-
随着城市化进程的加快和现代工业的迅速发展,大量有机污染物进入到自然水体造成严重污染[1-2]. 这些污染物具有持久性、生物富集性、长距离迁移性及生态毒性等特征,对人民身体健康和生态环境造成巨大的危害. “绿水青山就是金山银山”,开发一种高效的污水处理技术在环保问题愈加受重视的今天显得更加紧迫. 高级氧化技术被认为是水处理中最有应用前景的绿色处理工艺[3-4],其能够将有机污染物有效氧化去除. 作为高级氧化技术的一种,芬顿及类芬顿氧化技术通过催化剂活化H2O2产生强氧化性的羟基自由基(·OH),其标准氧化还原电势达+2.8 V,在自然界中氧化能力仅次于F2,具有对大多数有机物广谱氧化效果,可将污染物分子逐渐降解成小分子产物,甚至彻底转化为H2O、CO2等,达到完全矿化的目标[5-8].
类芬顿氧化技术的关键在于催化剂. 经典芬顿技术以Fe2+作为催化剂,Fe2+具有还原特性,提供电子给H2O2产生·OH,而生成的Fe3+可再被H2O2还原为Fe2+. 即在经典芬顿反应中,整个过程依赖外界添加大量可溶亚铁盐驱动,而在反应后期常因为Fe3+过度累积引起“铁泥”现象,带来二次污染. 随后研究人员基于经典芬顿反应,开发了多种异相催化材料活化H2O2产生·OH等氧化性自由基,一定程度改善了经典芬顿反应的不足. 在众多类芬顿催化剂中[9],以零价铁(zero valance iron,ZVI)为代表的零价金属基催化材料具有较高的活化H2O2潜力,一方面能够降低类芬顿降解体系中的催化剂用量,另一方面可发挥吸附、絮凝等作用联合治理污水问题,在水处理领域被广泛关注.
本文阐述了芬顿及类芬顿技术的基本原理及存在的问题,总结了基于零价金属的类芬顿催化剂的反应特点及发展现状,以期对后续高效催化剂设计和水环境修复提供科学依据.
基于零价金属材料的类芬顿氧化技术研究进展
Research progress of Fenton-like oxidation processes based on zero valent metal materials
-
摘要: 芬顿与类芬顿氧化技术能够活化H2O2,产生强氧化性的羟基自由基(•OH),可对绝大多数污染物彻底氧化. 相较于其他类芬顿催化剂,以零价铁为代表的零价金属材料具有更优的理论电子供给潜力,活化H2O2能力突出,在污水治理领域被重点关注. 本文综述了近年来零价金属类芬顿催化材料的研究进展,系统分析了铁基、铜基、钴基以及合金等零价态金属的反应机理和降解特点,并从异相催化角度探讨了类芬顿氧化处理废水的作用机制和催化剂性能提升策略. 最后,对未来零价金属类芬顿催化材料的发展前景进行了展望.Abstract: Fenton and Fenton-like oxidation technologies can activate H2O2 and produce strong oxidizing hydroxyl radicals (•OH) for completely oxidizing most pollutants. Compared with other Fenton-like catalysts, zero-valent metal materials represented by zero-valent iron have better theoretical electron supply capacity to activate H2O2, which have attracted much attention in the field of water purification. This paper reviews the research progress of zero-valent metal Fenton-like catalysts in recent years, and analyzes systematically the reaction mechanisms and degradation characteristics of zero-valent metals such as Fe-based, Cu-based, Co-based and alloy materials. Furthermore, the effect behaviors and improvement strategy of Fenton-like oxidation for wastewater treatment are discussed from the perspective of heterogeneous catalysis processes. At last, the future development of zero-valent metals Fenton-like catalytic materials is prospected.
