-
近年来, 随着我国社会经济的高速发展和城市化进程的加速,城市生活垃圾产生量迅速增加,根据《2020年全国大、中城市固体废物污染环境防治年报》统计数据,2019年全国196个大、中城市生活垃圾产生量
23560.2 万t,预计2030年将达到3.5亿t[1]. 相对焚烧与堆肥等处理方式,卫生填埋由于相对廉价仍是我国处理处置城市垃圾的主要手段. 垃圾填埋渗滤液作为填埋过程中持续产生的二次污染物,不仅含有较高的有机质以及营养物质(氮磷化合物),而且越来越多的研究显示药物及个人护理品、抗生素抗性基因、全氟化合物等新污染物在渗滤液中检出[2 − 5]. 同时,渗滤液可通过渗透、扩散等作用进入地下水[6]、地表水[7]、土壤[8]等周边环境. 因此,垃圾渗滤液已经成为新污染物影响周边环境不可忽视的源.由于新污染物具有生物毒性、环境持久性、生物累积性等特征,对生态环境和人体健康具有较大的潜在风险,其日益受到各国政府和民众的广泛关注,我国也已将新污染物治理列入“十四五”规划和2035年远景目标. 目前我国对于新污染物的研究主要集中于地表水[9]、沉积物[10]、土壤[11]以及市政污水[12]等,而对垃圾填埋渗滤液中的新污染物研究较少. 本文总结了药物及个人护理品(pharmaceuticals and personal care products,PPCPs)、抗生素抗性基因(antibiotic resistance genes,ARGs)、内分泌干扰物(endocrine disrupting compounds,EDCs)、全氟化合物(perfluorochemicals,PFCs)、微塑料(microplastics,MPs)为主的新污染物在我国垃圾填埋渗滤液中的赋存特征、影响因素、迁移行为和去除技术,并提出未来亟待发展的研究方向,旨在为我国新污染物的治理和风险管控提供理论支撑.
典型新污染物在我国垃圾填埋渗滤液中的赋存、迁移与去除
The occurrence, migration, and removal of typical emerging contaminants in landfill leachate in China
-
摘要: 新污染物由于具有生物毒性、环境持久性、生物累积性等特征,对生态环境和人体健康造成潜在风险,其环境安全问题日益受到重视. 近年来,垃圾填埋渗滤液陆续检出各种新污染物,使其逐渐成为新污染物不容忽视的源. 本文在梳理文献的基础上,系统总结了药物及个人护理品、抗生素抗性基因、内分泌干扰物、全氟化合物、微塑料为主的典型新污染物在我国垃圾填埋渗滤液中的赋存特征,探讨了影响其赋存水平的因素,分析了其在地表水、土壤、地下水等周边环境介质的迁移行为,比较了渗滤液处理工艺对新污染物的去除效果. 总体上,我国垃圾填埋渗滤液中新污染物赋存浓度范围跨度较大,且主要研究集中在东部发达区域,东北和西北欠发达地区研究较少. 填埋场年龄、渗滤液理化性质、自然条件等因素均会影响其赋存特征,但是具体影响机制缺乏深入阐释. 垃圾填埋渗滤液中新污染物通过排放、渗透等方式可以迁移到周边土壤与地表水和地下水中,但是大气迁移鲜有研究. 现有渗滤液处理工艺(生物+膜处理)可有效去除多数新污染物,但是转化规律及去除机制仍不明晰. 最后,本文对垃圾填埋场渗滤液中新污染物未来研究重点进行了展望,以期为填埋场新污染物的环境管理提供科技支持.Abstract: The environmental safety of emerging contaminants (ECs) is receiving increasing attention because of their biotoxicity, environmental persistence, bioaccumulation and other characteristics, which pose potential risks to the ecological environment and human health. In recent years, various ECs have been detected in landfill leachate, making it a “source” of ECs that cannot be ignored. Based on the literatures, this review systematically summarized the distribution characteristics of typical ECs in China's landfill leachate, including pharmaceuticals and personal care products, antibiotic resistance genes, endocrine disrupting compounds, perfluorochemicals and microplastics, and discussed the factors affecting their distribution levels. Their migration behavior in surface water, soil, groundwater and other surrounding environmental media was analyzed, and the removal effect of ECs in different leachate treatment processes was compared. In general, the concentration range of ECs in landfill leachate in China is large, and the studies are main concentrated in the eastern developed regions, while less studies are conducted in the northeastern and northwestern less developed regions. The landfill age, physicochemical properties of leachate and natural conditions can affect the fate characteristics of ECs, but the specific influence mechanisms are not well understood. The ECs in landfill leachate can migrate to surrounding soil, surface water and groundwater through discharge and infiltration, but atmospheric transport has rarely been studied. The existing leachate treatment processes (biological and membrane treatment) can effectively remove most of the ECs, but the transformation patterns and removal mechanisms are still unclear. Finally, this review provides an outlook on the future research priorities of ECs in landfill leachate and provides scientific and technical support for the environmental management of ECs in landfills.
-
Key words:
- refuse landfill leachate /
- emerging contaminants /
- occurrence /
- migration /
- removal.
