-
汞离子(Hg2+)是一种广泛存在于工业废水、土壤、农作物等多种介质中的有毒金属离子,易于通过生物放大在生物体或人体内富集,对人类生命健康构成潜在的威胁[1]. 环境中该类污染物的控制措施和环保管理,均需要精确获得环境介质中污染物浓度,因此建立能够精确检测环境介质中的Hg2+含量的方法具有极其重要的意义. 目前,常用环境介质中Hg2+浓度检测方法很多,如原子吸收光谱法(AAS)[2]、原子发射光谱法(AES)[3]、原子荧光光谱法等(AFS)[4]、电感耦合等离子体-质谱(ICP-MS)[5]等方法,但这些方法均需要复杂的、耗时的样品预处理过程和无法实现便携式操作. 因而,开发一种能够高效、快速、便捷式金属Hg2+检测方法迫在眉睫.
碳量子点(CQDs)和贵金属纳米簇(CNs)是目前常用的两类荧光纳米材料. 由于它们的制备成本低廉、操作简单、灵敏度高和选择性好等优点,已被广泛应用于各种介质中金属离子的检测. 如Cao等[6]利用水热法合成了掺硅量子点并对血清中尿酸和痕量汞进行荧光检测. 铜纳米簇(CuCNs)因制备原料的成本较低,被广泛用于制备各种荧光材料. 如XU [7]等以牛血清蛋白为铜纳米簇适配体,实现CuCNs对汞离子的检测. 但单一荧光响应检测污染物的含量易受荧光探针周围不稳定条件(如温度、溶剂极性、探针分布及目标物浓度)、仪器参数、探针分子的局部浓度和光漂白的影响[8-9]. 比率型荧光检测是一种对比双荧光响应的荧光分析方法[10],可通过不同纳米荧光材料的荧光响应比值来反应目标物的浓度. 比率型荧光探针作为一种有效的内部基准,响应比值可以极大地消除外部干扰,并更精确地对目标物进行定性和定量分析[11]. CQDs和CNs是比率型荧光探针的常见组合形式[12]. 如Liu等[13]构建了CQDs/金纳米簇(AuCNs)比率型荧光探针,能高灵敏地检测精氨酸.
本文利用绿色柠檬汁,通过一步水热法合成碳量子点(CQDs)及谷胱甘肽修饰的铜纳米簇(CuCNs)两种荧光材料,按比例混合出一种能够快速、准确和具有现场检测潜力的Hg2+比率荧光传感器. 相比于单一荧光探针,比率荧光探针具有水分散性好、检测下限低、不需要复杂的修饰和较长的反应时间等优点,同时本文也为其它生物质制成碳点构成比率型荧光提供思路.
柠檬基碳量子点/铜纳米团簇比率型荧光探针对环境水中Hg2+检测的应用
Application of ratiometric fluorescence probe composed of copper nanoclusters and carbon quantum dots based fresh lemon juice on Hg2+ detection in environmental water
-
摘要: 本文以新鲜柠檬汁为碳源,利用一步水热法合成了具有荧光性能良好的荧光碳量子点(CQDs)和谷胱甘肽封端的铜纳米簇(CuNCs). 由荧光光谱分析可知,在同一激发下,CQDs和CuNCs分别在420 nm和650 nm处有明显特征荧光发射峰值. 将二者按一定比例构建了CQDs-CuCNs双荧光探针,并用于水环境中汞离子的荧光检测. 结果发现,Hg2+加入CQDs-CuCNs双荧光体系后,该荧光探针在420 nm处荧光发射峰值下降,但在650 nm处荧光发射峰值略微上升. 将该双荧光探针的荧光发射峰值的比值I650/I420(在650 nm处与420 nm处的荧光发射峰值的比值)与汞离子浓度进行线性回归,结果在Hg2+浓度25—400 nmol·L-1范围内呈现良好线性(R2 = 0.9965),检出限为13.0 nmol·L-1. 该荧光探针对湖水和污水厂出水中Hg2+均未检出,但实际样品加标回收率在94.12%—103.31%之间,相对标准偏差均小于4.52%,表明该方法适用于实际水样中汞离子的快速检测.Abstract: In this paper, fluorescent carbon quantum dots (CQDs) with good fluorescence performance were synthesized by a one-step hydrothermal method using fresh lemon juice as the carbon source, and copper nanoclusters (CuCNs) were synthesized using glutathione and copper sulfate as the raw materials, and the fluorescence spectra analysis showed that both CQDs and CuCNs had obvious characteristic fluorescence emission peaks at 420 nm and 650 nm, respectively, under the same excitation wavelength. The dual fluorescent probes of CQDs-CuCNs were constructed in a certain proportion and applied to the fluorescence detection of mercury ions in the actual environmental water. During mercury ion spiked into the dual fluorescent system of CQDs-CuCNs, the fluorescence emission peak at 420 nm (luminescence of CQDs) was quenched, but the peak at the 650 nm (luminescence of CuCNs) was stable. Moreover, the fluorescence intensity of the CQDs based lemon was quenched gradually with increasing amounts of Hg(Ⅱ). The ratio of fluorescence emission intensity I650/I420, which is defined as the intensity ratio of fluorescence emission peak at 650 nm to that at 420 nm, was found to be good linear relationship (R2=0.9965) with Hg(Ⅱ) concentration in the range of 25—400 nmol·L−1, and the detection limit was 13.0 nmol·L−1. The fluorescent probe for detection Hg(Ⅱ) in lake water and effluent of wastewater treatment plant were not detected, but the standard addition recovery rate of Hg(Ⅱ) in the actual water were between 94.12% and 103.31%, and relative standard deviation (RSD) were less than 4.52%. These results show that the ratiometric fluorescent probes are suitable for the rapid detection of mercury ions in real water samples.