-
Key words:
- zero valent metals /
- Fenton reaction /
- heterogeneous catalysis /
- ·OH
-
图 2 微纳枝状Fe-Cu合金的微观结构(a)、类芬顿循环降解苯酚实验(b),Fe-Cu合金中铜杂质原子和铜原子簇的存在形式(c)及类芬顿反应机制(d)[42]
Figure 2. Microstructure of micro-nano dendritic Fe-Cu alloy (a), Fenton-like cyclic degradation experiments of phenol (b), Existence forms of Cu impurity atoms and Cu atom clusters in Fe-Cu alloy (c) and their special Fenton-like reaction mechanism (d)[42]
表 1 ZVI材料的制备方法
Table 1. Preparation methods of ZVI materials
制备方法
Preparation methods形貌与尺寸
Morphology and sizes过程
Preparation process球磨法[27] 不规则形状,微米级 在刚性球机械作用下,大尺度ZVI材料被物理粉碎、细化直至目标尺度 化学还原法[17, 21] 近似球形、并以链式聚集,尺寸20—50 nm 搅拌条件下,NaBH4加入至Fe2+/Fe3+溶液,反应后洗涤、分离、干燥 电化学法[25] 树枝多级结构状,2—10 μm、末级尺寸40 nm 以石墨为阳极、红铜为阴极,对FeSO4溶液施加电流,在阴极形成ZVI粉末 绿色合成[26] 近似球形、易形成团聚体,尺寸50—500 nm 将经过研磨、过滤、离心得到的植物提取物加入至含铁溶液,充分搅拌反应,结束后洗涤、分离、干燥 -
[1] 阮挺, 江桂斌. 发现新型环境有机污染物的基本理论与方法 [J]. 中国科学院院刊, 2020, 35(11): 1328-1336. doi: 10.16418/j.issn.1000-3045.20200915004 RUAN T, JIANG G B. Basic theory and analytical methodology for identification of novel environmental organic pollutants [J]. Bulletin of Chinese Academy of Sciences, 2020, 35(11): 1328-1336(in Chinese). doi: 10.16418/j.issn.1000-3045.20200915004
[2] 何阳卓, 魏建宏, 周耀渝, 等. 光芬顿和电芬顿在抗生素降解方面的研究及认识 [J]. 当代化工, 2019, 48(2): 395-398. doi: 10.3969/j.issn.1671-0460.2019.02.045 HE Y Z, WEI J H, ZHOU Y Y, et al. Research and knowledge on photo-Fenton and electro-Fenton for the degradation of antibiotics [J]. Contemporary Chemical Industry, 2019, 48(2): 395-398(in Chinese). doi: 10.3969/j.issn.1671-0460.2019.02.045
[3] 王雪纯. 多孔碳催化剂的制备及其对水中有机污染物的降解研究[D]. 秦皇岛: 燕山大学, 2020. WANG X C. Preparation of porous carbon catalyst and its degradation of organic pollutants in water[D]. Qinhuangdao: Yanshan University, 2020 (in Chinese).
[4] 刘丹, 王渝, 阳明利, 等. 过氧化钙材料用于阿莫西林降解性能研究 [J]. 当代化工, 2022, 51(9): 2136-2140. LIU D, WANG Y, YANG M L, et al. Application of calcium peroxide in amoxicillin degradation [J]. Contemporary Chemical Industry, 2022, 51(9): 2136-2140(in Chinese).
[5] SZABÓ L, STEINHARDT M, HOMLOK R, et al. A microbiological assay for assessing the applicability of advanced oxidation processes for eliminating the sublethal effects of antibiotics on selection of resistant bacteria [J]. Environmental Science & Technology Letters, 2017, 4(6): 251-255. [6] HODGES B C, CATES E L, KIM J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials [J]. Nature Nanotechnology, 2018, 13(8): 642-650. doi: 10.1038/s41565-018-0216-x [7] TUŠAR N N, MAUČEC D, RANGUS M, et al. Manganese functionalized silicate nanoparticles as a Fenton-type catalyst for water purification by advanced oxidation processes (AOP) [J]. Advanced Functional Materials, 2012, 22(4): 820-826. doi: 10.1002/adfm.201102361 [8] BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes [J]. Journal of Hazardous Materials, 2014, 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054 [9] 王爽, 谢良波, 李轶, 等. 芬顿催化剂的活性氧物种生成机制及其在环境治理中的应用 [J]. 稀有金属, 2022, 46(6): 707-723. WANG S, XIE L B, LI Y, et al. Unraveling reactive oxygen species formation mechanism of Fenton catalyst and its application in environmental treatment [J]. Chinese Journal of Rare Metals, 2022, 46(6): 707-723(in Chinese).
