-
2014年原生态环境部和自然资源部发布的《全国土壤污染状况调查公报》显示[1],在重点调查的690家污染企业用地和周边环境中,36.3%属于超标点位,其中一些典型企业(如石油炼化、焦化、电镀和制革等)被列为重点监管企业. 近40年来,我国的石油化工行业迅速发展,2010年产值规模跃居世界第二,其化工产值规模远超美国,位居世界第一,成为世界石油和化工大国[2]. 胜利油田作为我国石油化工的重要基地,其石油年产量为
2340 万t,炼油厂炼油能力达每年1800 万t. 目前,多个研究报道表明,石油炼化和下游化工已被认定为挥发性有机物(VOCs)排放的典型区域[3 − 9]. 苯系物(BTEXs)是VOCs中的一类特征污染物,2017年,世卫组织国际癌症机构将BTEXs列入致癌清单中,其中苯属于Ⅰ类致癌物质,乙苯和苯乙烯为Ⅱ类致癌物质,甲苯和二甲苯为Ⅲ类致癌物质. 苯系物也已被我国列入污染物优先控制名单中[10].研究表明,石油冶炼的高温工艺可以加速BTEXs的产生与排放[11],占工业来源总排放量的18.1%—34.5%[12],进而导致BTEXs被释放进入周边环境介质中[13 − 17]. 由于苯系物是二次气溶胶的重要前体[18],对臭氧的生成具有重要贡献[19],工业或生活中产生的苯系物释放到环境中,容易导致城市光化学烟雾,造成二次污染[20]. 石油冶炼厂区的污染状况会直接影响职工和周边居民健康状况. 苯系物具有“三致”效应,对人体有较为直接的危害性,且难以预防. BTEXs可通过多种暴露途径进入人体中,会迅速分布于各个组织器官中,主要累积在脂肪中,可通过细胞色素P-450IIEI在肝脏组织中代谢[21],其神经毒性和遗传毒性会对人体的皮肤黏膜、中枢神经和造血功能产生损害. 有研究表明,敏感人群尤其是儿童,长期暴露于苯系物污染的环境中,会增加哮喘患病率[22],甚至引起再生障碍性贫血和白血病[23] 等疾病.
自2010年始,我国学者开始重点关注典型石油冶炼企业包括苯系物在内的大气中挥发性有机物污染特征[24 − 26]。有研究表明,在油品运输储存,生产加工等冶炼装置过程中,存在一定的挥发性有毒污染物污染及健康风险[27]. 以往研究多集中在大气环境介质中,针对不同环境介质(大气和土壤)以及炼油过程中不同子功能区中BTEXs的分布、健康风险评估缺乏系统性研究,同时尚不明确石油冶炼过程释放的BTEXs是否对周边环境存在区域传输. 因此,有必要对典型石油冶炼工业区不同环境介质中BTEXs的暴露水平进行系统研究,明确其对职业人群和周边居民带来的健康风险.
本文研究了典型石油冶炼企业炼油过程不同功能区BTEXs污染水平和组成分布特征,通过计算暴露量,明确该区域不同人群对BTEXs的主要暴露途径,评估BTEXs可能存在的健康风险. 希望为典型工业区的污染控制和周边居民健康管理提供参考,对预防环境污染事件的发生也具有重要意义.
典型炼油工业区及周边环境介质中苯系物健康风险评估
Health risk assessment of BTEXs in one typical petroleum refinery and surrounding area of China
-
摘要: 本研究考察了2021—2022年间典型炼油工业及周边区域大气和土壤样品中8种苯系物(BTEXs)(苯、甲苯、乙苯、对+间二甲苯、邻二甲苯、苯乙烯和异丙苯)的污染水平,进一步明确了炼油工业BTEXs污染特性、人体主要暴露途径,并进一步评估其健康风险. 结果表明,炼油区大气和土壤样品中8种BTEX的平均浓度分别为49.2 μg·m−3和578.3 g·g−1,其中冶炼区和产品储存区BTEXs浓度水平明显高于原油储存区、办公区和周边居民区. 呼吸吸入BTEXs暴露量比口服摄入高约一个数量级,表明BTEXs主要暴露途径为呼吸暴露. 非致癌风险结果表明,炼油工业区BTEXs的非致癌风险值均小于安全水平(HI<1),说明不存在非致癌风险. 另外,致癌风险评估结果表明,乙苯无明显致癌风险,可以忽略不计. 苯的致癌风险均超过10−4,表明具有较高的致癌风险,需要引起一定的关注.
