-
砷(As)被世界卫生组织(WHO)列为一类人类致癌物[1],根据2014年我国发布的《全国土壤污染调查公报》,我国土壤中As的超标率为2.7%,是土壤中主要的超标污染物之一[2]. 在稻田淹水状况下,土壤处于厌氧状态,土壤中的As容易被还原溶解释放到溶液中,且从As(Ⅴ)转化为毒性更强的As(Ⅲ)[3-4]. 稻田中的As被水稻吸收后[5-6],增加了居民通过食用大米而暴露于As污染的风险[7],因此稻田的As污染问题一直受到人们的关注.
农田土壤中化肥的施用增加了铵态氮,这些铵态氮经硝化作用后可以转化为
$ \text{N}{\text{O}}_{\text{3}}^{-} $ ,造成农田中$ \text{N}{\text{O}}_{\text{3}}^{-} $ 的积累[8]. 据报道[9-11],京郊农田土中硝态氮浓度范围为1.05—1.80 mg∙kg−1,黑河地区老绿洲农田中硝态氮浓度范围为4.82—16.31 mg∙kg−1,安国市农田土壤表层土中硝态氮浓度范围为13.71—184.65 mg∙kg−1.通常认为厌氧状态下As的溶出和铁氧化物还原溶解相关[4, 12-13],尽管
$ \text{N}{\text{O}}_{\text{3}}^{-} $ 的氧化还原电位高于Fe(Ⅲ)[14],但实际土壤中由于铁氧化物浓度与$ \text{N}{\text{O}}_{\text{3}}^{-} $ 浓度差距较大,同时氧化还原过程还与沉淀过程耦合,因此,$ \text{N}{\text{O}}_{\text{3}}^{-} $ 对土壤中As溶出的影响效应和机制尚未完全清楚. 尽管国内外学者针对$ \text{N}{\text{O}}_{\text{3}}^{-} $ 对土壤Fe还原和As溶出的影响机制取得了很多重要成果,如部分研究观察到$ \text{N}{\text{O}}_{\text{3}}^{-} $ 的加入对As和Fe溶出的抑制作用[15-18],部分实验关注于微生物或Fe(Ⅱ)的作用,采用单一菌种构建淹水体系[19-21]或加入外源Fe(Ⅱ)[22]. 但实际淹水过程中$ \text{N}{\text{O}}_{\text{3}}^{-} $ 对土壤中As的溶出与还原的影响及机制仍待进一步探究,例如$ \text{N}{\text{O}}_{\text{3}}^{-} $ 对As在固相上的价态的影响,$ \text{N}{\text{O}}_{\text{3}}^{-} $ 对As可能存在的氧化作用,$ \text{N}{\text{O}}_{\text{3}}^{-} $ 消耗程度和铁氧化物还原溶解的关联等.为探明淹水状态下
$ \text{N}{\text{O}}_{\text{3}}^{-} $ 对不同土壤中As的溶出与还原的影响及机制,本实验详细测定了淹水条件下土壤氧化还原电位(Eh)、给电子能力(EDC)、pH、Fe和As的还原溶出、固相Fe的组分与价态,以及土壤固相各组分上的As(Ⅲ)和As(Ⅴ),以阐明$ \text{N}{\text{O}}_{\text{3}}^{-} $ 对土壤中As溶出效应和机制的影响.
