-
近年来,以“双碳”目标为战略导向,有序推动产业绿色低碳循环发展已成为全国共识,坚持降碳、减污、扩绿、增长一体化,是染料行业迈向高质量发展的必经之路[1]. 直接耐晒翠蓝GL又称为直接蓝86(Direct Blue 86,DB86),主要用于纺织、印染、皮革、造纸等,是一种典型的直接染料有机污染物[2],大量DB86废水的排放不仅对水体生态造成巨大影响[3-4],其芳香族的性质对人体还有诱变致癌的危害[5-6]. 因此,寻找一种有效去除废水中的DB86具有重要意义. 工业废水传统处理技术,如物理吸附[7]、电化学氧化[8]、生物降解[9]等对DB86的去除虽能起到一定的成效,但大部分存在二次污染等问题. 高压脉冲放电等离子体技术是一项广泛用于处理难降解有机污染物的高级氧化技术,与传统废水处理技术相比其具有高效率、广适用、无二次污染等优势[10-11]. 早在1996年,李胜利等[12]就首次提出利用高压脉冲放电等离子体处理直接蓝2B染料模拟废水,结果表明,该技术能有效破坏染料大分子中的环状结构. 2020年,Rashid等[13]提出水下平行多管等离子射流体系,显著提升了染料废水的可生化性,达到良好的去除效果. 值得注意的是,单独脉冲放电等离子体技术在处理大水量时存在能耗较高的问题. 而催化剂良好的选择性和催化活性,能够提高反应速率,实现节能降耗,也可以抑制反应过程中副产物的转化[14-15]. 因此,脉冲放电协同催化降解有机物技术在近些年发展起来且被认为最有前景的有机废水处理技术之一,它主要将废水中难降解的有机污染物最终转化为小分子化合物、CO2和H2O[16-18].
活性炭(activated carbon, AC)作为一种应用广泛的吸附材料,将等离子体技术与活性炭相结合,可充分利用其吸附和催化的性能[19-20]. AC实用经济,有良好的孔隙结构,富集污染物的同时还可以催化溶液中的O3、H2O2,促进·OH、·O、·HO2等活性粒子的生成[21]. 但其自身的C—C非极性键会降低极性有机污染物的吸附和催化效果[22],为完善AC的品质,本实验用表面活性剂CTAB对AC进行改性处理,以期促进对污染物的去除. 本课题组[23]前期已经在脉冲放电协同催化剂联合处理难降解有机废水上开展了大量实验研究. 在此基础上,为进一步提高DB86的去除效率,采取脉冲放电协同碳催化技术,对CTAB改性活性炭去除DB86进行研究,并运用SEM和BET手段对活性炭改性前后进行表征分析,探讨了DB86初步降解机理,为等离子体协同活性炭去除DB86提供一定的实验理论基础.