-
关键词:
- 苯系物(BTEXs) /
- 炼油工业 /
- 环境介质 /
- 健康风险
Abstract: In this study, atmospheric and soil samples were collected and detected during Year 2021—2022. Environmental distribution of benzene, toluene, ethylbenzene, m, p-xylene, styrene, o-xylene, and cumene (BTEXs) in petroleum refinery area of China were systematically investigated by measuring their concentrations in environmental matrices. This study identified the main ways of exposure to BTEXs and assessed the human health risks. The average concentrations of eight BTEXs were 49.2 μg·m−3 in air and 578.3 µg·g−1 in soil samples. At the smelting and the product storage subarea, the BTEXs concentrations were significantly higher than the office subarea crude oil storagearea and surrounding areas. The BTEXs via air inhalation exposure was one order of magnitude higher than that the soil ingestion exposure, indicating that the primary exposure pathway for BTEXs was inhalation exposure. HI of both inhalation and soil ingestion was lower than the safe level (HI<1), indicating the no non-carcinogenic risk in this studied area. In addition, Ethylbenzene had no significant carcinogenic risk, which could be ignored. The carcinogenic risk of benzene via inhalation exceeded the acceptable level (10−4) in petroleum refinery area, which needed to be paid attention.-
Key words:
- benzene series (BTEXs) /
- petroleum refinery /
- environmental matrices /
- health risk
-
表 1 化合物的SIM参数
Table 1. MS parameters of compounds
化合物
Compounds定性离子
Quantization ion(m/z)定量离子
Characterized ions(m/z)苯(Benzene) 78 77, 50 甲苯(Toluene) 92 91 乙苯(Ethylbenzene) 91 106 间+对二甲苯(p,m-Xylene) 91 106 邻二甲苯(O-xylene) 104 78, 103 苯乙烯(Styrene) 106 91 异丙苯(Cumene) 105 120 氟苯(Fluorobenzene) 96 — 表 2 参考综合风险信息系统中(IRIS)[30]的单位吸入非致癌风险浓度(Rfc)、参考口服摄入剂量(RfD);单位吸入致癌风险浓度(IUR)和经口摄入致癌因子(SF)
Table 2. Refer to Integrated Risk Information System(IRIS) of Inhalation reference concentration (Rfc), the reference oral intake dose (RfD); Inhalation Unit of carcinogenic risk (IUR) and the oral intake carcinogenic intensity factor (SF)
化合物
Compounds单位吸入非致癌风险浓度
Rfc/( mg·m−3)经口摄入参考剂量
RfD/(mg·kg−1d−1)单位吸入致癌风险浓度
IUR/(mg·m−3)−1经口摄入致癌因子
SF/(mg·kg−1d−1)苯(Benzene) 3.0×10−2 4.0×10−3 7.8×10−3 5.5×10−2 甲苯(Toluene) 5.0 8.0×10−2 — — 乙苯(Ethylbenzene) 1.0 1.0×10−1 2.5×10−3 1.1×10−2 对+间二甲苯(p,m-Xylene) 1.0×10−1 2.0×10−1 — — 苯乙烯(Styrene) 1.0 1.0×10−1 — — 邻二甲苯(O-xylene) 1.0×10−1 2.0×10−1 — — 异丙苯(Cumene) — — — — 表 3 吸入和口服摄入BTEXs危险商(HQs)和危害指数(HIs)
Table 3. the hazard quotient (HQs) and hazard index (HIs)of BTEXs analogs via inhalation and soil ingestion
功能分区 HQs (Inhalation) HIs 苯
Benzene甲苯
Toluene乙苯
Ethylbenzene对+间二甲苯
p,m-Xylene苯乙烯
Styrene邻二甲苯
O-xylene办公区 1.46×10−3 2.2×10−7 9.90×10−7 1.88×10−5 3.57×10−7 6.35×10−6 1.48×10−3 原油储存区 9.49×10−4 2.40×10−7 9.40×10−7 2.62×10−5 5.59×10−7 5.16×10−6 9.82×10−4 产品储存区 2.36×10−3 3.16×10−7 9.04×10−6 4.48×10−5 6.17×10−7 6.24×10−6 2.42×10−3 冶炼区 4.87×10−3 2.59×10−7 3.66×10−6 2.99×10−5 5.11×10−7 5.92×10−6 4.96×10−3 居民区 1.35×10−3 9.22×10−8 4.38×10−6 2.26×10−5 7.58×10−7 8.35×10−6 1.39×10−3 对照区 9.21×10−4 7.42×10−8 1.64×10−6 9.82×10−6 2.58×10−7 2.50×10−6 9.35×10−4 办公区 5.57×10−7 4.25×10−10 0 0 0 9.06×10−9 5.67×10−7 原油储存区 1.34×10−4 4.24×10−9 5.03×10−8 1.10×10−8 1.10×10−9 2.58×10−7 1.35×10−4 产品储存区 4.30×10−4 1.12×10−7 6.85×10−7 1.79×10−8 1.79×10−9 1.11×10−6 4.32×10−4 冶炼区 1.62×10−4 3.36×10−8 2.10×10−8 1.09×10−8 1.09×10−9 3.96×10−7 1.62×10−4 居民区 1.81×10−5 5.10×10−9 1.34×10−8 1.35×10−8 1.35×10−9 1.48×10−8 1.81×10−5 对照区 3.69×10−6 1.45×10−9 1.00×10−9 8.89×10−9 8.89×10−10 1.03×10−8 3.71×10−6 表 4 苯和乙苯致癌风险
