-
土壤砷(As)污染问题在世界范围内面临着严峻形势. 据报道,欧洲的矿山土壤平均As含量超过500 mg·kg−1[1],南美洲土壤平均As含量为34 mg·kg−1[2],我国湖北省某磷肥厂周围的农业土壤As含量最高可达
6402 mg·kg−1[3]. 在土壤环境中生物与非生物因素影响下,As会进入土壤溶液中并发生形态转化[4 − 5],其中当无机态的砷酸盐(As(Ⅴ))还原为亚砷酸盐(As(Ⅲ))时,其毒性增加约60倍,且移动性显著提高[6],容易向水体中迁移从而对动植物及人类健康产生严重的危害,因此土壤中As迁移与转化过程中的影响因素成为研究重点.土壤中广泛存在的砷还原菌被认为在As(Ⅴ)还原的过程发挥着重要作用. 砷还原菌一般通过细胞质砷还原或异化砷还原两种途径还原As(Ⅴ)[7],一些同时具有铁还原能力的砷还原菌还会对铁(氢)氧化物进行还原溶解[8 − 9],使As释放后再对其还原. 除此之外,土壤中的有机质对As迁移转化的影响也受到研究者的关注. 土壤有机质主要是指土壤中的动植物及微生物残体,经由复杂的微生物和物理化学转化过程形成的有机化合物,包括约70%—80%的腐殖质和约20%—30%的非腐殖质[10]. 腐殖质中常见的有胡敏酸、富里酸和胡敏素,非腐殖质则主要是小分子有机酸、糖类、含氮化合物等[11]. 多项研究证实,有机质可以通过各种官能团与As直接络合,如腐殖质的酚羟基、羧基、巯基[12 − 13],还会与As竞争土壤上的吸附位点使As释放[14]. 有机酸类一般通过溶解铁(氢)氧化物,使吸附态As成为溶解态,也可以通过竞争吸附[15]、与铁形成络合物或将铁还原促使其溶解[16]而导致As的释放. 此外,有机质还可以影响土壤微生物的生长代谢,加快As释放到土壤溶液中并发生转化,如Qiao等[17]发现胡敏酸、富里酸可以促进与As还原有关的微生物生长为优势种群. 但目前所研究的土壤有机质组分多集中于胡敏酸、富里酸等腐殖质类,其次是根系分泌物中的小分子有机酸,如草酸、柠檬酸等,而对糖类、含氮有机质等组分以及外源添加作为土壤调理剂的有机质,如生物炭和聚合氨基酸等[18 − 19]的关注较少,不同类型有机质组分对As的迁移转化作用尚不明确. 此外,在厌氧状态下砷还原菌会使土壤铁矿物发生还原溶解,导致更多的As进入土壤溶液[20],而厌氧状态下有机质组分对砷还原菌介导的As形态转化的影响机制并不明确.
本研究选择以下6种典型土壤有机质组分作为研究对象:腐殖酸(HM)、胡敏酸(HA),腐殖质中的代表性物质;柠檬酸(CA),小分子有机酸中的代表性物质;聚天冬氨酸(PA),农业中常用作肥料增效剂的多肽聚合物;多聚半乳糖醛酸(PGA),糖类中的代表性物质;谷氨酸(Glu),氨基酸中的代表性物质,并利用已筛选出的砷还原菌Desulfitobacteriumsp. DJ-3,进行如下研究:(1)无砷还原菌存在时,有机质组分对As(Ⅴ)、As(Ⅲ)的吸附/络合作用及还原/氧化作用;(2)有机质组分对砷还原菌还原As(Ⅴ)的影响及其机制. 研究结果可为探究土壤中无机As的环境行为提供理论基础.