高压脉冲放电等离子体协同CTAB改性活性炭去除DB86
Removal of DB86 by high voltage pulse discharge plasma and ctab modified activated carbon
-
摘要: 印染工业耗水多,同时产生大量色度深、成分复杂的染料废水,制约了相关行业的绿色环保和可持续发展. 实验采用多针-板高压脉冲放电等离子体协同CTAB改性活性炭(CTAB-AC)处理直接耐晒翠蓝GL(Direct Blue 86,DB86)模拟废水. 通过十六烷基三甲基溴化铵(CTAB)对活性炭改性,并利用SEM、BET表征手段对改性前后活性炭进行分析. 考察了CTAB-AC中改性剂浓度、改性时间以及不同投加量对DB86去除效果的影响. 结果显示:在溶液初始浓度C0为100 mg·L−1,频率f为50 Hz,电压U为22 kV,初始电导率σ为200 μs·cm−1,电极间距为8 mm,溶液体积为150 mL,气体流量为3.0 L·min−1,同时添加0.2 g在CTAB浓度为5×10−4 mol·L−1下改性24 h的CTAB-AC,放电40 min后,去除率高达99.65%. 高压脉冲放电对吸附饱和的活性炭具有再生作用,并且经CTAB改性后的活性炭比表面积减小,表面粗糙度增加,凹陷空穴增多,活性位点激增,促进了催化反应,进一步加强了对DB86的去除.Abstract: The printing and dyeing industry consumes a lot of water, and at the same time produces a lot of dye wastewater with deep chroma and complex components, which restricts the green environmental protection and sustainable development of related industries. Multi-needle-plate high-voltage pulse discharge plasma and CTAB modified activated carbon (CTAB-AC) were used to treat simulated wastewater of Direct Blue 86 (DB86). Activated carbon was modified by cetyltrimethyl ammonium bromide (CTAB), and the modified activated carbon was analyzed by SEM and BET. The effects of modifier concentration, modification time and different dosage in CTAB-AC on the removal efficiency of DB86 were investigated. The results show that when the initial concentration of the solution is 100 mg·L−1, the frequency is 50 Hz, the voltage is 22 kV, the initial conductivity is 200 μs·cm−1, the electrode spacing is 8 mm, the solution volume is 150 mL, the gas flow rate is 3.0 L·min−1, and 0.2 g CTAB-AC modified for 24 h at the CTAB of 5×10−4 mol·L−1 is added, the removal rate is as high as 99.65% after 40 minutes of discharge. High-voltage pulse discharge can regenerate saturated activated carbon, and the specific surface area of activated carbon modified by CTAB decreases, the surface roughness increases, the number of depressions and cavities increases, and the number of active sites increases, which promotes the catalytic reaction and further strengthens the removal of DB86.
-
Key words:
- pulse discharge /
- plasma /
- modified activated carbon /
- DB86 /
- removal efficiency /
- environmental
-
表 1 不同活性炭的比表面积
Table 1. Specific surface areas of different activated carbons
名称
Name比表面积/(m2·g−1)
Specific surface area未改性AC 332.98 CTAB-AC 9.57 饱和CTAB-AC 77.43 表 2 正交试验设计及结果
Table 2. Orthogonal test design and results
编号
NumberCTAB浓度/(mol·L−1)
CTAB concentration改性时间/h
Modification timeCTAB-AC投加量/g
Dosage of CTAB-ACDB86去除率/%
DB86 removal efficiency1 1×10−4 8 0.1 87.16 2 5×10−4 8 0.2 99.48 3 1×10−3 8 0.3 99.55 4 1×10−4 16 0.1 81.11 5 5×10−4 16 0.3 99.54 6 1×10−3 16 0.2 99.30 7 1×10−4 24 0.3 94.52 8 5×10−4 24 0.2 99.65 9 1×10−3 24 0.1 99.24 K1 87.60 93.32 89.17 K2 99.56 97.80 99.48 R 11.96 4.48 10.31 表 3 不同放电体系中DB86降解反应速率的拟合程度
Table 3. Fitting Degree of DB86 Degradation Reaction Rate in Different Discharge Systems
不同反应体系
Different systemsKobs/(min−1) R2 DB86去除率/%
DB86 removal efficiency单独脉冲放电 0.017 0.9976 79.30 脉冲放电协同CTAB-AC 0.039 0.9831 99.65 表 4 CTAB在去离子水和 DB86溶液中的解吸率
Table 4. Desorption rate of CTAB in deionized water and DB86 solution
CTAB浓度/(mol·L−1) 去离子水中CTAB
CTAB in deionized waterDB86溶液中CTAB
