matter in natural waters and its relationship with NDMA formation potential[J]. The Science of the Total Environment, 2019, 670: 1019-1027. doi: 10.1016/j.scitotenv.2019.03.280 [59] ANDRZEJEWSKI P, KASPRZYK-HORDERN B, NAWROCKI J. N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine-containing waters[J]. Water Research, 2008, 42(4/5): 863-870. [60] LEE C H, YOON J. UV-a induced photochemical formation of N-nitrosodimethylamine (NDMA) in the presence of nitrite and dimethylamine[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2007, 189(1): 128-134. doi: 10.1016/j.jphotochem.2007.01.022 [61] MIKHAYLENKO V M, SHEVCHENKO T F, GLAVIN A A. Influence of N-nitrosamines on the development of phytoplankton[J]. Hydrobiological Journal, 2002, 38(3): 9. [62] CHOI J, VALENTINE R L. N-nitrosodimethylamine formation by free-chlorine-enhanced nitrosation of dimethylamine[J]. Environmental Science & Technology, 2003, 37(21): 4871-4876. [63] MOISEENKO T I. Evolution of biogeochemical cycles under anthropogenic loads: Limits impacts[J]. Geochemistry International, 2017, 55(10): 841-860. doi: 10.1134/S0016702917100081 [64] CHOI J, VALENTINE R L. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: A new disinfection by-product[J]. Water Research, 2002, 36(4): 817-824. doi: 10.1016/S0043-1354(01)00303-7 [65] MITCH W A, GERECKE A C, SEDLAK D L. A N-nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater[J]. Water Research, 2003, 37(15): 3733-3741. doi: 10.1016/S0043-1354(03)00289-6 [66] DAI N, MITCH W A. Relative importance of N-nitrosodimethylamine compared to total N-nitrosamines in drinking waters[J]. Environmental Science & Technology, 2013, 47(8): 3648-3656. [67] KRISTIANA I, LIEW D, HENDERSON R K, et al. Formation and control of nitrogenous DBPs from Western Australian source waters: Investigating the impacts of high nitrogen and bromide concentrations[J]. Journal of Environmental Sciences, 2017, 58: 102-115. doi: 10.1016/j.jes.2017.06.028 [68] KITIS M, KILDUFF J E, KARANFIL T. Isolation of dissolved organic matter (DOM) from surface waters using reverse osmosis and its impact on the reactivity of DOM to formation and speciation of disinfection by-products[J]. Water Research, 2001, 35(9): 2225-2234. doi: 10.1016/S0043-1354(00)00509-1 [69] IKE I A, KARANFIL T, CHO J, et al. Oxidation byproducts from the degradation of dissolved organic matter by advanced oxidation processes–A critical review[J]. Water Research, 2019, 164: 114929. doi: 10.1016/j.watres.2019.114929 [70] GAN W H, HUANG S R, GE Y X, et al. Chlorite formation during ClO2 oxidation of model compounds having various functional groups and humic substances[J]. Water Research, 2019, 159: 348-357. doi: 10.1016/j.watres.2019.05.020 [71] YANG L Y, HAN D H, LEE B M, et al. Characterizing treated wastewaters of different industries using clustered fluorescence EEM–PARAFAC and FT-IR spectroscopy: Implications for downstream impact and source identification[J]. Chemosphere, 2015, 127: 222-228. doi: 10.1016/j.chemosphere.2015.02.028 [72] WANG C K, ZHANG X J, WANG J, et al. Effects of organic fractions on the formation and control of N-nitrosamine precursors during conventional drinking water treatment processes[J]. Science of the Total Environment, 2013, 449: 295-301. doi: 10.1016/j.scitotenv.2013.01.080 [73] WANG C K, ZHANG X J, CHEN C, et al. Factors controlling N-nitrosodimethylamine (NDMA) formation from dissolved organic matter[J]. Frontiers of Environmental Science & Engineering, 2013, 7(2): 151-157. [74] FARRÉ M J, INSA S, LAMB A, et al. Occurrence of N-nitrosamines and their precursors in Spanish drinking water treatment plants and distribution systems[J]. Environmental Science:Water Research & Technology, 2020, 6(1): 210-220. [75] D'ANDRILLI J, COOPER W T, FOREMAN C M, et al. An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability[J]. Rapid Communications in Mass Spectrometry:RCM, 2015, 29(24): 2385-2401. doi: 10.1002/rcm.7400 [76] RADJENOVIC J, FARRÉ M J, GERNJAK W. Effect of UV and UV/H2O2 in the presence of chloramines on NDMA formation potential of tramadol[J]. Environmental Science & Technology, 2012, 46(15): 8356-8364. [77] KEMPER J M, WALSE S S, MITCH W A. Quaternary amines as nitrosamine precursors: A role for consumer products?