典型土壤有机质组分对砷还原菌还原砷的影响机制
Impact of typical soil organic matter components on reduction of arsenic by As(Ⅴ)-reducing bacteria and its mechanism
-
摘要: 为了探究土壤中不同类型有机质组分对砷还原菌还原As(Ⅴ)的影响及其机制,选择了腐殖酸(humus acid,HM)、胡敏酸(humic acid,HA),柠檬酸(citric acid,CA)、聚天冬氨酸(polyaspartic acid,PA)、多聚半乳糖醛酸(polygalacturonic acid,PGA)、谷氨酸(glutamic acid,Glu)6种典型土壤有机质组分作为研究对象,首先研究了这几类物质在中性pH条件下对液相As(Ⅴ)、As(Ⅲ)的吸附/络合作用及形态转化,并进一步探究了其对砷还原菌Desulfitobacterium sp. DJ-3还原液相As(Ⅴ)的影响及机制. 结果表明,HM、HA、CA、PA能够络合As(Ⅴ)和As(Ⅲ),Glu仅能够络合As(Ⅲ),而PGA对As(Ⅴ)及As(Ⅲ)均无络合作用. 此外,除了HM、HA能够还原As(Ⅴ)并氧化As(Ⅲ),其余有机质组分仅对As(Ⅴ)存在还原作用. 在砷还原菌还原As(Ⅴ)的过程中,6种有机质组分可以作为电子供体促进砷还原菌对As(Ⅴ)的还原,CA、Glu还可以作为易利用的碳源促进细菌细胞个数增加,而HM、HA可能还起到电子穿梭体的作用,因而能更快地促进液相As(Ⅴ)被还原. 本研究有助于明确不同土壤有机质组分对砷还原菌还原As(Ⅴ)的影响并为土壤中无机砷的环境行为预测提供理论基础.Abstract: To explore the impact of different types of soil organic matter components on arsenic speciation transformation and its mechanisms, six kinds of typical soil organic matter components, including humus acid (HM), humic acid (HA), citric acid (CA), polyaspartic acid (PA), polygalacturonic acid (PGA) and glutamic acid (Glu), were selected. Their effects on the adsorption/complexation and speciation transformation of aqueous As(Ⅴ) and As(Ⅲ) under neutral pH condition were investigated, and the impact of different soil organic matter on the reduction of aqueous As(Ⅴ) by As(Ⅴ)-reducing bacteria Desulfitobacterium sp. DJ-3 and the relevant mechanisms were further explored. The results showed that HM, HA, CA and PA can form complexes with both As(Ⅴ) and As(Ⅲ), Glu can form complexes only with As(Ⅲ), while PGA can’t form complexes with As(Ⅴ) and As(Ⅲ). In addition, except that HM and HA can reduce As(Ⅴ) and oxidize As(Ⅲ), other organic matter components can only reduce As(Ⅴ). In the process of As(Ⅴ) reduction by As(Ⅴ)-reducing bacteria, all six organic matter components can be used as electron donors to promote microbial As(Ⅴ) reduction. As easily available carbon sources, CA and Glu can also increase the cell number of bacteria, while HM and HA may serve as electron shuttle to accelerate the reduction of aqueous As(Ⅴ). Our study can help to clarify the impact of different soil organic matter components on As(Ⅴ) reduction by As(Ⅴ)-reducing bacteria, which will provide a theoretical basis for the prediction of environmental behavior of inorganic arsenic in soil.
-
Key words:
- arsenic /
- organic matter component /
- As(Ⅴ)-reducing bacteria /
- electron donor /
- carbon source /
- electron shuttle.