CTAB in DB86 solution平衡浓度/(mol·L−1) 解吸率/% 平衡浓度/(mol·L−1) 解吸率/% 5×10−4 3.17×10−6 0.63 2.71×10−6 0.54 -
[1] 鞠雪敏, 罗莉涛, 张鸿涛, 等. 染料行业废水无害化处理技术现状及发展趋势 [J]. 科技导报, 2021, 39(17): 45-54. doi: 10.3981/j.issn.1000-7857.2021.17.006 JU X M, LUO L T, ZHANG H T, et al. Current situation and development trend of harmless treatment technology for dye wastewater in fine chemical industry [J]. Science & Technology Review, 2021, 39(17): 45-54(in Chinese). doi: 10.3981/j.issn.1000-7857.2021.17.006
[2] RUAN X H, DING N, YANG J X. Dual-level eco-efficiency analysis in sustainable management: An empirical study on textile manufacturers and supply chains in China [J]. Journal of Environmental Management, 2022, 304: 114227. doi: 10.1016/j.jenvman.2021.114227 [3] YASEEN D A, SCHOLZ M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review [J]. International Journal of Environmental Science and Technology, 2019, 16(2): 1193-1226. doi: 10.1007/s13762-018-2130-z [4] HASSAAN M A, EL NEMR A, MADKOUR F F. Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewater [J]. The Egyptian Journal of Aquatic Research, 2017, 43(1): 11-19. doi: 10.1016/j.ejar.2016.09.006 [5] SAMSAMI S, MOHAMADIZANIANI M, SARRAFZADEH M H, et al. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives [J]. Process Safety and Environmental Protection, 2020, 143: 138-163. doi: 10.1016/j.psep.2020.05.034 [6] 刘海涛, 丁颖, 徐丽慧, 等. ZIF-8/CdS复合材料对亚甲基蓝的光催化降解 [J]. 环境化学, 2023, 42(1): 288-297. doi: 10.7524/j.issn.0254-6108.2021082903 LIU H T, DING Y, XU L H, et al. Photocatalytic degradation of methylene blue by ZIF-8/CdS composites [J]. Environmental Chemistry, 2023, 42(1): 288-297(in Chinese). doi: 10.7524/j.issn.0254-6108.2021082903
[7] GARG D, MAJUMDER C B, KUMAR S, et al. Removal of Direct Blue-86 dye from aqueous solution using alginate encapsulated activated carbon (PnsAC-alginate) prepared from waste peanut shell [J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103365. doi: 10.1016/j.jece.2019.103365 [8] KUMAR D, GUPTA S K. Electrochemical oxidation of direct blue 86 dye using MMO coated Ti anode: Modelling, kinetics and degradation pathway [J]. Chemical Engineering and Processing - Process Intensification, 2022, 181: 109127. doi: 10.1016/j.cep.2022.109127 [9] 赵世光, 刘强, 张庆庆, 等. 灵芝漆酶对直接蓝86的催化脱色性能 [J]. 环境工程学报, 2013, 7(2): 765-770. ZHAO S G, LIU Q, ZHANG Q Q, et al. Decolorization of direct bule 86 catalyzed by laccase from Ganoderma lucidum [J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 765-770(in Chinese).
[10] SANITO R C, YOU S J, WANG Y F. Degradation of contaminants in plasma technology: An overview [J]. Journal of Hazardous Materials, 2022, 424: 127390. doi: 10.1016/j.jhazmat.2021.127390 [11] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势 [J]. 电工技术学报, 2017, 32(20): 1-9. doi: 10.19595/j.cnki.1000-6753.tces.170236 DAI D, NING W J, SHAO T. A review on the state of art and future trends of atmospheric pressure low temperature plasmas [J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9(in Chinese). doi: 10.19595/j.cnki.1000-6753.tces.170236
[12] 李胜利, 李劲, 王泽文, 等. 用高压脉冲放电等离子体处理印染废水的研究 [J]. 中国环境科学, 1996, 16(1): 73-76. LI S L, LI J, WANG Z W, et al. Study on treatment of dyeing wastewater by high voltage pulse discharge plasma [J]. China Environmental Science, 1996, 16(1): 73-76(in Chinese).