-
表 1 我国部分垃圾填埋场渗滤液ARGs检出丰度
Table 1. The abundance of ARGs detected in landfill leachate of some cities in China
物质
Chemical地区
Region丰度
Abundance参考文献
References磺胺类抗性基因sul 1 各地 (5.51 × 10−6—4.97 × 10−1) ARG copies/16S rRNA copies [41] 陕西 (4.45 ± 1.02—6.31 ± 0.49) lg copies/ng DNA [42] 上海 (5.6 ± 0.9) lg copies/ng DNA [23] 贵州 7.58 lg copies/ng DNA [25] 浙江 7.97 lg copies/ng DNA [25] 江苏 8.81 lg copies/ng DNA [25] 磺胺类抗性基因sul 2 陕西 (1.98 ± 0.62—2.70 ± 0.51) lg copies/ng DNA [42] 贵州 5.89 lg copies/ng DNA [25] 浙江 6.88 lg copies/ng DNA [25] 江苏 6.62 lg copies/ng DNA [25] 四环素类抗性基因tet Q 浙江 (9.57 ± 1.32) lg gene copies/L [42] 陕西 (3.24 ± 0.24—3.64 ± 0.90) lg copies/ng DNA [42] 贵州 6.29 lg copies/ng DNA [25] 浙江 5.16 lg copies/ng DNA [25] 江苏 5.91 lg copies/ng DNA [25] 四环素类抗性基因tet M 陕西 (2.48 ± 0.04—3.01 ± 1.38) lg copies/ng DNA [42] 贵州 5.45 lg copies/ng DNA [25] 浙江 4.66 lg copies/ng DNA [25] 江苏 4.59 lg copies/ng DNA [25] 氟喹诺酮类抗性基因mexF 浙江 (11.92 ± 0.22) lg gene copies/L [24] 贵州 4.33 lg copies/ng DNA [25] 江苏 3.81 lg copies/ng DNA [25] β-内酰胺抗性基因bla CTX-M 上海 (4.1 ± 0.7) lg copies/ng DNA [23] 贵州 (1.75 ± 0.30) lg copies/ng DNA [25] 浙江 5.26 lg copies/ng DNA [25] 江苏 4.38 lg copies/ng DNA [25] 四环素类抗性基因tet O 各地 (2.03 × 10−7—4.26 × 10−2) ARG copies/16S rRNA copies [41] 四环素类抗性基因tet W 各地 (2.03 × 10−7—4.06 × 10−3) ARG copies/16S rRNA copies [41] 氨基糖苷类抗性基因aad A1 上海 (5.5 ± 0.8) lg copies/ng DNA [23] 注:各地指调查的成都、重庆、上海、深圳、长沙、唐山和广东等地垃圾渗滤液.
All localities refer to Chengdu, Chongqing, Shanghai, Shenzhen, Changsha, Tangshan, Guangdong, etc.表 2 MPs在垃圾填埋场渗滤液中检出情况
Table 2. MPs detected in landfill leachate
地区
Region物质
Chemical浓度/(items·L−1)
Concentration参考文献
References最小值
Minimum最大值
Maximum上海、无锡
苏州、常州PP、PVC、PS、ABS、PMMA、PET、PMDS、PTFE、PU、
EVA、PES、EP、PF、PPC、ALK、PE0.42 24.58 [57] 广东 PU、PAT、PA、PEC、PP、PE、PS、PET 3 25 [58] 上海 PE、PP、PS、PET、EPM、PVC、玻璃纸 4 13 [37,59] 上海 PP、PA、PE、PES、人造丝 200 382 [50] 上海 EP、PET、PVAC、CN、PS、PP、EPM、PA、PES、PE、Acrylic 0.63 1.77 [60] 苏州 PE、PP、PA、PVA、PVB、PMP、PDO、PSB、PAA、PBMA、PVP、RUBBER 218.3 252.5 [54] 注:PP:聚丙烯,PVC:聚氯乙烯,PS:聚苯乙烯,ABS:聚丙乙腈、丁二烯和苯乙烯聚合物,PMMA:聚甲基丙烯酸甲酯,PET: 聚对苯二甲酸乙二醇酯,PMDS:聚二甲基硅氧烷,PTFE:聚四氟乙烯,PU:聚氨基甲酸酯,EVA: 乙烯-醋酸乙烯共聚物,PES: 聚酯纤维,EP: 环氧树脂,PF:酚醛树脂,PPC: 聚碳酸亚丙酯,ALK: 醇酸树脂,PE:聚乙烯,PAT: 聚芳酯,PA: 聚酰胺,PEC: 氯化聚乙烯,EPM: 乙丙橡胶,PVAC: 聚乙酸乙烯酯,CN: 涂层尼龙,PVA: 聚乙烯醇,PVB:聚乙烯醇缩丁醛,PMP:聚4-甲基戊烯-1,PDO: 聚2,5-二苯基-1,3,4-噁二唑,PSB: 聚苯乙烯-丁二烯,PAA: 聚丙烯酸,PBMA:聚甲基丙烯酸正丁酯,PVP: 聚乙烯聚吡咯烷酮,RUBBER: 顺式聚异戊二烯.