-
-
[1] RAPANT S, DIETZOVÁ Z, CICMANOVÁ S. Environmental and health risk assessment in abandoned mining area, Zlata Idka, Slovakia[J]. Environmental Geology, 2006, 51(3): 387-397. doi: 10.1007/s00254-006-0334-x [2] TAPIA J, MURRAY J, ORMACHEA M, et al. Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna plateau of Argentina, Bolivia, Chile, and Perú[J]. Science of the Total Environment, 2019, 678: 309-325. doi: 10.1016/j.scitotenv.2019.04.084 [3] JIA X Y, CAO Y N, O’CONNOR D, et al. Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field[J]. Environmental Pollution, 2021, 270: 116281. doi: 10.1016/j.envpol.2020.116281 [4] SU Y H, McGRATH S P, ZHAO F J. Rice is more efficient in arsenite uptake and translocation than wheat and barley[J]. Plant and Soil, 2010, 328(1): 27-34. [5] OREMLAND R S, STOLZ J F. Arsenic, microbes and contaminated aquifers[J]. Trends in Microbiology, 2005, 13(2): 45-49. doi: 10.1016/j.tim.2004.12.002 [6] MÜLLER K, CIMINELLI V S T, DANTAS M S S, et al. A comparative study of As(Ⅲ) and As(Ⅴ) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy[J]. Water Research, 2010, 44(19): 5660-5672. doi: 10.1016/j.watres.2010.05.053 [7] SILVER S, PHUNG L T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic[J]. Applied and Environmental Microbiology, 2005, 71(2): 599-608. doi: 10.1128/AEM.71.2.599-608.2005 [8] HUANG J H, VOEGELIN A, POMBO S A, et al. Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32[J]. Environmental Science & Technology, 2011, 45(18): 7701-7709. [9] CAI X L, ZHANG Z N, YIN N Y, et al. Comparison of arsenate reduction and release by three As(Ⅴ)-reducing bacteria isolated from arsenic-contaminated soil of Inner Mongolia, China[J]. Chemosphere, 2016, 161: 200-207. doi: 10.1016/j.chemosphere.2016.06.102 [10] 张璐. 土壤矿物对非腐殖质活性组分的吸附及稳定性的影响[D]. 昆明: 昆明理工大学, 2021. ZHANG L. Adsorption of soil minerals on non-humus active components and its stability effects [D]. Kunming: Kunming University of Science and Technology, 2021 (in Chinese).
[11] 李海防, 夏汉平, 熊燕梅, 等. 土壤温室气体产生与排放影响因素研究进展[J]. 生态环境, 2007(6): 1781-1788. LI H F, XIA H P, XIONG Y M, et al. Mechanism of greenhouse gases fluxes from soil and its controlling factors: A review[J]. Ecology and Environment, 2007(6): 1781-1788 (in Chinese).
[12] BUSCHMANN J, KAPPELER A, LINDAUER U, et al. Arsenite and arsenate binding to dissolved humic acids: Influence of pH, type of humic acid, and aluminum[J]. Environmental Science & Technology, 2006, 40(19): 6015-6020. [13] XU Y F, WANG K L, ZHOU Q H, et al. Effects of humus on the mobility of arsenic in tailing soil and the thiol-modification of humus[J]. Chemosphere, 2020, 259: 127403. doi: 10.1016/j.chemosphere.2020.127403 [14] LI J P, DING Y, WANG K L, et al. Comparison of humic and fulvic acid on remediation of arsenic contaminated soil by electrokinetic technology[J]. Chemosphere, 2020, 241: 125038. doi: 10.1016/j.chemosphere.2019.125038 [15] ZHANG P, YAO W Y, YUAN S H. Citrate-enhanced release of arsenic during pyrite oxidation at circumneutral conditions[J]. Water Research, 2017, 109: 245-252. doi: 10.1016/j.watres.2016.11.058 [16] LEE J C, KIM E J, KIM H W, et al. Oxalate-based remediation of arsenic bound to amorphous Fe and Al hydrous oxides in soil[J]. Geoderma, 2016, 270: 76-82. doi: 10.1016/j.geoderma.2015.09.015 [17] QIAO J T, LI X M, LI F B, et al. Humic substances facilitate arsenic reduction and release in flooded paddy soil[J]. Environmental Science & Technology, 2019, 53(9): 5034-5042. [18] ZHU M, LV X F, FRANKS A E, et al. Maize straw biochar addition inhibited pentachlorophenol dechlorination by strengthening the predominant soil reduction processes in flooded soil[J]. Journal of Hazardous Materials, 2020, 386: 122002. doi: 10.1016/j.jhazmat.2019.122002 [19] 查文文. 聚合氨基酸对北方水稻土中氧化铁转化与活性有机碳组分的影响[D]. 沈阳: 沈阳农业大学, 2017. ZHA W W. Effects of amino acids on the transformation of iron oxides and active organic carbon fractions in paddy soils of North China [D]. Shenyang: Shenyang Agricultural University, 2017 (in Chinese).