[13] RASHID M M, CHOWDHURY M, TALUKDER M R. Textile wastewater treatment by underwater parallel-multi-tube air discharge plasma jet [J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104504. doi: 10.1016/j.jece.2020.104504 [14] 陈向娟, 王欢, 安伟佳, 等. 有机碳材料在光电催化系统中的作用 [J]. 化学进展, 2022, 34(11): 2361-2372. doi: 10.7536/PC220311 CHEN X J, WANG H, AN W J, et al. Study on photoelectrocatalysis of organic carbon materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372(in Chinese). doi: 10.7536/PC220311
[15] DONG B Y, WANG P X, LI Z D, et al. Degrading hazardous benzohydroxamic acid in the industrial beneficiation wastewater by dielectric barrier discharge reactor [J]. Separation and Purification Technology, 2022, 299: 121644. doi: 10.1016/j.seppur.2022.121644 [16] 陈鹏, 陶雷, 谢怡冰, 等. 低温等离子体协同催化降解挥发性有机物的研究进展 [J]. 化工进展, 2019, 38(9): 4284-4294. doi: 10.16085/j.issn.1000-6613.2018-2485 CHEN P, TAO L, XIE Y B, et al. Non-thermal plasma cooperating catalyst degradation of the volatile organic compounds: A review [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4284-4294(in Chinese). doi: 10.16085/j.issn.1000-6613.2018-2485
[17] XIE H L, JIN X H. Pulse discharge plasma coupled with magnetic mesoporous silica for synergistic degradation of pharmaceutical wastewater and mechanism [J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106815. doi: 10.1016/j.jece.2021.106815 [18] LI X, WANG T C, QU G Z, et al. Enhanced degradation of azo dye in wastewater by pulsed discharge plasma coupled with MWCNTs-TiO2/γ-Al2O3 composite photocatalyst [J]. Journal of Environmental Management, 2016, 172: 186-192. [19] GUO H, WANG H J, JIA Y Y, et al. Study on emission spectrum of OH radicals in a combination system of pulsed discharge plasma and activated carbon [J]. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu, 2016, 36(12): 4135-4140. [20] 马可可, 周律, 白昱, 等. 低温等离子体协同催化氧化水处理技术的研究进展[J]. 应用化工, 2021, 50(10): 2775-2779, 2785. MA K K, ZHOU L, BAI Y, et al. Research progress on low-temperature plasma combined with catalytic oxidation technology for water treatment[J]. Applied Chemical Industry, 2021, 50(10): 2775-2779, 2785 (in Chinese). [21] 王慧娟, 郭贺, 杨文明, 等. 脉冲放电等离子体/活性炭协同降解染料废水及过氧化氢的生成 [J]. 高电压技术, 2016, 42(5): 1401-1408. WANG H J, GUO H, YANG W M, et al. Formation of hydrogen peroxide and degradation of dye wastewater by pulsed discharge plasma combined with activated carbon [J]. High Voltage Engineering, 2016, 42(5): 1401-1408(in Chinese).
[22] 侯博, 陈思铭, 江波, 等. 活性炭吸附挥发性有机化合物的研究进展 [J]. 安全与环境工程, 2021, 28(1): 197-208. HOU B, CHEN S M, JIANG B, et al. Research progress of adsorption of volatile organic compounds by activated carbon [J]. Safety and Environmental Engineering, 2021, 28(1): 197-208(in Chinese).
[23] 董冰岩, 李贞栋, 王佩祥, 等. 脉冲气液两相放电等离子体耦合Fe改性的TiO2催化剂降解废水中的4-氯酚 [J]. 化工进展, 2021, 40(12): 6721-6728. DONG B Y, LI Z D, WANG P X, et al. 4-Chlorophenol containing wastewater joint treated by pulsed discharge plasma in gas-liquid two phase and Fe-modified TiO2 catalyst [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6721-6728(in Chinese).