[J]. Environmental Science & Technology, 2010, 44(4): 1224-1231. [78] PADHYE L, LUZINOVA Y, CHO M, et al. PolyDADMAC and dimethylamine as precursors of N-nitrosodimethylamine during ozonation: Reaction kinetics and mechanisms[J]. Environmental Science & Technology, 2011, 45(10): 4353-4359. [79] MITCH W A, SEDLAK D L. Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination[J]. Environmental Science & Technology, 2002, 36(4): 588-595. [80] FIDDLER W, PENSABENE J W, DOERR R C, et al. Formation of N-nitrosodimethylamine from naturally occurring quaternary ammonium compounds and tertiary amines[J]. Nature, 1972, 236(5345): 307. [81] MITCH W A, SCHREIBER I M. Degradation of tertiary alkylamines during chlorination/chloramination: Implications for formation of aldehydes, nitriles, halonitroalkanes, and nitrosamines[J]. Environmental Science & Technology, 2008, 42(13): 4811-4817. [82] MITCH W A, SEDLAK D L. Characterization and fate of N-nitrosodimethylamine precursors in municipal wastewater treatment plants[J]. Environmental Science & Technology, 2004, 38(5): 1445-1454. [83] PARK S H, PIYACHATURAWAT P, TAYLOR A E, et al. Potential N-nitrosodimethylamine (NDMA) formation from amine-based water treatment polymers in the reactions with chlorine-based oxidants and nitrosifying agents[J]. Water Supply, 2009, 9(3): 279-288. doi: 10.2166/ws.2009.452 [84] PIYACHATURAWAT P. Potential N-nitrosodimethylamine (NDMA) formation from water treatment polymers[D]. Georgia Institute of Technology, 2005. [85] PARK S H, WEI S T, MIZAIKOFF B, et al. Degradation of amine-based water treatment polymers during chloramination as N-nitrosodimethylamine (NDMA) precursors[J]. Environmental Science & Technology, 2009, 43(5): 1360-1366. [86] ZENG T, LI R J, MITCH W A. Structural modifications to quaternary ammonium polymer coagulants to inhibit N-nitrosamine formation[J]. Environmental Science & Technology, 2016, 50(9): 4778-4787. [87] KRASNER S W, MITCH W A, MCCURRY D L, et al. Formation, precursors, control, and occurrence of nitrosamines in drinking water: A review[J]. Water Research, 2013, 47(13): 4433-4450. doi: 10.1016/j.watres.2013.04.050 [88] DING S K, DENG Y, BOND T, et al. Disinfection byproduct formation during drinking water treatment and distribution: A review of unintended effects of engineering agents and materials[J]. Water Research, 2019, 160: 313-329. doi: 10.1016/j.watres.2019.05.024 [89] KUMAR R, SARMAH A K, PADHYE L P. Fate of pharmaceuticals and personal care products in a wastewater treatment plant with parallel secondary wastewater treatment train[J]. Journal of Environmental Management, 2019, 233: 649-659. [90] WILKINSON J, HOODA P S, BARKER J, et al. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field[J]. Environmental Pollution, 2017, 231: 954-970. doi: 10.1016/j.envpol.2017.08.032 [91] CHEN W H, YOUNG T M. Influence of nitrogen source on NDMA formation during chlorination of diuron[J]. Water Research, 2009, 43(12): 3047-3056. doi: 10.1016/j.watres.2009.04.020 [92] JASEMIZAD T, BROMBERG L, HATTON T A, et al. Oxidation of betrixaban to yield N-nitrosodimethylamine by water disinfectants[J]. Water Research, 2020, 186: 116309. doi: 10.1016/j.watres.2020.116309 [93] HANIGAN D, THURMAN E M, FERRER I, et al. Methadone contributes to N-nitrosodimethylamine formation in surface waters and wastewaters during chloramination[J]. Environmental Science & Technology Letters, 2015, 2(6): 151-157. [94] ZHANG A, LI Y M, SONG Y, et al. Characterization of pharmaceuticals and personal care products as N-nitrosodimethylamine precursors during disinfection processes using free chlorine and chlorine dioxide[J]. Journal of Hazardous Materials, 2014, 276: 499-509. doi: 10.1016/j.jhazmat.2014.05.069 [95] PADHYE L P, KIM J H, HUANG C H. Oxidation of dithiocarbamates to yield N-nitrosamines by water disinfection oxidants[J]. Water Research, 2013, 47(2): 725-736. doi: 10.1016/j.watres.2012.10.043 [96] ALABA P A, SANI Y M, OLUPINLA S F, et al. Toward N-nitrosamines free water: Formation, prevention, and removal[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(24): 2448-2489. doi: 10.1080/10643389.2018.1430438 [97] LE ROUX J, GALLARD H, CROUÉ J P. Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation[J]. Water Research, 2011, 45(10): 3164-3174. doi: 10.1016/j.watres.2011.03.035 [98] SHEN R Q, ANDREWS S A. Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection[J]. Water Research, 2011, 45(2): 944-952. doi: 10.1016/j.watres.2010.09.036 [99] SILLA SANTOS M H. Biogenic amines: Their importance in foods[J]. International Journal of Food Microbiology, 1996, 29(2/3): 213-231. [100] FACCHINI M C, DECESARI S, RINALDI M, et al. Important source of marine secondary organic aerosol from biogenic amines[J]. Environmental Science & Technology, 2008, 42(24): 9116-9121. [101] MÜLLER C, IINUMA Y, KARSTENSEN J, et al. Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde Islands[J]. Atmospheric Chemistry and Physics, 2009, 9(24): 9587-9597. doi: 10.5194/acp-9-9587-2009 [102] WANG X C, LEE C. Sources and distribution of aliphatic amines in salt marsh sediment[J]. Organic Geochemistry, 1994, 22(6): 1005-1021. doi: 10.1016/0146-6380(94)90034-5 [103] GARSIN D A. Ethanolamine utilization in bacterial pathogens: Roles and regulation[J]. Nature Reviews Microbiology, 2010, 8(4): 290-295. doi: 10.1038/nrmicro2334 [104] SHIMIZU M, KOZONO M, MURAYAMA N, et al. Bonitos with low content of malodorous trimethylamine as palliative care for self-reported Japanese trimethylaminuria subjects[J]. Drug Metabolism and Pharmacokinetics, 2009, 24(6): 549-552. doi: 10.2133/dmpk.24.549 [105] YU Z, ZHANG Q, KRAUS T E C, et al. Contribution of amino compounds to dissolved organic nitrogen in forest soils[J]. Biogeochemistry, 2002, 61(2): 173-198. doi: 10.1023/A:1020221528515 [106] BUSHAW-NEWTON K L, MA M R. Photochemical formation of biologically available nitrogen from dissolved humic substances in coastal marine systems[J]. Aquatic Microbial Ecology, 1999, 18: 285-292. doi: 10.3354/ame018285 [107] ZENG T, GLOVER C M, MARTI E J, et al. Relative importance of different water categories as sources of N-nitrosamine precursors[J]. Environmental Science & Technology, 2016, 50(24): 13239-13248. [108] VAL DEL RÍO Á, CAMPOS GÓMEZ J L, MOSQUERA CORRAL A. Technologies for the Treatment and Recovery of Nutrients from Industrial Wastewater[M]. IGI Global, 2017. [109] KARADAS F, ATILHAN M, APARICIO S. Review on the use of ionic liquids (ILs) as alternative fluids for CO2Capture and natural gas sweetening[J]. Energy & Fuels, 2010, 24(11): 5817-5828. [110] ALI MAZARI S, ALABA P, SAEED I M. Formation and elimination of nitrosamines and nitramines in freshwaters involved in post-combustion carbon capture process[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103111. doi: 10.1016/j.jece.2019.103111 [111] OYA M, KOSAKA K, ASAMI M, et al. Formation of N-nitrosodimethylamine (NDMA) by ozonation of dyes and related compounds[J]. Chemosphere, 2008, 73(11): 1724-1730. doi: 10.1016/j.chemosphere.2008.09.026 [112] KOSAKA K, ASAMI M, KONNO Y, et al. Identification of antiyellowing agents as precursors of N-nitrosodimethylamine production on ozonation from sewage treatment plant influent[J]. Environmental Science & Technology, 2009, 43(14): 5236-5241. [113] CHEN W H, HUANG T H, WANG C Y. Impact of pre-oxidation on nitrosamine formation from a source to drinking water: A perspective on cancer risk assessment[J]. Process Safety and Environmental Protection, 2018, 113: 424-434. doi: 10.1016/j.psep.2017.11.016 [114] MITCH W A, SEDLAK D L. Factors controlling nitrosamine formation during wastewater chlorination[J]. Water Supply, 2002, 2(3): 191-198. doi: 10.2166/ws.2002.0102 [115] KRISTIANA I, TAN J, JOLL C A, et al. Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter[J]. Water Research, 2013, 47(2): 535-546. doi: 10.1016/j.watres.2012.10.014 [116] ZHAO Y Y, BOYD J M, WOODBECK M, et al. Formation of N-nitrosamines from eleven disinfection treatments of seven different surface waters[J]. Environmental Science & Technology, 2008, 42(13): 4857-4862. [117] YANG L, CHEN Z L, SHEN J M, et al. Reinvestigation of the nitrosamine-formation mechanism during ozonation[J]. Environmental Science & Technology, 2009, 43(14): 5481-5487. [118] ANDRZEJEWSKI P, KASPRZYK-HORDERN B, NAWROCKI J. The hazard of N-nitrosodimethylamine (NDMA) formation during water disinfection with strong oxidants[J]. Desalination, 2005, 176(1/2/3): 37-45. [119] ANDRZEJEWSKI P, NAWROCKI J. N-nitrosodimethylamine (NDMA) as a product of potassium permanganate reaction with aqueous solutions of dimethylamine (DMA)[J]. Water Research, 2009, 43(5): 1219-1228. doi: 10.1016/j.watres.2008.12.005 [120] SCHREIBER I M, MITCH W A. Nitrosamine formation pathway revisited: The importance of chloramine speciation and dissolved oxygen[J]. Environmental Science & Technology, 2006, 40(19): 6007-6014. [121] SHAH A D, MITCH W A. Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: A critical review of nitrogenous disinfection byproduct formation pathways[J]. Environmental Science & Technology, 2012, 46(1): 119-131. [122] XU B, QIN C, HU C Y, et al. Degradation kinetics and N-nitrosodimethylamine formation during monochloramination of chlortoluron[J]. Science of the Total Environment, 2012, 417/418: 241-247. doi: 10.1016/j.scitotenv.2011.12.056 [123] SOLTERMANN F, LEE M J, CANONICA S, et al. Enhanced N-nitrosamine formation in pool water by UV irradiation of chlorinated secondary amines in the presence of monochloramine[J]. Water Research, 2013, 47(1): 79-90. doi: 10.1016/j.watres.2012.09.034 [124] U. S. EPA. Risk assessment guidance for Superfund. Volume 1. Human Health Evaluation Manual. Part A. Interim report (Final)[R]. Washington, DC: Office of Emergency and Remedial Response, 1989 [125] U. S. EPA. Risk Assessment Guidance for Superfund: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment)[R]. Washington, DC: Office of Superfund Remediation and Technology Innovation, 2004: Volume 1. [126] U. S. EPA. Risk Assessment Guidance for Superfund: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment)[R]. Washington, DC: Office of Superfund Remediation and Technology Innovation, 2009: Volume 1. [127] U. S. EPA. Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures. [R]. Washington, DC: Risk Assessment Forum, 2000. [128] YIN Y Y, LI T, KUANG D Y, et al. Probabilistic health risk assessment of nitrosamines in drinking water of Shaoxing, Zhejiang, China[J]. Environmental Science and Pollution Research, 2019, 26(6): 5485-5499. doi: 10.1007/s11356-018-4026-3 [129] U. S. EPA. Monitoring the Occurrence of Unregulated Drinking Water Contaminants[R]. U. S. EPA, 2013. [130] BIENIARZ K, EPLER P, KIME D, et al. Effects of N, N-dimethylnitrosamine (DMNA) on in vitro oocyte maturation and embryonic development of fertilized eggs of carp (Cyprinus carpio L. ) kept in eutrophied ponds[J]. Journal of Applied Toxicology, 1996, 16(2): 153-156. doi: 10.1002/(SICI)1099-1263(199603)16:2<153::AID-JAT323>3.0.CO;2-Z [131] GOODALL C M, KENNEDY T H. Carcinogenicity of dimethylnitramine in NZR rats and NZO mice[J]. Cancer Letters, 1975, 1: 295-298. doi: 10.1016/S0304-3835(75)97975-6 [132] 雷炳莉, 黄圣彪, 王子健. 生态风险评价理论和方法[J]. 化学进展, 2009, 21(增刊1): 350-358. LEI B L, HUANG S B, WANG Z J. Theories and methods of ecological risk assessment[J]. Progress in Chemistry, 2009, 21(Sup 1): 350-358 (in Chinese).
[133] GODOY A A, DOMINGUES I, ARSÉNIA NOGUEIRA A J, et al. Ecotoxicological effects, water quality standards and risk assessment for the anti-diabetic metformin[J]. Environmental Pollution, 2018, 243: 534-542. doi: 10.1016/j.envpol.2018.09.031 [134] AYDIN S, AYDIN M E, ULVI A, et al. Antibiotics in hospital effluents: Occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment[J]. Environmental Science and Pollution Research, 2019, 26(1): 544-558. doi: 10.1007/s11356-018-3563-0 [135] HELA D G, LAMBROPOULOU D A, KONSTANTINOU I K, et al. Environmental monitoring and ecological risk assessment for pesticide contamination and effects in Lake Pamvotis, northwestern Greece[J]. Environmental Toxicology and Chemistry, 2005, 24(6): 1548-1556. doi: 10.1897/04-455R.1 [136] LI Z G, LIU X Y, HUANG Z J, et al. Occurrence and ecological risk assessment of disinfection byproducts from chlorination of wastewater effluents in East China[J]. Water Research, 2019, 157: 247-257. doi: 10.1016/j.watres.2019.03.072