-
我国城市化加速和产业结构升级推动传统工业企业转型的同时,城市内及周边区域腾退了大量的工业遗留污染场地. 据生态环境部不完全统计,我国面积大于1万m2的污染场地已超过了50万块[1]. 2014年《全国土壤污染状况调查公报》显示,我国工矿业废弃地土壤环境问题突出,工业废弃地超标点位占全部点位的34.9%,土壤样品中有2.7%存在砷污染[2]. 有研究显示,中国土壤地下水中砷浓度超过10 μg·L−1的区域范围已达到58万km2,在我国新疆塔里木盆地、内蒙古、甘肃黑河、河南、山东等地共2000万居民生活在土壤砷污染高风险区[3].
通过减小污染物在土壤中的含量、控制污染物的迁移和扩散、降低敏感受体环境暴露风险均可以实现土壤污染风险管控的目的. 土壤污染稳定化技术具有二次污染小、经济实用、实施周期较短、修复效果稳定等优势,在土壤修复领域得到广泛关注与应用,2018年的工程应用热点技术中,稳定化、固化技术的应用比例为48.5%[4 − 7]. 已有研究表明,活性炭、赤泥、铁、铝、锰等成分对土壤重金属固定效果显著[8 − 10]. 粉煤灰是来源于电厂燃煤等产生的一种固体废物,煤炭中Al、Si等组分在高温煅烧成熔融状态下,与磁性铁矿物性结合成粒度均匀、孔隙率大、比表面积高的玻璃相磁珠结构,经无害化处理后资源化利用前景良好[8 − 10]. 同时,粉煤灰中的二氧化硅、氧化铝等硅酸盐组分的活性可在机械研磨,碱激发(如石灰)、酸激发、盐激发等外界手段刺激后遇水发生水化反应,生成水化硅酸钙或水化铝酸钙等不同晶质产物[11]. 以粉煤灰为基底,通过激发增强其表面反应活性,能够将特定的重金属离子固定形成新的晶体结构,使其不易向环境中再次迁移[12 − 15],显著提升了重金属的稳定化能力. 前人研究中,稳定化技术主要用于工业场地的土壤重金属污染管控效果,较少关注土壤稳定后重金属赋存形态的变化,对稳定后重金属各形态的浸出能力缺乏评价. 不同重金属形态含量变化是导致重金属稳定后再活化的直接原因,明确重金属稳定与活化的环境过程,探讨土壤中各形态砷的浸出变化过程成为土壤污染修复长效稳定的关键,是土壤风险管控研究重点和趋势[4,12,16 − 18].
本研究在粉煤灰机械研磨改性的基础上,添加石灰、硫酸亚铁等进行联合激发改性,构建了球磨下“亚铁+粉煤灰”的联合改性处理体系. 通过土壤培养研究其稳定化效果,确定改性组合并展开粉煤灰激发因子优化实验. 跟踪监测了土壤稳定与振荡浸出过程中砷化学形态分布含量变化,探讨砷稳定、活化过程与各形态浸出能力. 从粉煤灰结构特点与成分表征结果,验证其作绿色修复剂的可行性,并将修复体系应用于实际砷污染场地,为土壤砷污染修复长效稳定性研究提供经验和技术支持.