[10] 侯琳萌, 清华, 吉庆华. 类芬顿反应的催化剂、原理与机制研究进展 [J]. 环境化学, 2022, 41(6): 1843-1855. doi: 10.7524/j.issn.0254-6108.2021030301 HOU L M, QING H, JI Q H. Research progress on catalysts, principles and mechanisms of Fenton-like reactions [J]. Environmental Chemistry, 2022, 41(6): 1843-1855(in Chinese). doi: 10.7524/j.issn.0254-6108.2021030301
[11] 厉鹏远, 邱立平, 孙绍芳, 等. 强化传统芬顿/类芬顿氧化效能的研究进展 [J]. 中国给水排水, 2021, 37(10): 34-40. doi: 10.19853/j.zgjsps.1000-4602.2021.10.006 LI P Y, QIU L P, SUN S F, et al. Research progress on enhancing the oxidation efficiency of traditional Fenton/Fenton-like process [J]. China Water & Wastewater, 2021, 37(10): 34-40(in Chinese). doi: 10.19853/j.zgjsps.1000-4602.2021.10.006
[12] 吕来, 胡春. 多相芬顿催化水处理技术与原理 [J]. 化学进展, 2017, 29(9): 981-999. doi: 10.7536/PC170552 LYU L, HU C. Heterogeneous Fenton catalytic water treatment technology and mechanism [J]. Progress in Chemistry, 2017, 29(9): 981-999(in Chinese). doi: 10.7536/PC170552
[13] YAO H R, HU S H, WU Y G, et al. The synergetic effects in a Fenton-like system catalyzed by nano zero-valent iron (nZVI) [J]. Polish Journal of Environmental Studies, 2019, 28(4): 2491-2499. doi: 10.15244/pjoes/91939 [14] 邹亚辰, 贾小宁, 冉浪, 等. 零价铁类芬顿法处理含低浓度重金属离子有机废水 [J]. 化学反应工程与工艺, 2021, 37(2): 167-174. ZOU Y C, JIA X N, RAN L, et al. Study on the treatment of organic wastewater containing low concentration heavy metal ions by zero-valent iron Fenton-like process [J]. Chemical Reaction Engineering and Technology, 2021, 37(2): 167-174(in Chinese).
[15] LIANG W, DAI C M, ZHOU X F, et al. Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions [J]. PLoS One, 2014, 9(1): e85686. doi: 10.1371/journal.pone.0085686 [16] JOHNSON T L, SCHERER M M, TRATNYEK P G. Kinetics of halogenated organic compound degradation by iron metal [J]. Environmental Science & Technology, 1996, 30(8): 2634-2640. [17] MINELLA M, BERTINETTI S, HANNA K, et al. Degradation of ibuprofen and phenol with a Fenton-like process triggered by zero-valent iron (ZVI-Fenton) [J]. Environmental Research, 2019, 179: 108750. doi: 10.1016/j.envres.2019.108750 [18] VASAREVIČIUS S, DANILA V, PALIULIS D. Application of stabilized nano zero valent iron particles for immobilization of available Cd2+, Cu2+, Ni2+, and Pb2+ ions in soil [J]. International Journal of Environmental Research, 2019, 13(3): 465-474. doi: 10.1007/s41742-019-00187-8 [19] WANG B, DENG C X, MA W, et al. Modified nanoscale zero-valent iron in persulfate activation for organic pollution remediation: A review [J]. Environmental Science and Pollution Research International, 