淹水条件下硝酸根对土壤中砷溶出过程的影响与机制
Effect and mechanism of nitrate on arsenic dissolution in flooding soil
-
摘要: 本文通过对3种土壤投加低浓度(10 mmol·L−1)或高浓度(100 mmol∙L−1)的
$ \text{N}{\text{O}}_{\text{3}}^{-} $ ,进行100 d的淹水实验,探究厌氧条件下$ \text{N}{\text{O}}_{\text{3}}^{-} $ 对土壤中As溶出的影响. 结果表明,$ \text{N}{\text{O}}_{\text{3}}^{-} $ 对土壤As溶出过程的影响与$ \text{N}{\text{O}}_{\text{3}}^{-} $ 的还原过程相耦合,当$ \text{N}{\text{O}}_{\text{3}}^{-} $ 未消耗完全时,铁氧化物和As的还原溶出受到抑制;仅当$ \text{N}{\text{O}}_{\text{3}}^{-} $ 消耗完全时,铁氧化物才开始大量还原溶出. 研究还观察到某些土壤溶液中残留的$ \text{N}{\text{O}}_{\text{3}}^{-} $ 还原产物可能会氧化溶出的Fe(Ⅱ),导致溶液中的Fe(Ⅱ)/TFe远低于空白对照组,并同时抑制了As的溶出. 如淳安土的低浓度$ \text{N}{\text{O}}_{\text{3}}^{-} $ 处理组的第60、80、100天样品中Fe(Ⅱ)/TFe值分别为23.6%、44.4%、63.7%,远低于空白对照组,而此时As的溶出被推迟. 随着铁氧化物的溶出,与铁氧化物相结合的As也开始溶出,但由于之前$ \text{N}{\text{O}}_{\text{3}}^{-} $ 抑制了固相上As(Ⅴ)的还原,导致液相As(Ⅴ)/TAs值较高,且As(Ⅴ)因受$ \text{N}{\text{O}}_{\text{3}}^{-} $ 的还原产物的影响而难以被还原. 对于土壤固相,$ \text{N}{\text{O}}_{\text{3}}^{-} $ 降低了固相各组分的Fe(Ⅱ)或As(Ⅲ)含量,对于Fe或As固相分布的影响则与土壤种类和投加的$ \text{N}{\text{O}}_{\text{3}}^{-} $ 浓度有关.Abstract: The effects of$ \text{N}{\text{O}}_{\text{3}}^{-} $ on As dissolution in soil under anoxic conditions were investigated by a 100-day flooding experiment at low (10 mmol∙L−1) or high (100 mmol∙L−1) concentration of$ \text{N}{\text{O}}_{\text{3}}^{-} $ in three soils. The results showed that the dissolution of As was coupled with the reduction process of$ \text{N}{\text{O}}_{\text{3}}^{-} $ . When$ \text{N}{\text{O}}_{\text{3}}^{-} $ was not completely consumed, it inhibited both the reduction of iron oxides and the dissolution of As. Only when$ \text{N}{\text{O}}_{\text{3}}^{-} $ was completely consumed, iron oxides began to be reduced and dissolved on a massive scale. In addition, the reduction products of$ \text{N}{\text{O}}_{\text{3}}^{-} $ in soil solution may also oxidize dissolved Fe(Ⅱ), resulting in a low Fe(Ⅱ)/TFe ratio in soil solution. For example, in the low$ \text{N}{\text{O}}_{\text{3}}^{-} $ treatment of Chun’an soil, the Fe(Ⅱ)/TFe ratio was 23.6%, 44.4% and 63.7% on the 60th, 80th, and 100th day, respectively, much lower than those in the control group. The dissolution of As was also delayed during this period. With the dissolution of iron oxides, As bound to iron oxides began to dissolve. However, since$ \text{N}{\text{O}}_{\text{3}}^{-} $ had inhibited the reduction of As(Ⅴ) in solid phase and the possible influence of the reduction products of$ \text{N}{\text{O}}_{\text{3}}^{-} $ , a high As(Ⅴ)/TAs ratio in the liquid was observed. Moreover, the effects of$ \text{N}{\text{O}}_{\text{3}}^{-} $ on the distribution of Fe or As in the solid phase was related to soil type and$ \text{N}{\text{O}}_{\text{3}}^{-} $ concentration. -
表 1 土壤基本理化性质
Table 1. Physical and chemical properties of soil
种类
SoilpH SOCa/
(mg·kg−1)DCB-Feb/
(g·kg−1)ox-Fec/
(g·kg−1)As/
(mg·kg−1)Cd/
(mg·kg−1)Cu/
(mg·kg−1)Zn/
(mg·kg−1)Pb/
(mg·kg−1)都匀DY 7.03 21.95 45.21 2.20 85.16 3.79 24.00 2498.71 367.53 淳安CA 4.69 17.56 45.05 7.67 108.47 2.91 433.98 523.25 339.99 罗甸LD 7.94 24.66 36.20 3.92 53.89 1.31 29.37 196.73 75.73 a土壤有机碳.b连二亚硫酸钠—柠檬酸钠—碳酸氢钠提取法提取的Fe.c草酸-草酸铵提取法提取的Fe.