Table 4. Carcinogenic risk of Benzene and Ethylbenzene
功能分区 Riskinh Risking 苯(Benzene) 乙苯(Ethylbenzene) 苯(Benzene) 乙苯(Ethylbenzene) 办公区 3.41×10−4 2.47×10−6 2.66×10−6 6.19×10−9 原油储存区 2.22×10−4 2.35×10−6 3.15×10−5 1.26×10−7 产品储存区 5.52×10−4 2.26×10−5 1.01×10−4 1.71×10−6 冶炼区 1.14×10−3 1.76×10−5 4.71×10−5 5.56×10−7 居民区 3.16×10−4 1.10×10−5 4.23×10−6 3.35×10−8 对照区 2.15×10−4 4.11×10−6 8.64×10−7 2.50×10−9 -
[1] 全国土壤污染状况调查公报 [J]. 国土资源通讯, 2014, (8): 26-29. Report on the national general survey of soil contamination[J]. National Land & Resources Information 2014, (8): 4 (in Chinese).
[2] 薛学通. 开启向石油和化学工业强国跨越的新征程[J]. 中国石化, 2018(12): 17-21. doi: 10.3969/j.issn.1005-457X.2018.12.004 XUE X T. Start a new journey to become a powerful country in petroleum and chemical industry[J]. China Petroleum and Chemical Industry, 2018(12): 17-21 (in Chinese). doi: 10.3969/j.issn.1005-457X.2018.12.004
[3] BALTRĖNAS P, BALTRĖNAITĖ E, ŠEREVIČIENĖ V, et al. Atmospheric BTEX concentrations in the vicinity of the crude oil refinery of the Baltic region[J]. Environmental Monitoring and Assessment, 2011, 182(1): 115-127. [4] YEN C H, HORNG J J. Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan[J]. Journal of Environmental Science and Health, Part A, 2009, 44(13): 1424-1429. doi: 10.1080/10934520903217393 [5] FENG Y X, XIAO A S, JIA R Z, et al. Emission characteristics and associated assessment of volatile organic compounds from process units in a refinery[J]. Environmental Pollution (Barking, Essex: 1987), 2020, 265(Pt B): 115026. [6] RAS M R, MARCÉ R M, BORRULL F. Characterization of ozone precursor volatile organic compounds in urban atmospheres and around the petrochemical industry in the Tarragona region[J]. Science of the Total Environment, 2009, 407(14): 4312-4319. doi: 10.1016/j.scitotenv.2009.04.001 [7] YOUSEFIAN F, HASSANVAND M S, NODEHI R N, et al. The concentration of BTEX compounds and health risk assessment in municipal solid waste facilities and urban areas[J]. Environmental Research, 2020, 191: 110068. doi: 10.1016/j.envres.2020.110068 [8] VERNER J, SEJKOROVÁ M, VESELÍK P. Volatile organic compounds in motor vehicle interiors under various conditions and their effect on human health[J]. Scientific Journal of Silesian University of Technology Series Transport, 2020, 107: 205-216. doi: 10.20858/sjsutst.2020.107.16 [9] XIONG Y, BARI M A, XING Z Y, et al. Ambient volatile organic compounds (VOCs) in two coastal cities in western Canada: Spatiotemporal variation, source apportionment, and health risk assessment[J]. Science of the Total Environment, 2020, 706: 135970. doi: 10.1016/j.scitotenv.2019.135970 [10] JI Y Y, GAO F H, WU Z H, et al. A review of atmospheric benzene homologues in China: Characterization, health risk assessment, source identification and countermeasures[J]. Journal of Environmental Sciences, 2020, 95: 225-239. doi: 10.1016/j.jes.2020.03.035 [11] SAZAKLI E, LEOTSINIDIS M. Odor nuisance and health risk assessment of VOC emissions from a rendering plant[J]. Air Quality Atmosphere & Health, 2021, 14(3): 301-312. [12] LYU X P, CHEN N, GUO H, et al. Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China[J]. Science of the Total Environment, 2016, 541: 200-209. doi: 10.1016/j.scitotenv.2015.09.093 [13] BARI M A, KINDZIERSKI W B. Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment[J]. Environmental Pollution, 2018, 235: 602-614. doi: 10.1016/j.envpol.2017.12.065 [14] ROVIRA J, NADAL M, SCHUHMACHER M, et al. Environmental impact and human health risks of air pollutants near a large chemical/petrochemical complex: Case study in Tarragona, Spain[J]. The Science of the Total Environment, 2021, 787: 147550. doi: 10.1016/j.scitotenv.2021.147550 [15] ZHENG H, KONG S F, YAN Y Y, et al. Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River[J]. The Science of the Total Environment, 2020, 703: 135505. doi: 10.1016/j.scitotenv.2019.135505 [16] LI L, ZHANG D, HU W, et al. Improving VOC control strategies in industrial parks based on emission behavior, environmental effects, and health risks: A case study through atmospheric measurement and emission inventory[J]. The Science of the Total Environment, 2023, 865: 161235. doi: 10.1016/j.scitotenv.2022.161235 [17] RAJABI H, HADI MOSLEH M, MANDAL P, et al. Emissions of volatile organic compounds from crude oil processing - Global emission inventory and environmental release[J]. The Science of the Science of the Total Environment, 2020, 727: 138654. doi: 10.1016/j.scitotenv.2020.138654 [18] 刘营营, 王丽涛, 齐孟姚, 等. 邯郸大气VOCs污染特征及其在O3生成中的作用[J]. 环境化学, 2020, 39(11): 3101-3110. doi: 10.7524/j.issn.0254-6108.2019112301 LIU Y Y, WANG L T, QI M Y, et al. Characteristics of atmospheric VOCs and their role in O3 generation in Handan[J]. Environmental Chemistry, 2020, 39(11): 3101-3110 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019112301
[19] 张超, 林伟立, 韩婷婷, 等. 北京城区大气苯系物变化特征及其环境意义[J]. 环境化学, 2022, 41(2): 460-469. doi: 10.7524/j.issn.0254-6108.2020092203 ZHANG C, LIN W L, HAN T T, et al. Exploring the variations in ambient BTEX at urban Beijing and its environmental implications[J]. Environmental Chemistry, 2022, 41(2): 460-469 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020092203
[20] LIN M Y, HOROWITZ L W, COOPER O R, et al. Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western North America[J]. Geophysical Research Letters, 2015, 42(20): 8719-8728. doi: 10.1002/2015GL065311 [21] GUENGERICH F P, KIM D H, IWASAKI M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects[J]. Chemical Research in Toxicology, 1991, 4(2): 168-179. doi: 10.1021/tx00020a008 [22] RUMCHEV K B, SPICKETT J T, BULSARA M K, et al. Domestic exposure to formaldehyde significantly increases the risk of asthma in young children[J]. The European Respiratory Journal, 2002, 20(2): 403-408. doi: 10.1183/09031936.02.00245002 [23] ZHU J, YAN L I, YONG L, et al. Determination of Metabolites of Benzene Compounds and Trichloroethylene in Urinary by Isotope Dilution-Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(01): 81-87. [24] 程水源, 李文忠, 魏巍, 等. 炼油厂分季节VOCs组成及其臭氧生成潜势分析[J]. 北京工业大学学报, 2013, 39(3): 438-444,465. doi: 10.11936/bjutxb2013030438 CHENG S Y, LI W Z, WEI W, et al. Refinery VOCs seasonal composition and analysis of ozone formation potential[J]. Journal of Beijing University of Technology, 2013, 39(3): 438-444,465. (in Chinese) doi: 10.11936/bjutxb2013030438