-
图 6 不同浓度Hg2+存在下CQDs-CuNCs体系的荧光光谱对比图(a)及其相应的荧光发射强度比( I650 /I420 )与 Hg2+的线性关系(b)
Figure 6. Fluorescence spectra of CQDs-CuNCs probe after the addition of different concentration of Hg2+(a)The linear relationship between the fluorescence ratio ( I650/I420 ) of CQDs-CuNCs probe and the concentration of Hg2+(b)
表 1 3种实际加标水样中 Hg2+加标回收率和相对标准偏差(n = 3)
Table 1. Recovery ratio and relative standard deviation of Hg2+ in three actual spiked water samples (n = 3)
样品来源
Sample source加标量/(nmol·L−1)
Spiked concentration测试值/(nmol·L−1)
Tested concentration回收率/%
Recovery(n=3)相对标准偏差/%
RSD(n=3)太湖监测点1湖水 20 18.82 94.12 3.76 50 51.26 102.51 4.02 100 8.78 98.65 3.57 太湖监测点2湖水 20 19.54 97.52 2.68 50 50.89 101.86 3.99 100 1102.31 102.26 4.52 污水厂出水 20 19.93 99.63 2.56 50 51.65 103.31 1.73 100 98.56 98.36 4.16 表 2 不同荧光分析法对汞离子检测效果的对比
Table 2. The comparison of different fluorescence analysis methods for detection of mercury ion
-
[1] LI H L, ZHAI J F, TIAN J Q, et al. Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(II) ion in aqueous solution [J]. Biosensors and Bioelectronics, 2011, 26(12): 4656-4660. doi: 10.1016/j.bios.2011.03.026 [2] LEE Y F, NAN F H, CHEN M J, et al. Detection and removal of mercury and lead ions by using gold nanoparticle-based gel membrane [J]. Analytical Methods, 2012, 4(6): 1709. doi: 10.1039/c2ay05872c [3] HAN F X, PATTERSON W D, XIA Y J, et al. Rapid determination of mercury in plant and soil samples using inductively coupled plasma atomic emission spectroscopy, a comparative study [J]. Water Air and Soil Pollution, 2006, 170(1/2/3/4): 161-171. [4] ZAIB M, ATHAR M M, SAEED A, et al. Electrochemical determination of inorganic mercury and arsenic—A review [J]. Biosensors and Bioelectronics, 2015, 74: 895-908. doi: 10.1016/j.bios.2015.07.058 [5] RASTOGI L, SASHIDHAR R B, KARUNASAGAR D, et al. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg2+ in aqueous system [J]. Talanta, 2014, 118: 111-117. doi: 10.1016/j.talanta.2013.10.012 [6] CAO D, LUO Y X, LIU W P, et al. Enzyme-free fluorescence determination of uric acid and trace Hg(Ⅱ) in serum using Si/N doped carbon dots [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2021, 263: 120182. doi: 10.1016/j.saa.2021.120182 [7] XU J, HAN B Y. Synthesis of protein-directed orange/red-emitting copper nanoclusters via hydroxylamine hydrochloride reduction approach and their applications on Hg2+ sensing [J]. NANO, 2016, 11: 1650108. doi: 10.1142/S1793292016501083 [8] ZANG J C, LI C G, ZHOU K, et al. Nanomolar Hg2+ detection using β-lactoglobulin-stabilized fluorescent gold nanoclusters in beverage and biological media [J]. Analytical Chemistry, 2016, 88(20): 10275-10283. doi: 10.1021/acs.analchem.6b03011 [9] AGARWALLA H, MAHAJAN P S, SAHU D, et al. A switch-on NIR probe for specific detection of Hg2+ ion in aqueous medium and in mitochondria [J]. Inorganic Chemistry, 2016, 55(22): 12052-12060. doi: 10.1021/acs.inorgchem.6b02233 [10] YANG Y, XING X X, ZOU T, et al. A novel and sensitive ratiometric fluorescence assay for carbendazim based on N-doped carbon quantum dots and gold nanocluster nanohybrid [J]. Journal of Hazardous Materials, 2020, 386: 121958. doi: 10.1016/j.jhazmat.2019.121958 [11] WANG Y Y, MAO L, LIU W, et al. A ratiometric fluorometric and colorimetric probe for the β-thalassemia drug deferiprone based on the use of gold nanoclusters and carbon dots [J]. Mikrochimica Acta, 2018, 185(9): 442. doi: 10.1007/s00604-018-2982-4 [12] WANG X Y, DUAN Q Q, ZHANG B Y, et al. Ratiometric fluorescence detection of Cd2+ based on N, S co-doped carbon quantum dots/Au nanoclusters [J]. Microchemical Journal, 2021, 167: 106269. doi: 10.1016/j.microc.2021.106269 [13] LIU T, LI N, DONG J X, et al. A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite [J]. Biosensors and Bioelectronics, 2017, 87: 772-778. doi: 10.1016/j.bios.2016.08.098 [14] HU X T, LI Y X, XU Y W, et al. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk [J]. Food Chemistry, 2021, 339: 127775. doi: 10.1016/j.foodchem.2020.127775 [15] ZHANG Q, MEI H, ZHOU W T, et al. Cerium ion(III)-triggered aggregation-induced emission of copper nanoclusters for trace-level p-nitrophenol detection in water [J]. Microchemical Journal, 2021, 162: 105842. doi: 10.1016/j.microc.2020.105842 [16] NIU W J, LI Y, ZHU R H, et al. Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging [J]. Sensors and Actuators B:Chemical, 2015, 218: 229-236. doi: 10.1016/j.snb.2015.05.006 [17] AMJADI M, MANZOORI J L, HALLAJ T, et al. Application of the chemiluminescence system composed of silicon-doped carbon dots, iron(II) and K2S2O8 to the determination of norfloxacin [J]. Microchimica Acta, 2017, 184(6): 1587-1593. doi: 10.1007/s00604-017-2139-x [18] JIA X F, LI J, WANG E K. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence [J]. Nanoscale, 2012, 4(18): 5572-5575. doi: 10.1039/c2nr31319g [19] DING L H, GONG Z J, YAN M, et al. Determination of glucose by using fluorescent silicon nanoparticles and an inner filter caused by peroxidase-induced oxidation of o-phenylenediamine by hydrogen peroxide [J]. Microchimica Acta, 2017, 184(11): 4531-4536. doi: 10.1007/s00604-017-2445-3 [20] YANG Y, HYO D, WU H, et al. N, P-doped carbon quantum dots as a FL sensing platform for carbendazim detection based on FL resonance energy transfer [J]. Sens Actuators B, 2018, 274: 296-303. doi: 10.1016/j.snb.2018.07.130 [21] WANG W J, PENG J W, LI F M, et al. Phosphorus and chlorine co-doped carbon dots with strong photoluminescence as a fluorescent probe for ferric ions [J]. Mikrochimica Acta, 2018, 186(1): 32. [22] SK M P, CHATTOPADHYAY A. Induction coil heater prepared highly fluorescent carbon dots as invisible ink and explosive sensor [J]. RSC Advances, 2014, 4(60): 31994-31999. doi: 10.1039/C4RA04264F [23] SONG J P, LI J, GUO Z Y, et al. A novel fluorescent sensor based on sulfur and nitrogen co-doped carbon dots with excellent stability for selective detection of doxycycline in raw milk [J]. RSC Advances, 2017, 7(21): 12827-12834. doi: 10.1039/C7RA01074E [24] VINCI J C, FERRER I M, SEEDHOUSE S J, et al. Hidden properties of carbon dots revealed after HPLC fractionation [J]. The Journal of Physical Chemistry Letters, 2013, 4(2): 239-243. doi: 10.1021/jz301911y [25] 王学川, 白鹏霞, 罗晓民, 等. 基于明胶制备碳量子点及其光学性能的研究 [J]. 光谱学与光谱分析, 2019, 39(4): 1154-1161. WANG X C, BAI P X, LUO X M, et al. Synthesis of carbon quantum dots based on gelatin and study on it's optical property [J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1154-1161(in Chinese).
[26] LI L L, NI G, WANG J N, et al. Synthesis of nitrogen-doped carbon quantum dots and its application as fluorescent sensor for Hg2+ [J]. Spectroscpy and Spectral Analysis, 2016, 36(9): 2846-2851. [27] 国家环保总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2006: 354. State Environmental Protection Administration. Water and wastewater monitoring and analysis methods [M]. Beijing: China Environmental Science Press, 2006: 354.