a soil organic carbon.b Fe extracted by dithionite-citrate-bicarbonate extraction method.c Fe extracted by acid ammonium oxalate extraction method.表 2 Fe和As的连续提取法
Table 2. Sequential extraction of Fe and As
步骤
Steps组分
Fraction提取剂
Extraction agents提取条件
Extraction conditionFe 1 吸附态铁 5 mL pH=5的1 mol·L−1乙酸钠溶液 黑暗,20 ℃,100 r·min−1振荡24 h 2 弱晶形和无定形铁 5 mL 0.5 mol·L−1盐酸 黑暗,20 ℃,100 r·min−1振荡2 h 3 晶形铁 5 mL 6 mol·L−1盐酸 黑暗,20 ℃,100 r·min−1振荡24 h As 1 易交换态 12.5 mL 0.05 mol·L−1硫酸铵溶液 20 ℃,100 r·min−1振荡4 h 2 强吸附态 12.5 mL 0.05 mol·L−1磷酸二氢铵溶液 20 ℃,100 r·min−1振荡16 h 3 无定形铁结合态 25 mL 0.5 mol·L−1磷酸+ 0.1 mol·L−1盐酸羟胺 20 ℃,100 r·min−1振荡1 h 4 晶形铁结合态 12.5 mL 0.2 mol·L−1草酸铵缓冲溶液+ 0.1 mol·L−1抗坏血酸,pH=3.25 96 ℃,在光下反应0.5 h 5 残渣态 10 mL 王水 105 ℃反应2 h -
[1] WANG Z H, FU Y, WANG L L. Abiotic oxidation of arsenite in natural and engineered systems: Mechanisms and related controversies over the last two decades (1999-2020) [J]. Journal of Hazardous Materials, 2021, 414: 125488. doi: 10.1016/j.jhazmat.2021.125488 [2] 全国土壤污染状况调查公报[J]. 中国环保产业, 2014(5): 10-11. Bulletin on the investigation of soil pollution in China[J]. China Environmental Protection Industry, 2014(5): 10-11 (in Chinese).
[3] XU X W, CHEN C, WANG P, et al. Control of arsenic mobilization in paddy soils by manganese and iron oxides [J]. Environmental Pollution, 2017, 231: 37-47. doi: 10.1016/j.envpol.2017.07.084 [4] YAMAGUCHI N, NAKAMURA T, DONG D, et al. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution [J]. Chemosphere, 2011, 83(7): 925-932. doi: 10.1016/j.chemosphere.2011.02.044 [5] 曹丽霞, 李文栓, 蔺昕, 等. 叶面施硒对水稻砷吸收积累影响的研究进展[J]. 环境工程, 2023, 41(7): 271-276. CAO L X, LI W S, LIN X, et al.Effects of selenium application on arsenic uptake and accumulation in rice [J]. Environmental Engineering, 2023, 41(7): 271-276(in Chinese).
[6] 刘文菊, 赵方杰. 植物砷吸收与代谢的研究进展 [J]. 环境化学, 2011, 30(1): 56-62. LIU W J, ZHAO F J. A brief review of arsenic uptake and metabolism in plants [J]. Environmental Chemistry, 2011, 30(1): 56-62(in Chinese).