亚铁激发下粉煤灰基土壤砷污染稳定化技术
Research on soil of arsenic pollution stabilization technology based on fly ash modify stimulated by Ferrous
-
摘要: 以湖北省某典型医药化工腾退场地土壤为对象,采用“机械+化学”手段对粉煤灰进行激发改性,通过不同配比石灰、硫酸亚铁与粉煤灰进行机械球磨混合后实施土壤培养实验与场地修复. 研究结果表明,土壤培养实验90 d内亚铁盐改性粉煤灰组合下土壤砷稳定化效率为90.43%,实际场地修复30 d内不同深度土壤砷稳定化效率持续在95%以上,稳定化效果显著;最佳改性药量为2%硫酸亚铁+2%粉煤灰,此体系稳定化后土壤砷主要形态为无定型与定型铁氧化物结合态(F3+F4)、残渣态(F5). 含水率和pH的波动主要造成F3、F4活化,活化后为可交换态(F1)、表面吸附态(F2),F1是砷浸出主要形态. 本研究研发的粉煤灰基土壤砷污染稳定化材料可“以废治污”,应用潜力巨大.Abstract: Taking the soil of a typical pharmaceutical and chemical industry relocation site in Hubei Province as the object, the fly ash was modified by “mechanical + chemical” means. After mechanical ball milling with different proportions of lime, ferrous sulfate and fly ash, soil culture experiments and site restoration were carried out. The results showed that: 1. The arsenic stabilization efficiency of the soil in the ferrous salt modified fly ash combination in the soil culture experiment was 90.43% within 90 days, and the arsenic stabilization efficiency of different depths of soil in the actual site restoration was above 95% within 30 days, and the stabilization effect was significant; 2. The optimal modified dosage was 2% ferrous sulfate + 2% fly ash. After stabilization, the main forms of arsenic in the soil were non-formalized and formalized iron oxide complexes (F3 + F4), and residual state (F5). 3. The fluctuation of water content and pH mainly caused F3 and F4 to be activated, and after activation, they were exchangeable (F1) and surface adsorbed (F2). F1 was the main form of arsenic leaching. Fly ash based restoration technology can “treat waste and control pollution”, and has great application potential.
-
Key words:
- fly ash /
- modify stimulate /
- stabilization /
- soil arsenic morphology /
- site remediation.
-
表 1 供试土壤基本理化性质
Table 1. Physical and chemical properties of the tested soil
土壤类型
Soil type天然含水率/%
Natural water content土壤有机质/(g·kg−1)
Soil organic matterpH 总砷/(mg·kg−1)
Total arsenic六六六/(mg·kg−1)
Hexachlorocyclohexane滴滴涕/(mg·kg−1)
Dichloro-Diphenyl-Trichloroethane黏土 31.4 15.6 6.16 2749 0.002 0.014 表 2 因子掺量—pH模型拟合结果
Table 2. Physical and chemical properties of the tested soil
模型: ExpDec1
Model: ExpDec1$ y={A}_{1}\times \exp\left(-\dfrac{x}{{t}_{1}}\right)+{y}_{0} $ y0 5.7115 ±0.0340 A1 1.1228 ±0.0356 t1 0.9062 ±0.0835 P值 <0.05 R2 0.9931 Radj2 0.9912 表 3 稳定期间可交换形态(F1)削减率、稳定化效率模型拟合结果
Table 3. Exchangeable form (F1) reduction rate during stabilization, stabilization efficiency model fitting results
模型: Asymptotic1
Model: Asymptotic1$ y=a-b\times {c}^{x} $ 最佳处理F1削减率
Optimal treatment of F1 reduction rate最佳处理稳定化效率
Optimal treatment stabilization efficiencya 90.10548 ±1.44295 89.0191 ±1.73706 b − 6.80932 ±1.17875 − 12.58449 ±1.71389 c 0.97636 ±0.01293 0.96845 ±0.01427 P值 <0.05 <0.05 R2 0.93293 0.93218 Radj2 0.90861 0.90786 -
[1] 金远亮, 侯德义, 田莉, 等. 基于用地规划的污染地块修复多目标优化研究[J]. 中国环境科学, 2021, 41(2): 787-800. doi: 10.3969/j.issn.1000-6923.2021.02.034 JIN Y L, HOU D Y, TIAN L, et al. Multi-objective optimization for brownfield remediation on the basis of land use planning[J]. China Environmental Science, 2021, 41(2): 787-800 (in Chinese). doi: 10.3969/j.issn.1000-6923.2021.02.034
[2] 中华人民共和国生态环境部, 国土资源部. 全国土壤污染状况调查公报[R/OL] 2014-04-17