Note:PP: polypropylene,PVC: polyvinyl chloride,PS: polystyrene,ABS: acrylonitrile-butadiene-styrene,PMMA: poly(methylmethacrylate),PET: polyethylene terephthalate,PMDS: polydimethylsiloxane,PTFE: poly tetra fluoroethylene,PU: polyurethane,EVA: ethylene vinyl acetate copolymer,PES: polyester,EP: epoxy resin,PF: phenolic resin,PPC: polypropylene carbonate,ALK: alkyd resin,PE: polyethylene,PAT: polyaryl ester,PA: polyamide,PEC: polyethylene chlorinated,EPM: ethylene propylene rubber,PVAC: polyvinyl acetate,CN: coated nylon,PVA: polyvinyl alcohol,PVB: polyvinyl butyral,PMP: polymethylpentene,PDO: Poly(2,5-diphenyl-1,3,4-oxadiazole),PSB: Poly(styrene-co-butadiene),PAA: polyacrylic acid,PBMA: poly(n-Butylamethacrylate),PVP: poly(n-vinyl pyrrolidone),RUBBER: poly-(cis1,4-Isoprene).表 3 渗滤液处理厂ECs处理工艺
Table 3. The treatment process of ECs in leachate treatment plant
处理工艺
Treatment process化合物
Compound去除效率/%
Removal efficiency参考文献
ReferencesA/O/O+MBR+NF PFCs 74.71—100 [4] UASB+A/O+MBR+RO PFCs 89.07—100 [4] 两段式A/O+MBR+NF PFCs 95.49—100 [4] A/O/O+MBR+RO PFCs 98.51—100 [4] 两段式A/O+MBR+RO PFCs 99.35—100 [4] MBR+DTRO EDCs 61.2—100 [62] 两段式A/O+UF+RO ARGs 97.74—99.74 [8] 氧化沟+颗粒活性炭 PPCPs 0—80 [26] 硝化+厌氧+臭氧化工艺 PPCPs 0—85 [26] 厌氧+硝化工艺 PPCPs 0—43 [26] MBR+DTRO PPCPs 98—100 [82] 塔式生物反应器 抗生素 76.75 [38] 卧式生物反应器 抗生素 48.36 [38] MBR+UF PPCPs −1.5—100 [33] MBR+CMF+RO 有机磷阻燃剂 98 [83] 生化处理 PFCs 43.3—93.2 [84] 生化处理+RO PFCs 91.7—99.4 [84] 生化处理+MF+AC PFCs 53.7—94.1 [84] A/O+二沉池 有机磷酸酯 4.71—97.6 [85] 厌氧+缺氧+好氧 甲基硅氧烷 50—100 [86] A/O+UF+RO EDCs 97.4—98.7 [87] MBR+NF+RO 有机磷阻燃剂 55.7—99.8 [88] UASB+反硝化+硝化+UF+RO PFCs 97.4—99.5 [67] O/A/O+A/O生物盘+曝气池+生物沉淀池厌氧池+硝化+反硝化 PFCs 52—96 [89] 砂滤+DTRO+紫外消毒 PPCPs 87.2—100 [90] A/O+MBR+UF+RO 抗生素 96—100 [28] 硝化+反硝化+UF+RO EDCs 97.8—100 [63] AO+AO/A2O ARGs 32.81—99.99 [91] MBR+A/O+UF+NF+RO MPs 58.33 [60] MBR+NF+RO MPs 98.4 [54] UASB+MBR+UF ARGs 10.88—89.03 [92] 表 4 实验室规模ECs处理工艺
Table 4. The treatment process of ECs in laboratory scale
处理工艺
Treatment process物质
Chemical去除效率/%
Removal efficiency参考文献
References电凝法 PFCs 33.8—75.2 [98] 芬顿氧化 EDCs 26.3—79.4 [99] 芬顿氧化+混凝+光芬顿 多环芳烃 80—90 [97] 硫酸盐煅烧蛋壳 ARGs 94.48—99.92 [100] 煤基磁性活性炭 PFCs 72.8—89.6 [101] 紫外+芬顿氧化 EDCs 100 [102] GAC/O3 抗生素/ARGs 80—100 [96] 氯化 ARGs 54.3—77.6 [94] 芬顿氧化 ARGs 99.9 [94] 人工湿地 EDCs/多环芳烃 85 [95] 注:GAC,颗粒活性炭. Note:GAC,Granular activated carbon. -
[1] 中华人民共和国生态环境部. 2020年全国大、中城市固体废物污染环境防治年报[R]. 北京: 中华人民共和国生态环境部, 2020. Ministry of Ecology and Environment of The People's Republic Of China. 2020 Annual Report on Environmental Prevention and Control of Solid Waste Pollution in Large and Medium-sized Cities Nationwide[R]. Beijing: Ministry of Ecology and Environment of the People's Republic of China (in Chinese).