[20] TAKAHASHI Y, MINAMIKAWA R, HATTORI K H, et al. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods[J]. Environmental Science & Technology, 2004, 38(4): 1038-1044. [21] WARWICK P, INAM E, EVANS N. Arsenic’s interaction with humic acid[J]. Environmental Chemistry, 2005, 2(2): 119. doi: 10.1071/EN05025 [22] THANABALASINGAM P, PICKERING W F. Arsenic sorption by humic acids[J]. Environmental Pollution Series B, Chemical and Physical, 1986, 12(3): 233-246. doi: 10.1016/0143-148X(86)90012-1 [23] LI F L, GUO H M, ZHOU X Q, et al. Impact of natural organic matter on arsenic removal by modified granular natural siderite: Evidence of ternary complex formation by HPSEC-UV-ICP-MS[J]. Chemosphere, 2017, 168: 777-785. doi: 10.1016/j.chemosphere.2016.10.135 [24] SHAKOOR M B, NIAZI N K, BIBI I, et al. Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater[J]. Science of the Total Environment, 2018, 645: 1444-1455. doi: 10.1016/j.scitotenv.2018.07.218 [25] HAQUE M N, MORRISON G M, PERRUSQUÍA G, et al. Characteristics of arsenic adsorption to sorghum biomass[J]. Journal of Hazardous Materials, 2007, 145(1/2): 30-35. [26] DEIANA S, DEIANA L, PREMOLI A, et al. Accumulation and mobilization of arsenate by Fe(Ⅲ) polyions trapped in a Ca-polygalacturonate network[J]. Plant Physiology and Biochemistry, 2009, 47(7): 615-622. doi: 10.1016/j.plaphy.2009.02.004 [27] TAM S C, McCOLL J G. Aluminum- and calcium-binding affinities of some organic ligands in acidic conditions[J]. Journal of Environmental Quality, 1990, 19(3): 514-520. [28] BOLAN N S, NAIDU R, MAHIMAIRAJA S, et al. Influence of low-molecular-weight organic acids on the solubilization of phosphates[J]. Biology and Fertility of Soils, 1994, 18(4): 311-319. doi: 10.1007/BF00570634 [29] 刘文涵, 单伟光, 高云芳, 等. 硫化锌法原子吸收间接测定谷氨酸络合反应的机理研究[J]. 光谱学与光谱分析, 2003, 23(6): 1191-1193. LIU W H, SHAN W G, GAO Y F, et al. Studies of complexing action mechanism in the indirect determination of glutamic acid by FAAS with ZnS[J]. Spectroscopy and Spectral Analysis, 2003, 23(6): 1191-1193 (in Chinese).
[30] KO I, KIM J Y, KIM K W. Arsenic speciation and sorption kinetics in the As–hematite–humic acid system[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2004, 234(1/2/3): 43-50. [31] PALMER N E, FREUDENTHAL J H, von WANDRUSZKA R. Reduction of arsenates by humic materials[J]. Environmental Chemistry, 2006, 3(2): 131. doi: 10.1071/EN05081 [32] KLÜPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2014, 48(10): 5601-5611. [33] 张月. 生物炭的氧化还原机制及其环境应用[D]. 上海: 上海交通大学, 2019. ZHANG Y. Redox mechanism of biochar and its environmental application[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese).
[34] SCOTT D T, McKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environmental Science & Technology, 1998, 32(19): 2984-2989. [35] CAI X L, THOMASARRIGO L K, FANG X, et al. Impact of organic matter on microbially-mediated reduction and mobilization of arsenic and iron in arsenic(Ⅴ)-bearing ferrihydrite[J]. Environmental Science & Technology, 2021, 55(2): 1319-1328.