[3] BERG M, TRAN H C, NGUYEN T C, et al. Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat[J]. Environmental Science & Technology, 2001, 35(13): 2621-2626. [4] 侯德义, 张凯凯, 王刘炜, 等. 工业场地重金属污染土壤治理现状与展望[J]. 环境保护, 2021, 49(20): 9-15. doi: 10.14026/j.cnki.0253-9705.2021.20.002 HOU D Y, ZHANG K K, WANG L W, et al. Current status and prospect for the remediation of heavy metal contaminated industrial sites[J]. Environmental Protection, 2021, 49(20): 9-15 (in Chinese). doi: 10.14026/j.cnki.0253-9705.2021.20.002
[5] YANG B C, MA S X, CUI R J, et al. Novel low-cost simultaneous removal of NO and SO2 with ·OH from decomposition of H2O2 catalyzed by alkali-magnetic modified fly ash[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5339-5347. [6] CHEN H X, YUAN H H, MAO L Q, et al. Stabilization/solidification of chromium-bearing electroplating sludge with alkali-activated slag binders[J]. Chemosphere, 2020, 240: 124885. doi: 10.1016/j.chemosphere.2019.124885 [7] GUERRINI I A, CROCE C G G, de CARVALHO BUENO O, et al. Composted sewage sludge and steel mill slag as potential amendments for urban soils involved in afforestation programs[J]. Urban Forestry & Urban Greening, 2017, 22: 93-104. [8] 黄丽萍, 马倩敏, 郭荣鑫, 等. 碱矿渣胶凝材料水化产物的实验研究[J]. 硅酸盐通报, 2020, 39(4): 1194-1200. HUANG L P, MA Q M, GUO R X, et al. Experimental study on hydration products of alkali-activated slag[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(4): 1194-1200 (in Chinese).
[9] CHEN Z L, LU S Y, TANG M H, et al. Mechanical activation of fly ash from MSWI for utilization in cementitious materials[J]. Waste Management, 2019, 88: 182-190. doi: 10.1016/j.wasman.2019.03.045 [10] YIN B, KANG T H, KANG J T, et al. Analysis of active ion-leaching behavior and the reaction mechanism during alkali activation of low-calcium fly ash[J]. International Journal of Concrete Structures and Materials, 2018, 12(1): 1-13. doi: 10.1186/s40069-018-0237-8 [11] DING J, MA S H, SHEN S, et al. Research and industrialization progress of recovering alumina from fly ash: A concise review[J]. Waste Management, 2017, 60: 375-387. doi: 10.1016/j.wasman.2016.06.009 [12] 陈梦舫. 我国工业污染场地土壤与地下水重金属修复技术综述[J]. 中国科学院院刊, 2014, 29(3): 327-335. CHEN M F. Review on heavy metal remediation technology of soil and groundwater at industrially contaminated site in China[J]. Bulletin of Chinese Academy of Sciences, 2014, 29(3): 327-335 (in Chinese).
[13] SHEN Z T, JIN F, O'CONNOR D, et al. Solidification/stabilization for soil remediation: An old technology with new vitality[J]. Environmental Science & Technology, 2019, 53(20): 11615-11617. [14] 赵述华, 陈志良, 张太平, 等. 重金属污染土壤的固化/稳定化处理技术研究进展[J]. 土壤通报, 2013, 44(6): 1531-1536. doi: 10.19336/j.cnki.trtb.2013.06.044 ZHAO S H, CHEN Z L, ZHANG T P, et al. Advances in solidification/stabilization technology treatment of heavy metals in contaminated soils[J]. Chinese Journal of Soil Science, 2013, 44(6): 1531-1536 (in Chinese). doi: 10.19336/j.cnki.trtb.2013.06.044
[15] WEN J, YI Y J, ZENG G M. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction[J]. Journal of Environmental Management, 2016, 178: 63-69. doi: 10.1016/j.jenvman.2016.04.046 [16] 吕鹏, 李莲芳, 黄晓雅. 改性生物炭修复砷镉复合污染土壤研究进展[J].环境科学, 2023, 44(7): 4077-4090. LÜ P, LI L F, HUANG X Y. Modified Biochar for Remediation of Soil Contaminated with Arsenic and Cadmium: A Review[J]. Environmental Science, 2023, 44(7): 4077-4090(in Chinese).