[25] CHEN J, SUN L, JIA H J, et al. Effects of seasonal variation on spatial and temporal distributions of ozone in northeast China[J]. International Journal of Environmental Research and Public Health, 2022, 19(23): 15862. doi: 10.3390/ijerph192315862 [26] WEI W, CHENG S Y, LI G H, et al. Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China[J]. Atmospheric Environment, 2014, 89: 358-366. doi: 10.1016/j.atmosenv.2014.01.038 [27] LIU K K, ZHANG C L, CHENG Y, et al. Serious BTEX pollution in rural area of the North China Plain during winter season[J]. Journal of Environmental Sciences, 2015, 30(4): 186-190. [28] CHEN R N, LI T Z, HUANG C T, et al. Characteristics and health risks of benzene series and halocarbons near a typical chemical industrial park[J]. Environmental Pollution, 2021, 289: 117893. doi: 10.1016/j.envpol.2021.117893 [29] 中华人民共和国环境保护部. 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱法: HJ 741—2015[S]. 北京: 中国环境科学出版社, 2015. Ministry of Environmental Protection of the People's Republic of China. Soil and sediment—Determination of volatile organic compounds—Headspace gas chromatography: HJ 741—2015[S]. Beijing China Environmental Science Press, 2015(in Chinese).
[30] US EPA. Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment) [J]. 2009. [31] DUMANOGLU Y, KARA M, ALTIOK H, et al. Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region[J]. Atmospheric Environment, 2014, 98: 168-178. doi: 10.1016/j.atmosenv.2014.08.048 [32] YANG S, YAN X L, ZHONG L R, et al. Benzene homologues contaminants in a former herbicide factory site: Distribution, attenuation, risk, and remediation implication[J]. Environmental Geochemistry and Health, 2020, 42(1): 241-253. doi: 10.1007/s10653-019-00342-2 [33] 谭冰, 王铁宇, 李奇锋, 等. 农药企业场地土壤中苯系物污染风险及管理对策[J]. 环境科学, 2014, 35(6): 2272-2280. TAN B, WANG T Y, LI Q F, et al. Risk assessment and countermeasures of BTEX contamination in soils of typical pesticide Factory[J]. Environmental Science, 2014, 35(6): 2272-2280 (in Chinese).
[34] LEI R R, SUN Y M, ZHU S, et al. Investigation on distribution and risk assessment of volatile organic compounds in surface water, sediment, and soil in a chemical industrial park and adjacent area[J]. Molecules, 2021, 26(19): 5988. doi: 10.3390/molecules26195988 [35] LIU B H, CHEN L, HUANG L X, et al. Distribution of volatile organic compounds (VOCs) in surface water, soil, and groundwater within a chemical industry park in Eastern China[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2015, 71(2): 259-267. doi: 10.2166/wst.2014.499 [36] 童玲, 郑西来, 李梅, 等. 不同下垫面苯系物的挥发行为研究[J]. 环境科学, 2008, 29(7): 2058-2062. doi: 10.3321/j.issn:0250-3301.2008.07.050 TONG L, ZHENG X L, LI M, et al. Volatilization behavior of BTEX on different underlying materials[J]. Environmental Science, 2008, 29(7): 2058-2062 (in Chinese). doi: 10.3321/j.issn:0250-3301.2008.07.050