[7] 李刚, 郑茂钟, 朱永官. 福建省稻米中的砷水平及其健康风险研究 [J]. 生态毒理学报, 2013, 8(2): 148-155. doi: 10.7524/AJE.1673-5897.20130103001 LI G, ZHENG M Z, ZHU Y G. Studies on arsenic levels and its health risk of rice collected from Fujian Province [J]. Asian Journal of Ecotoxicology, 2013, 8(2): 148-155(in Chinese). doi: 10.7524/AJE.1673-5897.20130103001
[8] LI Z L, TANG Z, SONG Z P, et al. Variations and controlling factors of soil denitrification rate [J]. Global Change Biology, 2022, 28(6): 2133-2145. doi: 10.1111/gcb.16066 [9] 杜连凤, 赵同科, 张成军, 等. 京郊地区3种典型农田系统硝酸盐污染现状调查 [J]. 中国农业科学, 2009, 42(8): 2837-2843. doi: 10.3864/j.issn.0578-1752.2009.08.024 DU L F, ZHAO T K, ZHANG C J, et al. Investigation on nitrate pollution in soils, ground water and vegetables of three typical farmlands in Beijing region [J]. Scientia Agricultura Sinica, 2009, 42(8): 2837-2843(in Chinese). doi: 10.3864/j.issn.0578-1752.2009.08.024
[10] 苏永中, 杨晓, 杨荣. 黑河中游边缘荒漠-绿洲非饱和带土壤质地对土壤氮积累与地下水氮污染的影响 [J]. 环境科学, 2014, 35(10): 3683-3691. doi: 10.13227/j.hjkx.2014.10.007 SU Y Z, YANG X, YANG R. Effect of soil texture in unsaturated zone on soil nitrate accumulation and groundwater nitrate contamination in a marginal oasis in the middle of Heihe River Basin [J]. Environmental Science, 2014, 35(10): 3683-3691(in Chinese). doi: 10.13227/j.hjkx.2014.10.007
[11] 赵姣姣, 刘文科, 刘义飞. 河北省安国市药材田与粮作田土壤硝酸盐的累积特征 [J]. 中国农业气象, 2013, 34(3): 301-305. doi: 10.3969/j.issn.1000-6362.2013.03.008 ZHAO J J, LIU W K, LIU Y F. Characteristic of soil nitrate accumulation on herbal field and grain field in Anguo city, Hebei Province [J]. Chinese Journal of Agrometeorology, 2013, 34(3): 301-305(in Chinese). doi: 10.3969/j.issn.1000-6362.2013.03.008
[12] 杨明, 许丽英, 宋雨, 等. 厌氧微生物作用下土壤中砷的形态转化及其分配 [J]. 生态毒理学报, 2013, 8(2): 178-185. doi: 10.7524/AJE.1673-5897.20130228001 YANG M, XU L Y, SONG Y, et al. Speciation transformation and distribution of arsenic in soils under action of anaerobic microbial activities [J]. Asian Journal of Ecotoxicology, 2013, 8(2): 178-185(in Chinese). doi: 10.7524/AJE.1673-5897.20130228001
[13] DENG Y X, WENG L P, LI Y T, et al. Redox-dependent effects of phosphate on arsenic speciation in paddy soils [J]. Environmental Pollution, 2020, 264: 114783. doi: 10.1016/j.envpol.2020.114783 [14] KÖGEL-KNABNER I, AMELUNG W, CAO Z H, et al. Biogeochemistry of paddy soils [J]. Geoderma, 2010, 157(1/2): 1-14. [15] LIN Z J, WANG X, WU X, et al. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system [J]. Environmental Pollution, 2018, 243: 1015-1025. doi: 10.1016/j.envpol.2018.09.054 [16] ZHANG J, ZHAO S C, XU Y, et al. Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils [J]. Environmental Science & Technology, 2017, 51(8): 4377-4386. [17] CHEN Z L, AN L H, WEI H, et al. Nitrate alleviate dissimilatory iron reduction and arsenic mobilization by driving microbial community structure change [J]. Surfaces and Interfaces, 2021, 26: 101421. doi: 10.1016/j.surfin.2021.101421 [18] CHEN G N, DU Y H, FANG L P, et al. Distinct arsenic uptake feature in rice reveals the importance of N fertilization strategies [J]. Science of the Total Environment, 2023, 854: 158801. doi: 10.1016/j.scitotenv.2022.158801 [19] ZHU X B, ZENG X C, CHEN X M, et al. Inhibitory effect of