[17] 韦婧, 刘昳晗, 涂晨, 等. 铁修饰生物炭的制备及在砷污染土壤修复中的应用[J]. 环境科学, 2023, 44(2): 965-974. doi: 10.13227/j.hjkx.202203011 WEI J, LIU Y H, TU C, et al. Preparation of iron-modified biochar and its application in arsenic contaminated soil remediation[J]. Environmental Science, 2023, 44(2): 965-974 (in Chinese). doi: 10.13227/j.hjkx.202203011
[18] 官迪, 吴家梅, 谢运河, 等. 铁基硅盐对土壤环境镉砷赋存形态及转化影响[J]. 中国环境科学, 2022, 42(4): 1803-1811. doi: 10.3969/j.issn.1000-6923.2022.04.036 GUAN D, WU J M, XIE Y H, et al. Effects of Iron-based silicon salts on fractions and transformation of cadmium and arsenic in soil environment[J]. China Environmental Science, 2022, 42(4): 1803-1811 (in Chinese). doi: 10.3969/j.issn.1000-6923.2022.04.036
[19] 向罗京, 苏趋, 孙刚, 等. 典型医药企业聚集区土壤重金属污染特征及成因分析[J]. 环境化学, 2022, 41(6): 2022-2034. doi: 10.7524/j.issn.0254-6108.2021092402 XIANG L J, SU Q, SUN G, et al. Characteristics and causes of soil heavy metal pollution in typical pharmaceutical enterprise gathering areas[J]. Environmental Chemistry, 2022, 41(6): 2022-2034 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021092402
[20] MÜLLER G. Index of geoaccumulation in sediments of the Rhine River[J]. Geology Journal, 1969, 2: 108-118. [21] 国家质量监督检验检疫总局, 国家标准化管理委员会. 中华人民共和国国家标准: 用于水泥和混泥土中的粉煤灰 GB/T 664—2011[S]. 北京: 中国标准出版社, 2018. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China Standardization administration. National Standard (Mandatory) of the People’s Republic of China: Fly Ash used for cement and concrete. GB/T 664—2011[S]. Beijing: Standards Press of China, 2018 (in Chinese).
[22] XIA W Y, FENG Y S, DU Y J, et al. Solidification and stabilization of heavy metal–contaminated industrial site soil using KMP binder[J]. Journal of Materials in Civil Engineering, 2018, 30(6): 04018080. doi: 10.1061/(ASCE)MT.1943-5533.0002264 [23] 黄安林. 不同钝化材料及其复配对农田土壤中砷的钝化效果研究[D]. 海口: 海南大学, 2020. HUANG A L. Study on the passivation effect of different passivation materials and their compounds on arsenic in farmland soil[D]. Haikou: Hainan University, 2020 (in Chinese).
[24] ZHA F S, PAN D D, XU L, et al. Investigations on engineering properties of solidified/stabilized Pb-contaminated soil based on alkaline residue[J]. Advances in Civil Engineering, 2018, 2018: 1-9. [25] 焦常锋, 常会庆, 王启震, 等. 碳酸钙和壳聚糖联用对高pH值石灰性土壤砷污染的钝化[J]. 农业工程学报, 2020, 36(11): 234-240. doi: 10.11975/j.issn.1002-6819.2020.11.027 JIAO C F, CHANG H Q, WANG Q Z, et al. Passivation effects of calcium carbonate and chitosan on arsenic pollution in high pH calcareous soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 234-240 (in Chinese). doi: 10.11975/j.issn.1002-6819.2020.11.027
[26] 王鑫. 亚铁盐对固废/土壤中重金属的稳定化作用及机理研究[D]. 武汉: 华中科技大学, 2018. WANG X. Stabilization treatment of heavy metal contaminated solid wastes/soils by ferrous salt[D]. Wuhan: Huazhong University of Science and Technology, 2018 (in Chinese).
[27] 张向军. 石灰、粉煤灰处理Cd、Pb、Cr污染土壤的实验研究[D]. 重庆: 重庆大学, 2009. ZHANG X J. Experimental study on the treatment of Cd, Pb and Cr-polluted soil with lime and fly ash[D]. Chongqing: Chongqing University, 2009 (in Chinese).
[28] 生态环境部. 中华人民共和国国家标准: 固体废物浸出毒性浸出方法-硫酸硝酸法HJ/T 299-2007 [S]. 北京: 中国环境科学出版社, 2007. Ministry of Ecology and Environment of the People's Republic of China. National Standard (Mandatory) of the People's Republic of China: Solid waste-extraction procedure for leaching toxicity-sulphuric acid & nitric acid method. HJ/T 299-2007 [S]. Beijing: China Environment Science Press, 2007(in Chinese).