[2] FANG C R, CHEN B H, ZHUANG H F, et al. Antibiotics in leachates from landfills in northern Zhejiang Province, China[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105(1): 36-40. doi: 10.1007/s00128-020-02894-x [3] SU Y L, ZHANG Z J, WU D, et al. Occurrence of microplastics in landfill systems and their fate with landfill age[J]. Water Research, 2019, 164: 114968. doi: 10.1016/j.watres.2019.114968 [4] YAN H, COUSINS I T, ZHANG C J, et al. Perfluoroalkyl acids in municipal landfill leachates from China: Occurrence, fate during leachate treatment and potential impact on groundwater[J]. Science of the Total Environment, 2015, 524/525: 23-31. doi: 10.1016/j.scitotenv.2015.03.111 [5] WU D Q, SUI Q, YU X, et al. Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multi-residue analysis of 70 PPCPs: Analytical method development and application in Yangtze River Delta, China[J]. Science of the Total Environment, 2021, 753: 141653. doi: 10.1016/j.scitotenv.2020.141653 [6] HAN Z Y, MA H N, SHI G Z, et al. A review of groundwater contamination near municipal solid waste landfill sites in China[J]. Science of the Total Environment, 2016, 569/570: 1255-1264. doi: 10.1016/j.scitotenv.2016.06.201 [7] YU X, SUI Q, LYU S G, et al. Do high levels of PPCPs in landfill leachates influence the water environment in the vicinity of landfills? A case study of the largest landfill in China[J]. Environment International, 2020, 135: 105404. doi: 10.1016/j.envint.2019.105404 [8] ZHANG X H, XU Y B, HE X L, et al. Occurrence of antibiotic resistance genes in landfill leachate treatment plant and its effluent-receiving soil and surface water[J]. Environmental Pollution, 2016, 218: 1255-1261. doi: 10.1016/j.envpol.2016.08.081 [9] YU X P, YU F R, LI Z P, et al. Occurrence, distribution, and ecological risk assessment of pharmaceuticals and personal care products in the surface water of the middle and lower reaches of the Yellow River (Henan section)[J]. Journal of Hazardous Materials, 2023, 443: 130369. doi: 10.1016/j.jhazmat.2022.130369 [10] XU X M, XU Y R, XU N, et al. Pharmaceuticals and personal care products (PPCPs) in water, sediment and freshwater mollusks of the Dongting Lake downstream the Three Gorges Dam[J]. Chemosphere, 2022, 301: 134721. doi: 10.1016/j.chemosphere.2022.134721 [11] XIAO R H, HUANG D L, DU L, et al. Antibiotic resistance in soil-plant systems: A review of the source, dissemination, influence factors, and potential exposure risks[J]. Science of the Total Environment, 2023, 869: 161855-161855. doi: 10.1016/j.scitotenv.2023.161855 [12] WANG S, QIAN J S, ZHANG B L, et al. Unveiling the occurrence and potential ecological risks of organophosphate esters in municipal wastewater treatment plants across China[J]. Environmental Science & Technology, 2023, 57(5): 1907-1918. [13] LI Y, LI J H, DENG C. Occurrence, characteristics and leakage of polybrominated diphenyl ethers in leachate from municipal solid waste landfills in China[J]. Environmental Pollution, 2014, 184: 94-100. doi: 10.1016/j.envpol.2013.08.027 [14] LI J, XI B, ZHU G H, et al. A critical review of the occurrence, fate and treatment of per- and polyfluoroalkyl substances (PFASs) in landfills[J]. Environmental Research, 2023, 218: 114980 doi: 10.1016/j.envres.2022.114980 [15] ZHOU Y F, HE G, JIANG X L, et al. Microplastic contamination is ubiquitous in riparian soils and strongly related to elevation, precipitation and population density[J]. Journal of Hazardous Materials, 2021, 411: 125178. doi: 10.1016/j.jhazmat.2021.125178 [16] 卫先宁, 季民, 李茹莹. 再生水中药品及个人护理品分布和环境风险分析[J]. 环境科学与技术, 2020, 43(12): 211-216. doi: 10.19672/j.cnki.1003-6504.2020.12.028 WEI X N, JI M, LI R Y. Distribution of pharmaceutical and personal care products in reclaimed water and environmental risk analysis[J]. Environmental Science & Technology, 2020, 43(12): 211-216 (in Chinese). doi: 10.19672/j.cnki.1003-6504.2020.12.028
[17] 潘潇, 强志民, 王为东. 巢湖东半湖饮用水源区沉积物药品和个人护理品(PPCPs)分布与生态风险[J]. 环境化学, 2016, 35(11): 2234-2244. doi: 10.7524/j.issn.0254-6108.2016.11.2016040502 PAN X, QIANG Z M, WANG W D. Distribution and ecological risk of sedimentary PPCPs in the eastern drinking water source area of Chaohu Lake[J]. Environmental Chemistry, 2016, 35(11): 2234-2244 (in Chinese). doi: 10.7524/j.issn.0254-6108.2016.11.2016040502
[18] OHORO, ADENIJI, OKOH, et al. Distribution and chemical analysis of pharmaceuticals and personal care products (PPCPs) in the environmental systems: A review[J]. International Journal of Environmental Research and Public Health, 2019, 16(17): 3026. doi: 10.3390/ijerph16173026 [19] 陈宇, 王涌涛, 黄天寅, 等. 骆马湖水体中药品及个人护理品的污染特征及风险评估[J]. 环境科学研究, 2021, 34(4): 902-909. doi: 10.13198/j.issn.1001-6929.2020.10.13 CHEN Y, WANG Y T, HUANG T Y, et al. Pollution characteristics and risk assessment of pharmaceuticals and personal care products (PPCPs) in Luoma Lake[J]. Research of Environmental Sciences, 2021, 34(4): 902-909 (in Chinese). doi: 10.13198/j.issn.1001-6929.2020.10.13