[28] WANG K, DONG E F, FANG M, et al. Construction of ratio fluorescence sensor based on CdTe quantum dots and benzocoumarin-3-carboxylic acid for Hg2+ detection [J]. Chinese Journal of Analytical Chemistry, 2022, 50(4): 100070. doi: 10.1016/j.cjac.2022.100070 [29] CAO X T, MA J, LIN Y P, et al. A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 151: 875-880. doi: 10.1016/j.saa.2015.07.034 [30] CHAI F, WANG C G, WANG T T, et al. L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light [J]. Nanotechnology, 2010, 21(2): 025501. doi: 10.1088/0957-4484/21/2/025501 [31] LI D Y, WANG S P, AZAD F, et al. Single-step synthesis of polychromatic carbon quantum dots for macroscopic detection of Hg2+ [J]. Ecotoxicology and Environmental Safety, 2020, 190: 110141. doi: 10.1016/j.ecoenv.2019.110141 [32] SINGH V K, SINGH V, YADAV P K, et al. Nitrogen doped fluorescent carbon quantum dots for on-off-on detection of Hg2+ and glutathione in aqueous medium: Live cell imaging and IMPLICATION logic gate operation [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 384: 112042. doi: 10.1016/j.jphotochem.2019.112042 [33] LIU T, LI N, DONG J X, et al. Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and IMPLICATION logic gate operation [J]. Sensors and Actuators B:Chemical, 2016, 231: 147-153. doi: 10.1016/j.snb.2016.02.141 [34] WANG S, CHEN H Y, XIE H L, et al. A novel thioctic acid-carbon dots fluorescence sensor for the detection of Hg2+ and thiophanate methyl via S-Hg affinity [J]. Food Chemistry, 2021, 346: 128923. doi: 10.1016/j.foodchem.2020.128923 [35] 祝艳, 鲁应光, 母昭, 等. 硅掺杂碳点荧光猝灭法检测废水中钴离子 [J]. 环境化学, 2020, 39(12): 3517-3523. ZHU Y, LU Y G, MU Z, et al. Determination of cobalt by silicon doped carbon dots fluorescence spectrophotometer [J]. Environmental Chemistry, 2020, 39(12): 3517-3523(in Chinese).
[36] KUMARI A, KUMAR A, SAHU S K, et al. Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging [J]. Sensors and Actuators B:Chemical, 2018, 254: 197-205. doi: 10.1016/j.snb.2017.07.075 [37] WANG X F, YANG Y X, HUO D Q, et al. A turn-on fluorescent nanoprobe based on N-doped silicon quantum dots for rapid determination of glyphosate [J]. Mikrochimica Acta, 2020, 187(6): 341. doi: 10.1007/s00604-020-04304-9 [38] ZHOU W S, LI C H, SUN C, et al. Simultaneously determination of trace Cd2+ and Pb2+ based on l-cysteine/graphene modified glassy carbon electrode [J]. Food Chemistry, 2016, 192: 351-357. doi: 10.1016/j.foodchem.2015.07.042 [39] LI Y H, CAI J B, LIU F J, et al. Construction of a turn off-on fluorescent nanosensor for cholesterol based on fluorescence resonance energy transfer and competitive host-guest recognition [J]. Talanta, 2019, 201: 82-89. doi: 10.1016/j.talanta.2019.03.110 [40] GUAN R T, TAO L X, HU Y Y, et al. Selective determination of Ag + in the presence of Cd2+, Hg2+ and Cu2+ based on their different interactions with gold nanoclusters [J]. RSC Advances, 2020, 10(55): 33299-33306. doi: 10.1039/D0RA05787H [41] 孙雪花, 张锦婷, 赵李艳, 等. 基于氮掺杂碳量子点的制备及其对Hg2+的响应 [J]. 环境化学, 2021, 40(1): 321-326. doi: 10.7524/j.issn.0254-6108.2020061504 SUN X H, ZHANG J T, ZHAO L Y, et al. Preparation of nitrogen-doped carbon quantum dots and its response to Hg2+ [J]. Environmental Chemistry, 2021, 40(1): 321-326(in Chinese). doi: 10.7524/j.issn.0254-6108.2020061504
[42] HUA J H, MU Z, HUA P, et al. Ratiometric fluorescence nanoprobe for monitoring of intracellular temperature and tyrosine based on a dual emissive carbon dots/gold nanohybrid [J]. Talanta, 2020, 219: 121279. doi: 10.1016/j.talanta.2020.121279 [43] CHAN Y H, CHEN J X, LIU Q S, et al. Ultrasensitive copper(II) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots [J]. Analytical Chemistry, 2010, 82(9): 3671-3678. doi: 10.1021/ac902985p [44] LIANG G X, LIU H Y, ZHANG J R, et al. Ultrasensitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots [J]. Talanta, 2010, 80(5): 2172-2176. doi: 10.1016/j.talanta.2009.11.025