[29] WENZEL W W, KIRCHBAUMER N, PROHASKA T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. Analytica Chimica Acta, 2001, 436(2): 309-323. doi: 10.1016/S0003-2670(01)00924-2 [30] 生态环境部. 中华人民共和国国家标准: 土壤pH值的测定 电位法. HJ 962—2018 [S]. 北京: 中国环境科学出版社, 2018. Ministry of Ecology and Environment of the People’s Republic of China. National Standard (Mandatory) of the People’s Republic of China: Soil — Determination of pH — Potentiometry. HJ 962—2018 [S]. Beijing: China Environment Science Press, 2018(in Chinese).
[31] 中华人民共和国环境保护部. 土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法: HJ 803—2016[S]. 北京: 中国环境科学出版社, 2016. Ministry of Environmental Protection of the People's Republic of China. Soil and sediment-Determination of aqua regia extracts of 12 metal elements-Inductively coupled plasma mass spectrometry: HJ 803—2016[S]. Beijing: China Environmental Science Press, 2016(in Chinese).
[32] GELDART D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5): 285-292. doi: 10.1016/0032-5910(73)80037-3 [33] DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35(2): 429-441. doi: 10.1007/BF01904446 [34] DAVIDOVITS J. Geopolymers chemistry and application[M]. Saint-Quentin: National Defense Press, 2008: 41-42. [35] 陆厚根. 粉体技术导论[M]. 2版. 上海: 同济大学出版社, 1998. LU H G. Introduction to powder technology[M]. 2nd ed. Shanghai: Tongji University Press, 1998(in Chinese).
[36] 霍丽娟. 水铁矿纳米材料对土壤中砷的吸附固定及其稳定化反应机制[D]. 北京: 中国农业科学院, 2017. HUO L J. Study on the mechanisms of arsenic sorption and stabilization in soils using ferrihydrite nanoparticles[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017 (in Chinese).
[37] KIM J Y, DAVIS A P, KIM K W. Stabilization of available arsenic in highly contaminated mine tailings using iron[J]. Environmental Science & Technology, 2003, 37(1): 189-195. [38] SEIDEL H, GÖRSCH K, AMSTÄTTER K, et al. Immobilization of arsenic in a tailings material by ferrous iron treatment[J]. Water Research, 2005, 39(17): 4073-4082. doi: 10.1016/j.watres.2005.08.001 [39] MOORE T J, RIGHTMIRE C M, VEMPATI R K. Ferrous iron treatment of soils contaminated with arsenic-containing wood-preserving solution[J]. Journal of Soil Contamination, 2000, 9(4): 375-405. doi: 10.1080/10588330091134310 [40] GOH K H, LIM T T. Geochemistry of inorganic arsenic and selenium in a tropical soil: Effect of reaction time, pH, and competitive anions on arsenic and selenium adsorption[J]. Chemosphere, 2004, 55(6): 849-859. doi: 10.1016/j.chemosphere.2003.11.041 [41] 陈静, 王学军, 朱立军. pH对砷在贵州红壤中的吸附的影响[J]. 土壤, 2004, 36(2): 211-214. doi: 10.3321/j.issn:0253-9829.2004.02.020 CHEN J, WANG X J, ZHU L J. Effect of ph on adsorption and transformation of arsenic in red soil in Guizhou[J]. Soils, 2004, 36(2): 211-214 (in Chinese). doi: 10.3321/j.issn:0253-9829.2004.02.020
[42] 卢聪, 李青青, 罗启仕, 等. 场地土壤中有效态砷的稳定化处理及机理研究[J]. 中国环境科学, 2013, 33(2): 298-304. doi: 10.3969/j.issn.1000-6923.2013.02.016 LU C, LI Q Q, LUO Q S, et al. Stabilization treatment of available arsenic in contaminated soils and mechanism studies[J]. China Environmental Science, 2013, 33(2): 298-304 (in Chinese). doi: 10.3969/j.issn.1000-6923.2013.02.016