[20] QI C D, HUANG J, WANG B, et al. Contaminants of emerging concern in landfill leachate in China: A review[J]. Emerging Contaminants, 2018, 4(1): 1-10. doi: 10.1016/j.emcon.2018.06.001 [21] YIN L N, WANG B, YUAN H L, et al. Pay special attention to the transformation products of PPCPs in environment[J]. Emerging Contaminants, 2017, 3(2): 69-75. doi: 10.1016/j.emcon.2017.04.001 [22] YU Z F, HE P J, SHAO L M, et al. Co-occurrence of mobile genetic elements and antibiotic resistance genes in municipal solid waste landfill leachates: A preliminary insight into the role of landfill age[J]. Water Research, 2016, 106: 583-592. doi: 10.1016/j.watres.2016.10.042 [23] WU D, HUANG X H, SUN J Z, et al. Antibiotic resistance genes and associated microbial community conditions in aging landfill systems[J]. Environmental Science & Technology, 2017, 51(21): 12859-12867. [24] LIU H Y, LI H, QIU L B, et al. The panorama of antibiotics and the related antibiotic resistance genes (ARGs) in landfill leachate[J]. Waste Management, 2022, 144(5): 19-28. [25] WANG P L, WU D, YOU X X, et al. Distribution of antibiotics, metals and antibiotic resistance genes during landfilling process in major municipal solid waste landfills[J]. Environmental Pollution, 2019, 255: 113222. doi: 10.1016/j.envpol.2019.113222 [26] LU M C, CHEN Y Y, CHIOU M R, et al. Occurrence and treatment efficiency of pharmaceuticals in landfill leachates[J]. Waste Management, 2016, 55: 257-264. doi: 10.1016/j.wasman.2016.03.029 [27] YU X, SUI Q, LYU S G, et al. Rainfall influences occurrence of pharmaceutical and personal care products in landfill leachates: Evidence from seasonal variations and extreme rainfall episodes[J]. Environmental Science & Technology, 2021, 55(8): 4822-4830. [28] XUE X D, CHEN B H, WANG H, et al. Antibiotics in the municipal solid waste incineration plant leachate treatment process[J]. Chemistry and Ecology, 2021, 37(7): 633-645. doi: 10.1080/02757540.2021.1924695 [29] HE P J, YU Z F, SHAO L M, et al. Fate of antibiotics and antibiotic resistance genes in a full-scale restaurant food waste treatment plant: Implications of the roles beyond heavy metals and mobile genetic elements[J]. Journal of Environmental Sciences, 2019, 85: 17-34. doi: 10.1016/j.jes.2019.04.004 [30] WANG Y Q, LEI Y, LIU X, et al. Sulfonamide and tetracycline in landfill leachates from seven municipal solid waste (MSW) landfills: Seasonal variation and risk assessment[J]. Science of the Total Environment, 2022, 825: 153936. doi: 10.1016/j.scitotenv.2022.153936 [31] YOU X X, WU D, WEI H W, et al. Fluoroquinolones and β-lactam antibiotics and antibiotic resistance genes in autumn leachates of seven major municipal solid waste landfills in China[J]. Environment International, 2018, 113: 162-169. doi: 10.1016/j.envint.2018.02.002 [32] YU X, SUI Q, LYU S G, et al. Municipal solid waste landfills: An underestimated source of pharmaceutical and personal care products in the water environment[J]. Environmental Science & Technology, 2020, 54(16): 9757-9768. [33] SUI Q, ZHAO W T, CAO X Q, et al. Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: Occurrence and removal by a full-scale membrane bioreactor[J]. Journal of Hazardous Materials, 2017, 323: 99-108. doi: 10.1016/j.jhazmat.2016.03.047 [34] ZHANG R, YANG S, AN Y W, et al. Antibiotics and antibiotic resistance genes in landfills: A review[J]. Science of the Total Environment, 2022, 806: 150647. doi: 10.1016/j.scitotenv.2021.150647 [35] WU D, HUANG Z T, YANG K, et al. Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai, China[J]. Environmental Science & Technology, 2015, 49(7): 4122-4128. [36] ZHAO R X, FENG J, YIN X L, et al. Antibiotic resistome in landfill leachate from different cities of China deciphered by metagenomic analysis[J]. Water Research, 2018, 134: 126-139. doi: 10.1016/j.watres.2018.01.063 [37] SU Y L, WU D, XIA H P, et al. Metallic nanoparticles induced antibiotic resistance genes attenuation of leachate culturable microbiota: The combined roles of growth inhibition, ion dissolution and oxidative stress[J]. Environment International, 2019, 128: 407-416. doi: 10.1016/j.envint.2019.05.007 [38] SU Y L, WANG J X, HUANG Z T, et al. On-site removal of antibiotics and antibiotic resistance genes from leachate by aged refuse bioreactor: Effects of microbial community and operational parameters[J]. Chemosphere, 2017, 178: 486-495. doi: 10.1016/j.chemosphere.2017.03.063 [39] SHI J H, WU D, SU Y L, et al. (Nano)microplastics promote the propagation of antibiotic resistance genes in landfill leachate[J]. Environmental Science:Nano, 2020, 7(11): 3536-3546. doi: 10.1039/D0EN00511H [40] SU Y L, ZHANG Z J, ZHU J D, et al. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process[J]. Environmental Pollution, 2021, 270: 116278. doi: 10.1016/j.envpol.2020.116278 [41] WANG Y Q, ZHANG R, LEI Y, et al. Antibiotic resistance genes in landfill leachates from seven municipal solid waste landfills: Seasonal variations, hosts, and risk assessment[J]. Science of the Total Environment, 2022, 853: 158677. doi: 10.1016/j.scitotenv.2022.158677 [42] LIU L J, SHI L, LI P, et al. Seasonal dynamics survey and association analysis of microbiota communities, antibiotic resistance genes distribution, and biotoxicities characterization in landfill-leachate[J]. Ecotoxicology and Environmental Safety, 2022, 245: 114103. doi: 10.1016/j.ecoenv.2022.114103 [43] COX K D, COVERNTON G A, DAVIES H L, et al. Human consumption of microplastics[J]. Environmental Science & Technology, 2019, 53(12): 7068-7074. [44] THOMPSON R C, MOORE C J, VOM SAAL F S, et al. Plastics, the environment and human health: Current consensus and future trends[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2009, 364(1526): 2153-2166. doi: 10.1098/rstb.2009.0053 [45] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559 [46] LAW K L, THOMPSON R C. Microplastics in the seas[J]. Science, 2014, 345(6193): 144-145. doi: 10.1126/science.1254065 [47] GOLWALA H, ZHANG X Y, ISKANDER S M, et al. Solid waste: An overlooked source of microplastics to the environment[J]. Science of the Total Environment, 2021, 769: 144581. doi: 10.1016/j.scitotenv.2020.144581 [48] VAUGHAN R, TURNER S D, ROSE N L. Microplastics in the sediments of a UK urban lake[J]. Environmental Pollution, 2017, 229: 10-18. doi: 10.1016/j.envpol.2017.05.057 [49] SU L, XUE Y G, LI L Y, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216: 711-719. doi: 10.1016/j.envpol.2016.06.036 [50] XU Z Q, SUI Q, LI A M, et al. How to detect small microplastics (20–100μm) in freshwater, municipal wastewaters and landfill leachates? A trial from sampling to identification[J]. Science of the Total Environment, 2020, 733: 139218. doi: 10.1016/j.scitotenv.2020.139218 [51] ZHANG F, ZHAO Y T, WANG D D, et al. Current technologies for plastic waste treatment: A review[J]. Journal of Cleaner Production, 2021, 282: 124523. doi: 10.1016/j.jclepro.2020.124523 [52] HOU L Y, KUMAR D, YOO C G, et al. Conversion and removal strategies for microplastics in wastewater treatment plants and landfills[J]. Chemical Engineering Journal, 2021, 406: 126715. doi: 10.1016/j.cej.2020.126715 [53] SHEN M C, XIONG W P, SONG B, et al. Microplastics in landfill and leachate: Occurrence, environmental behavior and removal strategies[J]. Chemosphere, 2022, 305: 135325. doi: 10.1016/j.chemosphere.2022.135325 [54] SUN J, ZHU Z R, LI W H, et al. Revisiting microplastics in landfill leachate: Unnoticed tiny microplastics and their fate in treatment works[J]. Water Research, 2021, 190: 116784. doi: 10.1016/j.watres.2020.116784 [55] BIAN K, HU B, JIANG H R, et al. Is the presence of Cu(II) and p-benzoquinone a challenge for the removal of microplastics from landfill leachate?[J]. Science of the Total Environment, 2022, 851: 158395. doi: 10.1016/j.scitotenv.2022.158395 [56] YU F, WU Z J, WANG J Y, et al. Effect of landfill age on the physical and chemical characteristics of waste plastics/microplastics in a waste landfill sites[J]. Environmental Pollution, 2022, 306(1): 119366. [57] HE P J, CHEN L Y, SHAO L M, et al. Municipal solid waste (MSW) landfill: A source of microplastics?-Evidence of microplastics in landfill leachate[J]. Water Research, 2019, 159: 38-45. doi: 10.1016/j.watres.2019.04.060 [58] WAN Y, CHEN X, LIU Q, et al. Informal landfill contributes to the pollution of microplastics in the surrounding environment[J]. Environmental Pollution, 2022, 293: 118586. doi: 10.1016/j.envpol.2021.118586 [59] 张中键. 城市垃圾填埋系统中微塑料的赋存、去除特征及其对抗生素抗性基因的影响[D]. 上海: 华东师范大学, 2020. ZHANG Z J. Occurrence and removal characteristics of microplastics in urban landfill system and impact on antibiotic resistance genes[D]. Shanghai: East China Normal University, 2020 (in Chinese).
[60] ZHANG Z J, SU Y L, ZHU J D, et al. Distribution and removal characteristics of microplastics in different processes of the leachate treatment system[J]. Waste Management, 2021, 120: 240-247. doi: 10.1016/j.wasman.2020.11.025 [61] EPA. Special Report on Environmental Endocrine Disruption; An effects assessment and analysis[C]. Risk Assessment Forum U. S. Environmental Protection Agency, 1998: 11-56. [62] GONG Y F, TIAN H, DONG Y F, et al. Thyroid disruption in male goldfish (Carassius auratus) exposed to leachate from a municipal waste treatment plant: Assessment combining chemical analysis and in vivo bioassay[J]. Science of the Total Environment, 2016, 554/555: 64-72. doi: 10.1016/j.scitotenv.2016.02.188 [63] HUANG Z, ZHAO J L, ZHANG C Y, et al. Profile and removal of bisphenol analogues in hospital wastewater, landfill leachate, and municipal wastewater in South China[J]. Science of the Total Environment, 2021, 790: 148269. doi: 10.1016/j.scitotenv.2021.148269 [64] 姜忠峰, 梁峰, 刘艳伟, 等. 全氟化合物的危害和治理[J]. 生态经济, 2022, 38(4): 5-8. JIANG Z F, LIANG F, LIU Y W, et al. Harm and treatment of perfluorinated compounds[J]. Ecological Economy, 2022, 38(4): 5-8 (in Chinese).