nitrate/nitrite on the microbial reductive dissolution of arsenic and iron from soils into pore water [J]. Ecotoxicology, 2019, 28(5): 528-538. doi: 10.1007/s10646-019-02050-0 [20] WU Y F, CHAI C W, LI Y N, et al. Anaerobic As(III) oxidation coupled with nitrate reduction and attenuation of dissolved arsenic by Noviherbaspirillum species [J]. ACS Earth and Space Chemistry, 2021, 5(8): 2115-2123. doi: 10.1021/acsearthspacechem.1c00155 [21] FANG J H, XIE Z M, WANG J, et al. Bacterially mediated release and mobilization of As/Fe coupled to nitrate reduction in a sediment environment [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111478. doi: 10.1016/j.ecoenv.2020.111478 [22] WANG X Q, LIU T X, LI F B, et al. Effects of simultaneous application of ferrous iron and nitrate on arsenic accumulation in rice grown in contaminated paddy soil [J]. ACS Earth and Space Chemistry, 2018, 2(2): 103-111. doi: 10.1021/acsearthspacechem.7b00115 [23] SUN T R, GUZMAN J J L, SEWARD J D, et al. Suppressing peatland methane production by electron snorkeling through pyrogenic carbon in controlled laboratory incubations [J]. Nature Communications, 2021, 12: 4119. doi: 10.1038/s41467-021-24350-y [24] LUEDER U, MAISCH M, LAUFER K, et al. Influence of physical perturbation on Fe(II) supply in coastal marine sediments [J]. Environmental Science & Technology, 2020, 54(6): 3209-3218. [25] LOCK A, WALLSCHLÄGER D, McMURDO C, et al. Validation of an updated fractionation and indirect speciation procedure for inorganic arsenic in oxic and suboxic soils and sediments [J]. Environmental Pollution, 2016, 219: 1102-1108. doi: 10.1016/j.envpol.2016.09.013 [26] WENZEL W W, KIRCHBAUMER N, PROHASKA T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure [J]. Analytica Chimica Acta, 2001, 436(2): 309-323. doi: 10.1016/S0003-2670(01)00924-2 [27] LI X M, QIAO J T, LI S A, et al. Bacterial communities and functional genes stimulated during anaerobic arsenite oxidation and nitrate reduction in a paddy soil [J]. Environmental Science & Technology, 2020, 54(4): 2172-2181. [28] XIAO Z X, JIANG Q T, LI Y, et al. Enhanced microbial nitrate reduction using natural manganese oxide ore as an electron donor [J]. Journal of Environmental Management, 2022, 306: 114497. doi: 10.1016/j.jenvman.2022.114497 [29] MAGUFFIN S C, ABU-ALI L, TAPPERO R V, et al. Influence of manganese abundances on iron and arsenic solubility in rice paddy soils [J]. Geochimica et Cosmochimica Acta, 2020, 276: 50-69. doi: 10.1016/j.gca.2020.02.012 [30] KAPPLER A, BRYCE C, MANSOR M, et al. An evolving view on biogeochemical cycling of iron [J]. Nature Reviews Microbiology, 2021, 19(6): 360-374. doi: 10.1038/s41579-020-00502-7 [31] LIU X L, ZHANG Y, LI X H, et al. Effects of influent nitrogen loads on nitrogen and COD removal in horizontal subsurface flow constructed wetlands during different growth periods of Phragmites australis [J]. Science of the Total Environment, 2018, 635: 1360-1366. doi: 10.1016/j.scitotenv.2018.03.260 [32] PIVOVAROV S. Diffuse sorption modeling: Apparent H/Na, or the same, Al/Na exchange on clays [J]. Journal of Colloid and Interface Science, 2009, 336(2): 898-901. doi: 10.1016/j.jcis.2009.04.018 [33] 孙丽蓉, 王旭刚, 郭大勇, 等. 旱作褐土中铁氧化物的厌氧还原动力学特征 [J]. 土壤学报, 2013, 50(1): 106-112. doi: 10.11766/trxb201201120013 SUN L R, WANG X G, GUO D Y, et al. Dynamics of anaerobic reduction of iron oxides in upland cinnamon soils [J]. Acta Pedologica Sinica, 2013, 50(1): 106-112(in Chinese). doi: 10.11766/trxb201201120013