[43] 宋宜, 王华伟, 吴雅静, 等. 三价铁促进生物氧化锰稳定土壤砷的效果和机制[J]. 环境科学学报, 2020, 40(4): 1460-1466. doi: 10.13671/j.hjkxxb.2019.0469 SONG Y, WANG H W, WU Y J, et al. Promoting effect and mechanism of Fe(Ⅲ) on the stabilization of arsenic by biogenic Mn oxides in contaminated soil[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1460-1466 (in Chinese). doi: 10.13671/j.hjkxxb.2019.0469
[44] 常春英, 曹浩轩, 陶亮, 等. 固化/稳定化修复后土壤重金属稳定性及再活化研究进展[J]. 土壤, 2021, 53(4): 682-691. doi: 10.13758/j.cnki.tr.2021.04.003 CHANG C Y, CAO H X, TAO L, et al. Advances on heavy metal stability and reactivation for soil after solidification/stabilization remediation[J]. Soils, 2021, 53(4): 682-691 (in Chinese). doi: 10.13758/j.cnki.tr.2021.04.003
[45] 陈子万, 许晶, 侯召雷, 等. 基于成土母质分区的土壤-作物系统重金属累积特征与健康风险评价[J]. 环境科学, 2023, 44(1): 405-414. doi: 10.13227/j.hjkx.202203205 CHEN Z W, XU J, HOU Z L, et al. Accumulation characteristics and health risk assessment of heavy metals in soil-crop system based on soil parent material zoning[J]. Environmental Science, 2023, 44(1): 405-414 (in Chinese). doi: 10.13227/j.hjkx.202203205
[46] 赵亮, 唐泽军, 刘芳. 粉煤灰改良沙质土壤水分物理性质的室内实验[J]. 环境科学学报, 2009, 29(9): 1951-1957. doi: 10.3321/j.issn:0253-2468.2009.09.024 ZHAO L, TANG Z J, LIU F. Laboratory tests of fly ash as a sandy soil amendment and its effects on soil water[J]. Acta Scientiae Circumstantiae, 2009, 29(9): 1951-1957 (in Chinese). doi: 10.3321/j.issn:0253-2468.2009.09.024
[47] KALINSKI M E, YERRA P K. Hydraulic conductivity of compacted cement-stabilized fly ash[J]. Fuel, 2006, 85(16): 2330-2336. doi: 10.1016/j.fuel.2006.04.030 [48] 杨忠兰, 曾希柏, 孙本华, 等. 铁氧化物固定土壤重金属的研究进展[J]. 土壤通报, 2021, 52(3): 728-735. doi: 10.19336/j.cnki.trtb.2020102801 YANG Z L, ZENG X B, SUN B H, et al. Research advances on the fixation of soil heavy metals by iron oxide[J]. Chinese Journal of Soil Science, 2021, 52(3): 728-735 (in Chinese). doi: 10.19336/j.cnki.trtb.2020102801
[49] 王璐莹, 秦雷, 吕宪国, 等. 铁促进土壤有机碳累积作用研究进展[J]. 土壤学报, 2018, 55(5): 1041-1050. doi: 10.11766/trxb201802260035 WANG L Y, QIN L, LÜ X G, et al. Progress in researches on effect of iron promoting accumulation of soil organic carbon[J]. Acta Pedologica Sinica, 2018, 55(5): 1041-1050 (in Chinese). doi: 10.11766/trxb201802260035
[50] MIKUTTA R, KLEBER M, TORN M S, et al. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance?[J]. Biogeochemistry, 2006, 77(1): 25-56. doi: 10.1007/s10533-005-0712-6 [51] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国环境科学出版社, 2002. State Environmental Protection Administration of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Environmental quality standards for surface water: GB 3838—2002[S]. Beijing: China Environmental Science Press, 2002(in Chinese).
[52] 国家质量监督检验检疫总局, 国家标准化管理委员会. 地下水质量标准GB/T 14848—2017. 北京: 中国环境科学出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China Standardization administration. National Standard (Mandatory) of the People’s Republic of China: Standard for groundwater quality GB/T 14848—2017 [S]. Beijing: China Environment Science Press, 2017(in Chinese).