2021, 28(26): 34229-34247. doi: 10.1007/s11356-021-13972-w [20] TOSCO T, PETRANGELI PAPINI M, CRUZ VIGGI C, et al. Nanoscale zerovalent iron particles for groundwater remediation: A review [J]. Journal of Cleaner Production, 2014, 77: 10-21. doi: 10.1016/j.jclepro.2013.12.026 [21] QASIM G H, FAREED H, LEE M, et al. Aqueous monomethylmercury degradation using nanoscale zero-valent iron through oxidative demethylation and reductive isolation [J]. Journal of Hazardous Materials, 2022, 435: 128990. doi: 10.1016/j.jhazmat.2022.128990 [22] XUE G, WANG Q, QIAN Y J, et al. Simultaneous removal of aniline, antimony and chromium by ZVI coupled with H2O2: Implication for textile wastewater treatment [J]. Journal of Hazardous Materials, 2019, 368: 840-848. doi: 10.1016/j.jhazmat.2019.02.009 [23] YIRSAW B D, MEGHARAJ M, CHEN Z L, et al. Environmental application and ecological significance of nano-zero valent iron [J]. Journal of Environmental Sciences (China), 2016, 44: 88-98. doi: 10.1016/j.jes.2015.07.016 [24] MIKHAILOV I, KOMAROV S, LEVINA V, et al. Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge [J]. Journal of Hazardous Materials, 2017, 321: 557-565. doi: 10.1016/j.jhazmat.2016.09.046 [25] XIA Q, JIANG Z, WANG J, et al. A facile preparation of hierarchical dendritic zero-valent iron for Fenton-like degradation of phenol [J]. Catalysis Communications, 2017, 100: 57-61. doi: 10.1016/j.catcom.2017.06.017 [26] PUIATTI G A, de CARVALHO J P, de MATOS A T, et al. Green synthesis of Fe0 nanoparticles using Eucalyptus grandis leaf extract: Characterization and application for dye degradation by a (Photo)Fenton-like process [J]. Journal of Environmental Management, 2022, 311: 114828. doi: 10.1016/j.jenvman.2022.114828 [27] 王鹏, 王义东, 柳听义. 球磨法制备纳米零价铁的研究进展 [J]. 环境化学, 2021, 40(9): 2924-2933. doi: 10.7524/j.issn.0254-6108.2020050601 WANG P, WANG Y D, LIU T Y. Research progress of preparation of nano zero-valent iron by ball milling [J]. Environmental Chemistry, 2021, 40(9): 2924-2933(in Chinese). doi: 10.7524/j.issn.0254-6108.2020050601
[28] SUN X, NI X, WANG X, et al. Preparation of zero-valent iron-based composite catalyst with red mud and scrap tire as starting materials for Fenton-like degradation of methyl blue [J]. Surfaces and Interfaces, 2022, 31: 102053. doi: 10.1016/j.surfin.2022.102053 [29] 李孟宣, 盛光遥, 何岸飞. 金属催化剂在宽泛pH进行Fenton反应的进展 [J]. 工业水处理, 2021, 41(2): 20-25. LI M X, SHENG G Y, HE A F. Progress of metal catalysts for Fenton reaction at a wide range of pH [J]. Industrial Water Treatment, 2021, 41(2): 20-25(in Chinese).