[34] WANG Z, LIU X W, LIANG X F, et al. Flooding-drainage regulate the availability and mobility process of Fe, Mn, Cd, and As at paddy soil [J]. Science of the Total Environment, 2022, 817: 152898. doi: 10.1016/j.scitotenv.2021.152898 [35] 钱子妍, 吴川, 何璇, 等. 铁循环微生物对环境中重金属的影响研究进展 [J]. 环境化学, 2021, 40(3): 834-850. doi: 10.7524/j.issn.0254-6108.2020050901 QIAN Z Y, WU C, HE X, et al. Study on the influence of iron redox cycling microorganisms on heavy metals in the environment [J]. Environmental Chemistry, 2021, 40(3): 834-850(in Chinese). doi: 10.7524/j.issn.0254-6108.2020050901
[36] SCHAEDLER F, KAPPLER A, SCHMIDT C. A revised iron extraction protocol for environmental samples rich in nitrite and carbonate [J]. Geomicrobiology Journal, 2018, 35(1): 23-30. doi: 10.1080/01490451.2017.1303554 [37] YU K W, BÖHME F, RINKLEBE J, et al. Major biogeochemical processes in soils-a microcosm incubation from reducing to oxidizing conditions [J]. Soil Science Society of America Journal, 2007, 71(4): 1406-1417. doi: 10.2136/sssaj2006.0155 [38] GUSTAVE W, YUAN Z F, SEKAR R, et al. Soil organic matter amount determines the behavior of iron and arsenic in paddy soil with microbial fuel cells [J]. Chemosphere, 2019, 237: 124459. doi: 10.1016/j.chemosphere.2019.124459 [39] JIANG W, HOU Q Y, YANG Z F, et al. Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content [J]. Environmental Pollution, 2014, 188: 159-165. doi: 10.1016/j.envpol.2014.02.014 [40] JIA M R, TANG N, CAO Y, et al. Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: Characterization and genome analysis [J]. Chemosphere, 2019, 218: 1061-1070. doi: 10.1016/j.chemosphere.2018.11.145 [41] OREMLAND R S, STOLZ J F. Arsenic, microbes and contaminated aquifers [J]. Trends in Microbiology, 2005, 13(2): 45-49. doi: 10.1016/j.tim.2004.12.002 [42] FANG Y J, CHEN M J, LIU C S, et al. Arsenic release from microbial reduction of scorodite in the presence of electron shuttle in flooded soil [J]. Journal of Environmental Sciences, 2023, 126: 113-122. doi: 10.1016/j.jes.2022.05.018 [43] KUDO K, YAMAGUCHI N, MAKINO T, et al. Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1 [J]. Applied and Environmental Microbiology, 2013, 79(15): 4635-4642. doi: 10.1128/AEM.00693-13 [44] NIAZI N K, BURTON E D. Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition[J]. Environmental Pollution, 2016, 218: 111-117. [45] ZHANG J, ZHOU W X, LIU B B, et al. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil[J]. Environmental Science Technology, 2015, 49(10): 5956-5964. [46] RHINEE D, PHELPS C D, YOUNG L Y. Anaerobic arsenite oxidation by novel denitrifying isolates[J]. Environmental Microbiology, 2006, 8(5): 899-908. [47] HOEFTMCCAN N S, BOREN A, HERNANDEZ-MALDONADO J, et al. Arsenite as an electron donor for anoxygenic photosynthesis: Description of three strains of Ectothiorhodospira from Mono Lake, California and Big Soda Lake, Nevada[J]. Life, 2016, 7(1): 1.