[65] 吴修鹏, 马志远, 李志华, 等. 全氟化合物内分泌干扰作用研究[J]. 毒理学杂志, 2021, 35(5): 436-439. doi: 10.16421/j.cnki.1002-3127.2021.05.014 WU X P, MA Z Y, LI Z H, et al. Study on endocrine disrupting effects of perfluorinated compounds[J]. Journal of Toxicology, 2021, 35(5): 436-439 (in Chinese). doi: 10.16421/j.cnki.1002-3127.2021.05.014
[66] FUERTES I, GÓMEZ-LAVÍN S, ELIZALDE M P, et al. Perfluorinated alkyl substances (PFASs) in northern Spain municipal solid waste landfill leachates[J]. Chemosphere, 2017, 168: 399-407. doi: 10.1016/j.chemosphere.2016.10.072 [67] 谷萌, 魏潇潇, 刘华祖, 等. 垃圾填埋与焚烧渗滤液全(多)氟化合物赋存特征[J]. 中国环境科学, 2020, 40(4): 1555-1562. doi: 10.3969/j.issn.1000-6923.2020.04.021 GU M, WEI X X, LIU H Z, et al. Occurrence of per-and polyfluoroalkyl substances in leachates from landfills and incineration plants[J]. China Environmental Science, 2020, 40(4): 1555-1562: (in Chinese). doi: 10.3969/j.issn.1000-6923.2020.04.021
[68] BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541. doi: 10.1002/ieam.258 [69] 黄福义, 安新丽, 李力, 等. 生活垃圾填埋场对河流抗生素抗性基因的影响[J]. 中国环境科学, 2017, 37(1): 203-209. doi: 10.3969/j.issn.1000-6923.2017.01.026 HUANG F Y, AN X L, LI L, et al. High-throughput profiling of antibiotic resistance genes in river in the vicinity of a landfill[J]. China Environmental Science, 2017, 37(1): 203-209(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.01.026
[70] PENG X Z, OU W H, WANG C W, et al. Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China[J]. Science of the Total Environment, 2014, 490: 889-898. doi: 10.1016/j.scitotenv.2014.05.068 [71] HAN Y, HU L X, LIU T, et al. Non-target, suspect and target screening of chemicals of emerging concern in landfill leachates and groundwater in Guangzhou, South China[J]. Science of the Total Environment, 2022, 837: 155705. doi: 10.1016/j.scitotenv.2022.155705 [72] LIU H, LIANG Y, ZHANG D, et al. Impact of MSW landfill on the environmental contamination of phthalate esters[J]. Waste Management, 2010, 30(8/9): 1569-1576. [73] TAO J, CHEN Y F, WAN S, et al. Abundance and diversity of ARGs in aerosol environments of waste recycling sites[J]. Journal of Aerosol Science, 2022, 165: 106020. doi: 10.1016/j.jaerosci.2022.106020 [74] TIAN Y, YAO Y M, CHANG S, et al. Occurrence and phase distribution of neutral and ionizable per- and polyfluoroalkyl substances (PFASs) in the atmosphere and plant leaves around landfills: A case study in Tianjin, China[J]. Environmental Science & Technology, 2018, 52(3): 1301-1310. [75] SMALLWOOD T J, ROBEY N M, LIU Y L, et al. Per- and polyfluoroalkyl substances (PFAS) distribution in landfill gas collection systems: Leachate and gas condensate partitioning[J]. Journal of Hazardous Materials, 2023, 448: 130926. doi: 10.1016/j.jhazmat.2023.130926 [76] 罗伟. 生活垃圾中转站渗滤液全量化处理新工艺[J]. 能源与环境, 2022(6): 86-88. LUO W. New technology of full quantification treatment of leachate in domestic waste transfer station[J]. Energy and Environment, 2022(6): 86-88(in Chinese).
[77] YANG J, XIANG J Y, XIE Y J, et al. Removal behavior and key drivers of antibiotic resistance genes in two full-scale leachate treatment plants[J]. Water Research, 2022, 226: 119239. doi: 10.1016/j.watres.2022.119239 [78] 郭芳. 垃圾渗滤液纳滤浓水中难降解有机物和全氟化合物的去除研究[D]. 北京: 北京交通大学, 2020. GUO F. Removal of refractory organics and perfluoroalkyl substances in nanofiltration concentrates in municipal solid waste leachate treatment plants[D]. Beijing: Beijing Jiaotong University, 2020(in Chinese).
[79] ZAN F X, HUANG H, GUO G, et al. Sulfite pretreatment enhances the biodegradability of primary sludge and waste activated sludge towards cost-effective and carbon-neutral sludge treatment[J]. Science of the Total Environment, 2021, 780: 146634. doi: 10.1016/j.scitotenv.2021.146634 [80] 李慧, 张凯钧, 郭勤, 等. 新MFB组合工艺在垃圾渗滤液处理中的应用研究[J]. 水处理技术, 2022, 48(12): 114-118. LI H, ZHANG K J, GUO Q, et al. The research of MFB new combination process in the domestic garbage leachate[J]. Technology of Water Treatment, 2022, 48(12): 114-118 (in Chinese).
[81] BAI F L, TIAN H, WANG C G, et al. Treatment of nanofiltration concentrate of landfill leachate using advanced oxidation processes incorporated with bioaugmentation[J]. Environmental Pollution, 2023, 318: 120827. doi: 10.1016/j.envpol.2022.120827 [82] 曹徐齐, 隋倩, 吕树光, 等. 垃圾填埋场渗滤液中药物和个人护理品的存在与去除[J]. 中国环境科学, 2016, 36(7): 2027-2034. doi: 10.3969/j.issn.1000-6923.2016.07.018 CAO X Q, SUI Q, LV S G, et al. Occurrence and removal of pharmaceuticals and personal care products in leachates from a landfill site of municipal solid waste[J]. China Environmental Science, 2016, 36(7): 2027-2034(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.07.018
[83] DENG M J, KUO D T F, WU Q H, et al. Organophosphorus flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou, China[J]. Environmental Pollution, 2018, 236: 137-145. doi: 10.1016/j.envpol.2018.01.042 [84] ZHANG C H, PENG Y, NIU X M, et al. Determination of perfluoroalkyl substances in municipal landfill leachates from Beijing, China[J]. Asian Journal of Chemistry, 2014, 26(13): 3833-3836. doi: 10.14233/ajchem.2014.15963 [85] 高立红. 北京市城市环境有机磷酸酯污染水平和分布特征研究[D]. 北京: 北京科技大学, 2016. GAO L H. Occurrence and distribution of organophosphate esters in the urban area of Beijing[D]. Beijing: University of Science and Technology Beijing, 2016(in Chinese).