[30] WU S, YANG S, LIU S, et al. Enhanced reactivity of zero-valent aluminum with ball milling for phenol oxidative degradation [J]. Journal of Colloid and Interface Science, 2020, 560: 260-272. doi: 10.1016/j.jcis.2019.10.075 [31] WANG N. FeCoNiMnCuTi high entropy amorphous alloys and M50Ti50 (M = Fe, Cu, FeCoNiMnCu) amorphous alloys: Novel and efficient catalysts for heterogeneous photo-Fenton decomposition of Rhodamine B [J]. Surfaces and Interfaces, 2022, 33: 102265. doi: 10.1016/j.surfin.2022.102265 [32] SHAH N S, KHAN J A, SAYED M, et al. Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent Manganese catalyzed S2O82− [J]. Chemical Engineering Journal, 2019, 356: 199-209. doi: 10.1016/j.cej.2018.09.009 [33] ZHOU G, ZHOU R, LIU Y, et al. Efficient degradation of sulfamethoxazole using peracetic acid activated by zero-valent cobalt [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107783. doi: 10.1016/j.jece.2022.107783 [34] LI Z L, LYU J C, GE M. Synthesis of magnetic Cu/CuFe2O4 nanocomposite as a highly efficient Fenton-like catalyst for methylene blue degradation [J]. Journal of Materials Science, 2018, 53(21): 15081-15095. doi: 10.1007/s10853-018-2699-0 [35] YU C, HUANG R, XIE Y, et al. In-situ synthesis of N-doped biochar encapsulated Cu(0) nanoparticles with excellent Fenton-like catalytic performance and good environmental stability [J]. Separation and Purification Technology, 2022, 295: 121334. doi: 10.1016/j.seppur.2022.121334 [36] SUN B F, LI H L, LI X Y, et al. Degradation of organic dyes over Fenton-like Cu2O-Cu/C catalysts [J]. Industrial & Engineering Chemistry Research, 2018, 57(42): 14011-14021. [37] DONG X, DUAN X, SUN Z, et al. Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis [J]. Applied Catalysis B:Environmental, 2020, 261: 118214. doi: 10.1016/j.apcatb.2019.118214 [38] LI X N, HUANG X, XI S B, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis [J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475. doi: 10.1021/jacs.8b05992 [39] 李君超, 蒋进元, 张伟, 等. 纳米Fe/Co合金类Fenton降解盐酸四环素及影响因素 [J]. 环境科学研究, 2018, 31(4): 757-764. doi: 10.13198/j.issn.1001-6929.2018.01.10 LI J C, JIANG J Y, ZHANG W, et al. Oxidative degradation of tetracycline hydrochloride using nano Fe/Co alloy and H2O2 under Fenton conditions [J]. Research of Environmental Sciences, 2018, 31(4): 757-764(in Chinese). doi: 10.13198/j.issn.1001-6929.2018.01.10
[40] 王斌, 杨月红, 阳耀熙. 钒掺杂铜基、铁基双金属催化剂的非均相芬顿氧化性能 [J]. 化工进展, 2021, 40(12): 6705-6713. doi: 10.16085/j.issn.1000-6613.2021-0082 WANG B, YANG Y H, YANG Y X. Heterogeneous Fenton oxidation performance of vanadium-doped copper-based and iron-based bimetallic catalysts [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6705-6713(in Chinese). doi: 10.16085/j.issn.1000-6613.2021-0082
[41] WAN Z, HU J, WANG J. Removal of sulfamethazine antibiotics using CeFe-graphene nanocomposite as catalyst by Fenton-like process [J]. Journal of Environmental Management, 2016, 182: 284-291. doi: 10.1016/j.jenvman.2016.07.088 [42] XIA Q, ZHANG D, YAO Z, et al. Investigation of Cu heteroatoms and Cu clusters in Fe-Cu alloy and their special effect mechanisms on the Fenton-like catalytic activity and reusability [J]. Applied Catalysis B:Environmental, 2021, 299: 120662. doi: 10.1016/j.apcatb.2021.120662 [43] XIA Q X, ZHANG D J, YAO Z P, et al. Revealing the enhancing mechanisms of Fe-Cu bimetallic catalysts for the Fenton-like degradation of phenol [J]. Chemosphere, 2022, 289: 133195. doi: 10.1016/j.chemosphere.2021.133195 [44] OUYANG Q, LIAN J T, LU B Z, et al. Effects and mechanisms of lincomycin degradation by six promoters in the mZVI/H2O2 systems [J]. Chemical Engineering Journal, 2020, 387: 123417. doi: 10.1016/j.cej.2019.123417 [45] YANG J, ZHANG X, TANG J, et al. Removal efficiency and mechanism of refractory organic matter from landfill leachate MBR effluent by the MoS2-enhanced Fe0/H2O2 system [J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108391. doi: 10.1016/j.jece.2022.108391 [46] CLARIZIA L, RUSSO D, Di SOMMA I, et al. Homogeneous photo-Fenton processes at near neutral pH: A review [J]. Applied Catalysis B:Environmental, 2017, 209: 358-371. doi: 10.1016/j.apcatb.2017.03.011 [47] 彭媛, 赵朋飞. 响应曲面法优化感应电芬顿处理活性红X-3B废水 [J]. 当代化工, 2022, 51(5): 1014-1019. doi: 10.3969/j.issn.1671-0460.2022.05.002 PENG Y, ZHAO P F. Optimization of induction electro-Fenton for treating reactive red X-3B wastewater by response surface method [J]. Contemporary Chemical Industry, 2022, 51(5): 1014-1019(in Chinese). doi: 10.3969/j.issn.1671-0460.2022.05.002
[48] 左继红, 吴冰. 微波耦合芬顿降解含酚废水反应器及工艺研究 [J]. 当代化工, 2022, 51(8): 2012-2016. doi: 10.3969/j.issn.1671-0460.2022.08.053 ZUO J H, WU B. Microwave coupled Fenton reactor for degradation of phenol wastewater and its process [J]. Contemporary Chemical Industry, 2022, 51(8): 2012-2016(in Chinese). doi: 10.3969/j.issn.1671-0460.2022.08.053
[49] 李光明, 邱珊, 马放. 均相与非均相超声-芬顿催化降解水中罗丹明B [J]. 水处理技术, 2020, 46(5): 19-23. doi: 10.16796/j.cnki.1000-3770.2020.05.004 LI G M, QIU S, MA F. Homogeneous and heterogeneous ultrasound-Fenton for degradation of RhB in water [J]. Technology of Water Treatment, 2020, 46(5): 19-23(in Chinese). doi: 10.16796/j.cnki.1000-3770.2020.05.004
[50] LIU J, WU J Y, KANG C L, et al. Photo-Fenton effect of 4-chlorophenol in ice [J]. Journal of Hazardous Materials, 2013, 261: 500-511. doi: 10.1016/j.jhazmat.2013.07.040 [51] CHEN Y P, YANG L M, PAUL CHEN J, et al. Electrospun spongy zero-valent iron as excellent electro-Fenton catalyst for enhanced sulfathiazole removal by a combination of adsorption and electro-catalytic oxidation [J]. Journal of Hazardous Materials, 2019, 371: 576-585. doi: 10.1016/j.jhazmat.2019.03.043 [52] SUN M, ZOU L, WANG P, et al. Nano valent zero iron (NZVI) immobilized CNTs hollow fiber membrane for flow-through heterogeneous Fenton process [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107806. doi: 10.1016/j.jece.2022.107806 [53] XIA Q X, YAO Z P, ZHANG D J, et al. Rational synthesis of micronano dendritic ZVI@Fe3O4 modified with carbon quantum dots and oxygen vacancies for accelerating Fenton-like oxidation [J]. Science of the Total Environment, 2019, 671: 1056-1065. doi: 10.1016/j.scitotenv.2019.03.435 [54] WANG J, LIU C, FENG J, et al. MOFs derived Co/Cu bimetallic nanoparticles embedded in graphitized carbon nanocubes as efficient Fenton catalysts [J]. Journal of Hazardous Materials, 2020, 394: 122567. doi: 10.1016/j.jhazmat.2020.122567 [55] NIU L, ZHAO X, TANG Z, et al. One-Step mechanochemical preparation of magnetic covalent organic framework for the degradation of organic pollutants by heterogeneous and homogeneous Fenton-like synergistic reaction [J]. Separation and Purification Technology, 2022, 294: 121145. doi: 10.1016/j.seppur.2022.121145 [56] CHEN X, TONG X, GAO J B, et al. Simultaneous nitrite resourcing and mercury ion removal using MXene-anchored goethite heterogeneous Fenton composite [J]. Environmental Science & Technology, 2022, 56(7): 4542-4552.