[24] 董冰岩, 李琼, 王慧, 等. 高压脉冲放电降解选矿废水中残余黄药的研究 [J]. 现代化工, 2019, 39(9): 87-91. DONG B Y, LI Q, WANG H, et al. Study on degradation of residual xanthate in mineral separation wastewater by high voltage pulse discharge [J]. Modern Chemical Industry, 2019, 39(9): 87-91(in Chinese).
[25] 孟筠青, 王丽娟, 王顾儒, 等. 表面活性剂对硅尘润湿性影响的分子模拟研究[J]. 安全与环境学报, 2022: 1-7. MENG J Q, WANG L J, WANG G R, et al. Molecular simulation of the influence of surfactants on the wettability of silicon dust[J]. Journal of Safety and Environment, 2022: 1-7 (in Chinese).
[26] 舒世立, 和芹, 王磊, 等. 十六烷基三甲基溴化铵改性活性炭的制备及吸附苯酚研究 [J]. 化学世界, 2018, 59(12): 801-808. SHU S L, HE Q, WANG L, et al. Preparation of activated carbon modified by hexadecyl trimethyl ammonium bromide and its adsorption of phenol [J]. Chemical World, 2018, 59(12): 801-808(in Chinese).
[27] 刘江龙, 郭焱, 席艺慧. FeCl3和十六烷基三甲基溴化铵改性赤泥对水中铜离子的吸附性能和机理 [J]. 化工进展, 2020, 39(2): 776-789. LIU J L, GUO Y, XI Y H. Adsorption and mechanism of copper ions in water by red mud modified with FeCl3 and hexadecyl trimethyl ammonium bromide (CTAB) [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 776-789(in Chinese).
[28] VUKOVIĆ G D, MARINKOVIĆ A D, ČOLIĆ M, et al. Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes [J]. Chemical Engineering Journal, 2010, 157(1): 238-248. doi: 10.1016/j.cej.2009.11.026 [29] 朱留凯, 昌莹鸽, 种元辉, 等. 生物质活性炭的改性方法研究进展 [J]. 应用化工, 2021, 50(7): 1900-1904. doi: 10.3969/j.issn.1671-3206.2021.07.035 ZHU L K, CHANG Y G, CHONG Y H, et al. Research progress in modification methods of biochar [J]. Applied Chemical Industry, 2021, 50(7): 1900-1904(in Chinese). doi: 10.3969/j.issn.1671-3206.2021.07.035
[30] 杨鹤群, 韩春蕊, 赵丹青, 等. 无患子皂素的表面活性及复配增效性能 [J]. 化工进展, 2015, 34(12): 4343-4347,4355. YANG H Q, HAN C R, ZHAO D Q, et al. Surface activity and commixture synergism property of Sapindus mukurossi saponin [J]. Chemical Industry and Engineering Progress, 2015, 34(12): 4343-4347,4355(in Chinese).
[31] 储金宇, 刘永杰, 王慧娟, 等. 脉冲放电等离子体再生吸附AO7饱和活性碳 [J]. 高电压技术, 2015, 41(1): 251-256. CHU J Y, LIU Y J, WANG H J, et al. Regeneration of acid orange 7-exhausted granular activated carbon with pulsed discharge plasma [J]. High Voltage Engineering, 2015, 41(1): 251-256(in Chinese).
[32] 屈广周, 李杰, 鲁娜, 等. 活性炭吸附-介质阻挡放电等离子体处理五氯酚 [J]. 环境化学, 2010, 29(1): 96-99. QU G Z, LI J, LU N, et al. Activated carbon adsorption/dielectric barrier discharge plasma for treatment of pentachlorophenol [J]. Environmental Chemistry, 2010, 29(1): 96-99(in Chinese).
[33] 黄传敬. 阳离子表面活性剂与溴酚红的显色反应及其分析应用 [J]. 光谱学与光谱分析, 2000, 20(2): 252-255. HUANG C J. Color reaction of cationic surfactants on bromphenol red and its analytical applications [J]. Spectroscopy and Spectral Analysis, 2000, 20(2): 252-255(in Chinese).