[86] XU L, XU S H, ZHI L Q, et al. Methylsiloxanes release from one landfill through yearly cycle and their removal mechanisms (especially hydroxylation) in leachates[J]. Environmental Science & Technology, 2017, 51(21): 12337-12346. [87] FANG C R, CHU Y X, JIANG L H, et al. Removal of phthalic acid diesters through a municipal solid waste landfill leachate treatment process[J]. Journal of Material Cycles and Waste Management, 2018, 20(1): 585-591. doi: 10.1007/s10163-017-0625-1 [88] QI C D, YU G, ZHONG M M, et al. Organophosphate flame retardants in leachates from six municipal landfills across China[J]. Chemosphere, 2019, 218: 836-844. doi: 10.1016/j.chemosphere.2018.11.150 [89] WANG B, YAO Y M, CHEN H, et al. Per- and polyfluoroalkyl substances and the contribution of unknown precursors and short-chain (C2–C3) perfluoroalkyl carboxylic acids at solid waste disposal facilities[J]. Science of the Total Environment, 2020, 705: 135832. doi: 10.1016/j.scitotenv.2019.135832 [90] 王坤, 赵玉杰, 庄涛. 生活垃圾渗滤液中43种新兴有机污染物分布特征与环境风险[J]. 环境污染与防治, 2020, 42(12): 1523-1530. doi: 10.15985/j.cnki.1001-3865.2020.12.016 WANG K, ZHAO Y J, ZHUANG T. Distribution and environmental risks of 43 emerging contaminants in municipal solid waste leachate[J]. Environmental Pollution and Control, 2020, 42(12): 1523-1530(in Chinese). doi: 10.15985/j.cnki.1001-3865.2020.12.016
[91] LI X N, WANG P L, CHU S Q, et al. The variation of antibiotic resistance genes and their links with microbial communities during full-scale food waste leachate biotreatment processes[J]. Journal of Hazardous Materials, 2021, 416: 125744. doi: 10.1016/j.jhazmat.2021.125744 [92] QIU L B, LI H, XUE X D, et al. Distribution and removal of antibiotic resistance genes in a landfill leachate treatment process[J]. Chemistry and Ecology, 2022, 38(10): 935-948. doi: 10.1080/02757540.2022.2129624 [93] YANG X T, CHEN C T, ZHANG T, et al. Low-cost mineral packing materials improve Dom and micropollutants removal from landfill leachate in ozonation bubble columns: Insights into the enhancement mechanisms and applicability of surrogate-based monitoring[J]. Chemical Engineering Journal, 2023, 458: 141461. doi: 10.1016/j.cej.2023.141461 [94] SHI J H, WANG B H, LI X N, et al. Distinguishing removal and regrowth potential of antibiotic resistance genes and antibiotic resistant bacteria on microplastics and in leachate after chlorination or Fenton oxidation[J]. Journal of Hazardous Materials, 2022, 430: 128432. doi: 10.1016/j.jhazmat.2022.128432 [95] YANG C, FU T L, WANG H, et al. Removal of organic pollutants by effluent recirculation constructed wetlands system treating landfill leachate[J]. Environmental Technology & Innovation, 2021, 24: 101843. [96] WANG H W, ZHANG C, WANG Y N, et al. Simultaneous degradation of refractory organics, antibiotics and antibiotic resistance genes from landfill leachate concentrate by GAC/O3[J]. Journal of Cleaner Production, 2022, 380: 135016. [97] LI J Y, ZHAO L, QIN L L, et al. Removal of refractory organics in nanofiltration concentrates of municipal solid waste leachate treatment plants by combined Fenton oxidative-coagulation with photo–Fenton processes[J]. Chemosphere, 2016, 146: 442-449. doi: 10.1016/j.chemosphere.2015.12.069 [98] ZHANG C, YI P, KE N, et al. Remediation of perfluoroalkyl substances in landfill leachates by electrocoagulation[J]. CLEAN–Soil, Air, Water, 2014, 42(12): 1740-1743. doi: 10.1002/clen.201300563 [99] HE R, TIAN B H, ZHANG Q Q, et al. Effect of Fenton oxidation on biodegradability, biotoxicity and dissolved organic matter distribution of concentrated landfill leachate derived from a membrane process[J]. Waste Management, 2015, 38: 232-239. doi: 10.1016/j.wasman.2015.01.006 [100] YE M, SUN M M, CHEN X, et al. Feasibility of sulfate-calcined eggshells for removing pathogenic bacteria and antibiotic resistance genes from landfill leachates[J]. Waste Management, 2017, 63: 275-283. doi: 10.1016/j.wasman.2017.03.005 [101] ZHANG C H, JIANG S, TANG J W, et al. Adsorptive performance of coal based magnetic activated carbon for perfluorinated compounds from treated landfill leachate effluents[J]. Process Safety and Environmental Protection, 2018, 117: 383-389. doi: 10.1016/j.psep.2018.05.016 [102] 侯昌成, 赵玲, 尹平河, 等. 垃圾渗滤液中典型内分泌干扰物质(EDCs)细胞毒性分析[J]. 生态毒理学报, 2017, 12(3): 327-335. HOU C C, ZHAO L, YIN P H, et al. Cytotoxicity analysis of typical endocrine disrupting chemicals (EDCs)in landfill leachate[J]. Asian Journal of Ecotoxicology, 2017, 12(3): 327-335(in Chinese).